Nuclear physics activities in Vietnam (highlight from NHEP2016 conference)

- Experimental nuclear physics (INST Hanoi, INR Da Lat, IOP Hanoi): mainly through the international collaboration projects (nuclear structure of unstable nuclei) by about 10% of manpower, the rest 90% in the radiation technique and reactor research.
- Theoretical nuclear physics (INST Hanoi): both in international collaborations and pure VN research (direct nuclear reactions, nuclear cluster, and EOS of the neutron star and proto-neutron star matter).

Spectroscopy of ⁶⁸Fe from SEASTAR project: prompt coincidences *L.X. Chung, B.D. Linh et al. (VINATOM) in collaboration with CEA-Saclay and RIKEN*

Spectroscopy of ⁶⁷Fe from SEASTAR project: isomer coincidences

RESONANT STATES IN ²⁶Si VIA SCATTERING OF ²²Mg+α

N. N. Duy, L.H. Khiem et al (IOP) in collaboration with CNS & RIKEN

Six resonances in ²⁶Si obtained via ²²Mg(α, α)²²Mg was used to calculate the reaction rate of ²²Mg(α, p)²⁵Al.

The speed of ${}^{22}Mg(p,\gamma)$ is fastest with ${}^{22}Mg$ nucleus

Isomeric yield ratios of the ^{nat}Re(γ,xn)^{184m,g}Re photonuclear reaction induced by 50-, 60-, and 70- MeV Bremsstrahlung

P. D. Khue et al. (IOP) in collaboration with Korean colleagues @ Pohang (Korea)

Study of level scheme for ¹⁷²Yb

N. N. Anh et al (Dalat Nuclear Research Institute, VINATOM)

Three transitions (2249, 2524, 2746.7 keV), which are not presented in ENSDF library, are detected in this experiment.

The efficient discrimination of neutron-gamma pulse with small active scintillation detector

P. V. Chuan et al (Dalat Nuclear Research Institute, VINATOM)

Threshold crossing time (TCT)

Charge Comparison Method (CCM)

Pulse gradient analysis (PGA)

volume

and

Correlation pattern recognition (CPR)

with

digital

signal

combination

The measured data with a neutron source ²⁵²Cf were analyzed by methods of TCT, PGA, CCM and CPR. The scatter plots with energy threshold of 100keVee

Pelletron at Hanoi University of Nat. Science

N.T. Nghia et al (HUS VIETNAM) in collaboration with CNS Tokyo (Prof. S. Kubono)

- Nuclear Reaction Analysis (NRA) and Particle Induced X-ray Emission (PIXE)
- Preparation for the exp. on ${}^{10}B(p,\alpha)$ reaction !

Excitation of the Hoyle state and transition strengths of cluster states in ¹²C

DAO TIEN KHOA Nuclear Physics Center, INST Hanoi, VINATOM.

Carbon - Life's backbone

Carbon synthesis in the Universe

Schematic of the triple alpha process at T~10⁸ K.

 $\alpha + \alpha \rightarrow {}^{8}\text{Be} - 0.092 \text{ MeV}; {}^{8}\text{Be}$ is unstable with $\tau_{1/2} \sim 10^{-16}$ s and decays quickly into two α - particles ! Carbon production is possible only via a resonance reaction $\alpha + \alpha + \alpha \rightarrow {}^{12}\text{C}^* \rightarrow {}^{12}\text{C} + 2\gamma + 7.37 \text{ MeV}$

$$J^{\pi}=0^+, E_x=7.654 \text{ MeV}$$

Predicted : F. Hoyle, D. N. F. Dunbar, W. A. Wenzel, Phys. Rev. 92, 1095 (1953) Observed: C. W. Cook, W. A. Fowler, T. Lauritsen,

Phys. Rev. 107, 508 (1957)

Three-alpha structure of the Hoyle state

<u>Three α cluster – Linear chain</u>

Cluster model: large moment of inertia H. Morinaga, Phys. Rev. 101 (1956) 254.

- Gas-like state of three α particles

Large radius, see *e.g.* H. Horiuchi, Prog. Theor. Phys. **51** (1974) 1266.

<u>Three α condensate</u>

A. Tohsaki *et al.*, Phys. Rev. Lett. **87** (2001) 19250.

Progress of Theoretical Physics, Vol. 117, No. 4, April 2007 Y. Kanada-En'yo

AMD calculation

No core shell model calculations Navratil P, Vary J P and Barrett B R 2000 *Phys. Rev. Lett.* **84** 5728

Figure 27. The no core shell-model calculations for the nucleus ¹²C. The left hand part of the figure shows the experimental results. The calculations using the CD Bonn N - N interaction with increasing numbers of oscillator orbits are shown on the right [94].

