Nuclear physics in Japan (hadron, high energy)

LEPS2/ELPH; Electrons and Photons, PHENIX/ALICE; High-Energy Heavy Ions, J-PARC (Hadron/Neutrino); High Intensity secondaries,

> Kazuhiro Tanaka IPNS, KEK & NPD, J-PARC

LEPS2/ELPH

Operated by RCNP, Research Center for Nuclear Physics, Osaka University

RCNP Laser-Electron Photon Beamlines @ SPring-8

- Investigate the form of existence of hadrons with use of high energy photons.
 - Elucidate the fundamental freedom of the hadron formation.
 - \rightarrow How are hadrons built with quarks?
 - Study exotic hadrons like a pentaquark Θ^+ .
 - \rightarrow give a new knowledge on quark correlations (e.g., di-quark) inside the hadron.

Large Acceptance EM calorimeter BGOegg

- 'Egg'-shape assembly of 1320 Bi₄Ge₃O₁₂ crystals without supporting structures b/w crystals.
- Each BGO covers $\sim 6^{\circ}$ in (θ, ϕ) with $L_{crystal} = 220 \text{ mm} (20X_0)$. There are 22 layers.
- World-highest energy resolution in the energy region below 1 GeV. (1.3% @ 1 GeV)

LEPS2/BGOegg Experiment for η'-mesic Nuclei Search

RHIC/PHENIX, ALICE

Generation of Quark Gluon Plasma

 \rightarrow Production of high density QGP

 \rightarrow QGP as perfect fluid

 \rightarrow Very high Temp QGP

PHENIX Exp. played a central role for discovering QGP.

RHIC Cold QCD Plan arXiv:1602.03922

 Large fraction of proton spin carried by gluons!

8 Ph.D from Japanese Institutes

 New generation measurements of sea-quark polarization via W production.
3 Ph.D from Japanese Institutes

Detector evolution for future hadron structure study

ALICE at CERN LHC, and ALICE Japan

<u>the</u> nucleus-nucleus collision experiment at LHC

42 countries; 174 institutes; ~1,800 members

hottest, largest, longest-lived quark-gluon fireball

- nucleus-nucleus collisions at world highest energy
 - Pb+Pb at 5.02 TeV per nucleon-nucleon pair ($\sqrt{s_{NN}}$) in 2015
- strong commitments in detector/physics/upgrade
 - 5 full member institutes and 2 associate in Japan
 - http://www.alice-j.org/ for details

2016/11/15

LHC-ALICE upgrade(2021-)

ALICE upgrade and ALICE-J contributions

- ITS (inner Si pixel trackers)
- GEM-TPC upgrade
- Forward Silicon pixel trackers
- O2 (DAQ-online-offline) upgrade
- Forward calorimeter (under discussion)

Precision Science of Quark-Gluon-Plasma

- 50kHz Pb-Pb Collisions from 2021-
- Inspect all Pb-Pb collisions by ALICE (unique at the LHC)
- x100 larger statistics compared to now
- Precision measurements of hadrons, multi– strangeness, heavy–flavors, jets, photons and leptons
- Detailed understanding of medium properties as a function of temperature

Technical design report of the ALICE upgrade (ITS, MFT, GEM-TPC, DAQ-O2, Trigger & electronics) → Endorsement by the LHCC (2012)

J-PARC Japan Proton Accelerator Research Complex

J-PARC at Tokai-mura, Ibaraki-ken

J-PARC

RCS

ML

to

"50GeV-PS" 30GeV 25µА,

SK

Japan Proton Accelerator Research Complex

3GeV3334A

Hadron Hall

for Counter Experiments with 150kW SX

Bird's eye photo in January 2016

Nuclear, Hadron, & Particle Physics at Hadron Hall

Restart of Hadron Beam Operation

目を起こしたハドロン 放射性物質の漏出事故

< 放射性物質の漏出事故

っを標的

映中に起 陽子ビ てて粒

3年5月、 の金に当

PARC 東海村にある加速器実験 実験施設が再開 ÂRC 放射能漏れから2年 で24

に再開され **厥施設の運転が約2年ぶ** 的温度、 時すぎ 異常なし

> しの日カら 研究機関の三つ 理室では

ノで発信

-での会

 σ

とで放

とさ

「期間中、 作り れる。 20 ą 宙の成り立ちを探究 で通営。 利用した。 原子核と衝突させて 刀研究開発機構と高エ 陽子ビー 世界最高性能の施 事故前 加速器研究機構が 標的となる金 09 常時約 F 物質の起源 ムの出 年に完成 ロン実験 年度

延期を余儀なくされ 事故でこ して実験に取り ハつの実験が中 の責

手故じ降 と話す を躍まえ、 をかけて安全対策を 基準もマニュア 原因となっ 異常な量のビ 専再開を

れるのでホッ

政書士古性隆さん(50 してきた常総 しの動向を 市民の立 県や村は 承した 線で監視

ぶ縮まった

User operation restarted with the proton beam power of 24kW!