S

Structure and Rotations of the Hoyle State

Evgeny Epelbaum,¹ Hermann Krebs,¹ Timo A. Lähde,² Dean Lee,⁴ and Ulf-G. Meißner^{5,2,3}

¹Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44870 Bochum, Germany ²Institut für Kernphysik, Institute for Advanced Simulation, Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany

³JARA—High Performance Computing, Forschungszentrum Jülich, D-52425 Jülich, Germany ⁴Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA ⁵Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany

the low-lying even-parity states of ¹² C, in units of MeV.								
	0 ⁺ ₁	$2_1^+(E^+)$	0^+_2	$2_2^+(E^+)$				
LO	-96(2)	-94(2)	-89(2)	-88(2)				
NLO	-77(3)	-74(3)	-72(3)	-70(3)				
NNLO	-92(3)	-89(3)	-85(3)	-83(3)				
Expt.	-92.16	-87.72	-84.51	-82.6(1) [8,10]				
				-81.1(3) [9]				
				-82.32(6) [11]				

Hoyle state finally explained in ab-initio calculation, no more an "anthropic" 3α -cluster state !

Excitation of the Hoyle state A puzzle and challenge for the (experimental) nuclear physics

¹²C*, $J^{\pi}=2^+$, $E_x \sim 10$ MeV rotation of the Hoyle state

¹²C*, J^π=0+, E_x=7.65 MeV
H. Morinaga, *Phys. Rev.* 101 (1956) 254

ground state

BEC scenario: Y. Funaki et al., Eur. Phys. J. A 28 (2006) 259

 3α condensate

Inelastic α + ¹²C or ¹²C + ¹²C scattering => isoscalar excitation of ¹²C target

PHYSICAL REVIEW C 68, 014305 (2003)

Bency John,* Y. Tokimoto, Y.-W. Lui, H. L. Clark, X. Chen, and D. H. Youngblood Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA

Selected for a Viewpoint in *Physics*

PHYSICAL REVIEW C 84, 054308 (2011)

Candidate for the 2⁺ excited Hoyle state at $E_x \sim 10$ MeV in ¹²C

M. Itoh,¹ H. Akimune,² M. Fujiwara,³ U. Garg,⁴ N. Hashimoto,³ T. Kawabata,⁵ K. Kawase,³ S. Kishi,⁵ T. Murakami,⁵ K. Nakanishi,³ Y. Nakatsugawa,⁵ B. K. Nayak,⁴ S. Okumura,³ H. Sakaguchi,³ H. Takeda,⁶ S. Terashima,⁵ M. Uchida,⁷ Y. Yasuda,³ M. Yosoi,³ and J. Zenihiro³

First observation of 2_2^+ state from the ${}^{12}C(\gamma, \alpha)^8$ Be reaction Zimmerman *et al. Phys. Rev. Lett.* 110, 152502 (2013).

Why is the 2+ excitation of the Hoyle state so important?

Triple-alpha reaction rates

W.R. Zimmerman, PhD Thesis, Univ. of Connecticut, 2014.

D.C. Cuong, D.T. Khoa, Y. Kanada-En'yo, *Phys. Lett.* B **695**, 469 (2011); *Phys. Rev.* C **88**, 064317 (2013).

Comprehensive CC analysis of (α, α') data.