6

E15

14

15 16 17

18

19

20 21

22

23

25

26

(Almost 2 years after the accident)

Development of Beam Intensity

Feb, 2009 - May, 2013: 1.26x10^6 spills, **560 kW*days** ← Before Hadron Incident Apr, 2015 - Dec, 2015: 1.05x10^6 spills, **2338 kW*days** ← in JFY2015 May, 2016 - Jun, 2016: 0.33x10^6 spills, **875 kW*days** ← in June 2016 Run

Beam time used for experiments in 2015 run E05 Spectroscopic Study of E-Hypernucleus

Setup at K1.8 for E13-1

Detect gamma-rays from hypernuclei

22

Hyperball-J**と**SKS

Development of Strangeness Nuclear Physics

For the understanding of Nuclear Force between Baryons and high density nuclear Matter

Spectroscopy of heavy hyper nuclei via (π, K) reactions

Toward double strangeness systems

J-PARC E07: S=-2 Systems by emulsion

 $\Lambda \rightarrow N\pi$, $\Lambda N \rightarrow NN$

Under switchover from SKS to KURAMA now

Kurama for hybrid emulsion exp.1

Start of E07 (Emulsion exp.) at K1.8

KURAMA (~260msr) installed at K1.8

Neutron Star

Beam was exposed to the 18/118 emulsion stacks in June 2016.

S-2S spectrometer for E05

2S(QQD): 3 years

- ★ Installation in 2016
- ★ Data taking in 2017 with > 50 kW !!

00

Magnets are ready!

S-2S spectrometer ver. 29Aug2014

E05 Pilot Run

New Beam Line @ J-PARC

Construction of New Beam Line is under way. Characteristics of the beam line is following. Primary Proton Beam (30GeV), 10¹⁰ per spill High Momentum un-separated secondary beam (< 20 GeV/c), 10^8 per spill Primary Proton Beam (8GeV) for COMET Heavy Ion Beam (Future Plan)

Construction Status of the beam line

First Experiment (J-PARC E16)

Measurements of invariant mass spectra of electron-positron pairs in ϕ meson mass region to investigate chiral properties of nucleus

Mass spectrum of vector mesons strongly relates with quark condensates in a QCD medium. (Hatsuda and Lee, Phys. Rev. C46 (1992) R34)

Experiments in (near) future

Di-quark Correlation

Light quark baryon

Di-quark correlation in a baryon are suggested.

Experimental information, such as Regge trajectory, supports di-quark. However, it is difficult to study di-quark in light quark baryons due to other effects.

High Density Matter

Future Heavy lon beam is under discussions to explore a high density matter

Charmed baryon excited states

Following two excitation will be distinguished.

<u>Di-quark excitation</u> <u>Charm – qq excitation</u>

Detailed study of level structure is a key measurement

High momentum and high intensity secondary beam and missing mass spectroscopies are one of the most promising methods

Summary 1

- Physics experiments re-started at the Hadron Experimental Facility (HEF) of J-PARC.
- Beam Intensity is now ~50kW. We are ready to increase beam power up to 80kW.
- Main nuclear physics experiments at HEF are now going to S=-2 hypernuclei!

Next Step: Hadron Hall Extension

Next Step: Hadron Hall Extension

HIHR

tension

K1.

Both Nuclear Physics community and High Energy Physics community gave high priority to this project.

Change of Hadron Mass

Hypernucleus Factory (S=-1, -2)

K1.1, 1.8: Ultimate research of S=-1 and -2 hypernuclei with high-intensity Kaon beams

High-p: Origin of the QCD

mass and quark structure of

K1.8

Hypernucleus Microscope

K10

HIHR: Very Precise spectroscopy with highresolution and high-intensity secondary beams

> **CP** Violation: from Discovery to Measurement

KL: Measurement of 100 CP violating events to tackle a quest on the matter-dominated universe

Multi-Strangeness / Charmed Nucleus

K10: Nuclear matter with an extreme condition with high-momentum separated secondary beams (Kaons and Antiprotons)

Discovery of Lepton Flavor Violation

COMET: Search for μ -e conversion with the world-best precision of less than 10^{-16}

HI Accelerator scheme in J-PARC (preliminary)

achieved without any significant beam losses.

Backup (Neutrino)

T2K (Tokai-to-Kamioka) Experiment

Purpose of the T2K experiment ;

Generate intense neutrino beam at J-PARC and shoot Super-Kamiokande detector, measure neutrino properties at SK to explore neutrino oscillation parameters, and eventually detect CP violation in the neutrino sector. Super-Kamiokande to measure property after 295km-flight

Neutrino changes its species while travelling 295km from J-PARC to SK.

Near Detector to measure property just after production

Off-axis configuration generates neutrino beam of quasi-monochromatic energy which peaks at the oscillation-maximum energy of ~0.6GeV.

Beam Power and POT Accumulation

As of 27 May 2016 (before summer shut-down)

- Accumulated POT total = 1.51×10^{21}
- Achieved Beam Power = 425kW

After summer maintenance, beam operartion resumed on 10/26.

 $V\mu$ Disappearance Result

K.Iwamoto @ ICHEP2016

 νe Appearance Result and CP constraint

By heta13 measurement of T2K and constraint with reactor measurements, CP parameter δ is obtained. Non-0 δ is preferred as below.