$< nJ_A V_\lambda(R) nJ_A >$		$< n'J'_A V_\lambda(R) nJ_A >$		were calculated using the AMD diagonal and transition densities			
J^{π}	$\langle r^2 \rangle_{\text{calc}}^{1/2}$ (fm)	E _{calc} (MeV)	E _{exp} (MeV)	Transition	Calc. $(e^2 \text{ fm}^{2\lambda})$	Best-fit $(e^2 \text{ fm}^{2\lambda})$	Exp. $(e^2 \text{ fm}^{2\lambda})$
21	2.668	4.5	4.44	$B(E2;2^+_1 \rightarrow 0^+_1)$	8.4	8.4 ± 1.5	$\begin{array}{c} 7.4 \pm 0.2 \\ 7.7 \pm 1.0 \\ 8.0 \pm 0.8 \end{array}$
0 ₂ ⁺ 3.27	3.277	8.1	7.65	$B(E2; 2_1^+ \to 4_1^+) M(E0; 0_2^+ \to 0_1^+)$	28.5 6.6	4.5 ± 0.5	3.7 ± 0.2 5.4 ± 0.2
				$B(E2; 0_2^+ \to 2_1^+) \\ B(E3; 0_2^+ \to 3_1^-) \\ M(E0; 0_2^+ \to 0_3^+) \\ M(E1; 0_2^+ \to 1_2^-) $	25.5 3122 16.7		13.0 ± 2.0
31	3.139	10.8	9.64	$M(E1; 0_2^- \rightarrow 1_1^-)$ $B(E3; 3_1^- \rightarrow 0_1^+)$	74.4	59.5 ± 3.2	35.9 ± 1.4 34.3 ± 5.7 87.1 ± 1.3
				$\frac{B(E3; 3_1^- \to 2_2^+)}{M(E1; 3_1^- \to 2_2^+)}$	<u>136.</u> 7 3.71		07.1 ± 1.5
0_{3}^{+}	3.985	10.7	10.3	$M(E0; 0^+_3 \to 0^+_1)$ $B(E2; 0^+_3 \to 2^+_3)$	2.3 1553	2.9 ± 0.3	3.0 ± 0.2
2^{+}_{2}	3.993	10.6	9.84 10.13	$\frac{B(E2; 0_3^+ \to 0_2^+)}{B(E2; 2_2^+ \to 0_1^+)}$	0.4	0.6 ± 0.1	$\begin{array}{c} 0.37 \pm 0.02 \\ 1.57 \pm 0.14 \end{array}$
				$ \begin{array}{r} B(E2; 2_2^+ \to 0_2^+) \\ \hline B(E2; 2_2^+ \to 4_1^+) \\ \hline B(E2; 2_2^+ \to 4_2^+) \\ \hline \end{array} $	102 13.5 <u>107</u> 1		
1	3.424	12.6	10.84	$M(E1; 1_1^- \to 0_1^+) M(E1; 1_1^- \to 2_2^+) B(E3; 1_1^- \to 2_2^+)$	1.58 3.73 1679	0.34 ± 0.04	0.31 ± 0.04

the entrance and the exit channels; DWBA2 and CC calculations use the OP of the exit channel computed separately at the energy E_{α} -Q, with the AMD diagonal density of ¹²C*

DWBA1 calculation uses the same OP in

M(E0; $0^+_2 \rightarrow g.s.$) = 4.5 e fm² B(E3; $3^-_1 \rightarrow g.s.$) = 59.5 e² fm⁶ D.C. Cuong, D.T. Khoa, Y. Kanada-En'yo, *Phys. Rev.* C 88, 064317 (2013)

Best fit transition strength B(E2; $2^+_2 \rightarrow g.s.$)=0.6 e^2 fm⁴

~ 0.4 e^2 fm⁴ by Itoh et al. ~ 1.57 e^2 fm⁴ determined from ${}^{12}C(\gamma, \alpha)^8$ Be reaction <u>W.R. Zimmerman PhD</u> <u>Thesis;</u> W.R. Zimmerman *et al. Phys. Rev. Lett.* **110**, 152502 (2013);

Data: M. Itoh et al., Phys. Rev. C 84, 054308 (2011)

D.C. Cuong, *et al.*, *Phys. Rev.* C **88**, 064317 (2013)

Multipole decomposition of the CC results, compared with the data at 240 MeV. The total cross sections obtained with and without the contribution from the 2^+_2 state are shown as the blue and red solid lines, respectively.

Data: B. John, *et al.*, *Phys. Rev.* C **68**, 104315 (2003); Private communication.

Data: M. Itoh *et al., Phys. Rev.* C **84,** 054308 (2011)

CC results compared with data at 386 MeV. The 2^+_2 state is fragmented over the total width Γ =2.1 MeV, determined from $^{12}C(\gamma, \alpha)$ ⁸Be reaction (W.R. Zimmerman, PhD Thesis, Univ. Connecticut 2014).

Conclusion

- A clear presence of the 2⁺₂ state of ¹²C at E_x~10 MeV has been confirmed consistently by the CC analysis of the inelastic α + ¹²C scattering data measured at 240 and 386 MeV → End of the puzzle of the Hoyle state.
- Given strong Eλ transition strengths predicted for transitions between the 2⁺₂ state and other cluster states of ¹²C, a high-precision (α,α') measurement at lower energies should be of interest for a probe of the indirect (two-step) excitation of this state.
- Some difference between the Eλ transition strengths of the 0⁺₂, 0⁺₃, 3⁻₁, and 2⁺₂ states given by the folding + CC analysis of (α, α') data and those given by the MDA of the same data has been shown to be due to the strong coupling between cluster states.

The International Symposium on Physics of Unstable Nuclei 2017 (ISPUN17)

Halong City, Vietnam, September 25 - 30, 2017

https://ispun.vn

https://www.facebook.com/groups/ispun.vn

