Nuclear Physics in Australia

Australian Government Australian Research Council

ADELAIDE UNIVERSITY AUSTRALIA

Anthony W. Thomas

ANPhA Sendai : 24th November 2016

Acknowledgments

- Andrew Stuchbery ANU
- Elisabetta Barberio, Melbourne
- Victor Flambaum, UNSW
- Richard Garrett, ANSTO
- Anatoly Rozenfeld, Wollongong
- Geoff Taylor, Melbourne
- Phillip Urquijo, Melbourne
- Kevin Varvell, Sydney
- ANU Nuclear Physics

Australian Nuclear Science and Technology Organisation

Acronyms and Outline

Centre of Excellence for Particle Physics

- University Research
- International Links

Australian Nuclear Science and Technology Organisation

- Applied nuclear
- Major facilities
 - OPAL Reactor
 - Australian Synchrotron

Fundamental - Particle

Nuclear - Heavy Ion

Applications

SUPL – Dark Matter Search

- Combined Nuclear and Particle Effort
- New venture

CoEPP - the ARC (Australian Research Council) Centre of Excellence for Particle Physics at the Terascale.

- Encompasses the particle physics field in Australia
- Focus for Experimental and Theoretical Particle Physics
- Funded for period 2011-2017
- Nodes: Adelaide, Melbourne, Monash, Sydney Universities
- 20 Academics, 36 post-docs, 97 research students (2015)

Research Program

- Higgs Physics
 - . H to tau tau
 - WH to WWW
 - . ttH to leptons
- Collider Phenomenology
- BSM and exotic models
- Search for origins of neutrino mass
- Search for Exotics

- Precision tests of SM
 - . Low energy QCD
 - Top Cross-section
 - . Dark Matter
 - . Collider Searches
 - BSM implications
 - . SUSY
 - . Modelling
 - . Collider Searches

Sept. edition. Feature by P. Urquijo

Australian Involvement in Belle II

Universities of Melbourne, Sydney, Adelaide

Australian Belle II Contribution

Belle II Management

Belle II Physics Coordinator (Urquijo)
Belle Executive Board (Urquijo, Sevior)
Belle II Executive Board (Urquijo, Sevior)
Belle CKM Analysis Group Coordinator (Urquijo)
Belle Hadronic B decay Group Coordinator (Sevior)

Physics

Semi-leptonic B decays (Melbourne, Sydney): Precision measurements of |Vub|, |Vcb| Searches for charged Higgs
Radiative and electroweak B decays (Melbourne)
τ lepton flavour violation (Melbourne)
Dark Sector searches (Melbourne)
CP Violation in B decays (Melbourne)

Detectors (Melbourne)

Silicon Vertex Detector Construction and Software Trigger (HLT & Trigger Menu) and Data Acquisition Detector Calibration Global Computing Grid

P. Urquijo, Belle II Australia

The Belle II Vertex Detector System

P. Urquijo, Belle II Australia

SVD Construction @ University of Melbourne

P. Urquijo, Belle II Australia

Dark Matter

Direct Dark Matter Searches

Neutralino is the Preferred Candidate

Because it arises naturally in supersymmetric extensions of the Standard Model

Can calculate its properties in a given SUSY theory

Many searches underway – indirect at LHC – direct deep underground

Majority of Experiments find Nothing

- Spin dependent scattering usually ignored because spin independent cross section ~A² (coherent contribution from ALL nucleons)
- Spin-dependent nuclear cross section involves only one or two "valence nucleons" (all the rest are paired to spin zero)
- On the other hand, DAMA, using Nal crystal at Gram Sasso in Italy has reported a spectacular signal

DAMA/LIBRA

WIMP wind ~ isotropic in halo frame, $v \sim 270 \text{ km/s}$

Sun travels through this cloud at ~220 km/s

Earth adds or subtracts 15 km/s (= 30 km/s X cos 60°) to solar velocity Expect ± 1-few % modulation in rate

• But apparently in contradiction with other experiments

Australian

National Universitv

SABRE: Sodium iodide with Active Background REjection

- Twin detectors @ LNGS and SUPL
- Spokesperson: Frank Calaprice (Princeton)

SABRE Collaboration: 11 institutes

Australia: Uni. Adelaide, Australian National Uni., Uni. Melbourne, Swinburne Uni. Italy: LNGS, Milano Uni., Roma la Sapienza Uni. USA: Princeton Uni., PNNL, LLNL UK: Imperial College London

SABRE Strategy

Lower Background

- Nal(TI) crystals with higher purity than DAMA/LIBRA
- Low-radioactivity enclosure & PMTs.
- Active scintillator veto reduces internal and external background.
- Lower energy threshold
 - High QE Hamamatsu PMTs directly coupled to Nal.
 - PSD based DAQ and data analysis, improved background measurements via AMS, improved quenching factors.

Stawell, 250 km from Melbourne

STAWELL GOLD MINE IN VICTORIA

s a state of Mine

The Federal and Victorian Governments have so far contributed almost \$5M to this project.....

SUPL Timeline

- 2014 Lab proposed (Sep), Project Leaders <u>E. Barberio</u>, J. Mould
- 2015 Funding secured (May) Design commenced (Aug)
 - Design Review (Feb) Start Construction (July) Cavern excavated (Sep) Lab surfacing (Dec)
- 2017

2016

Lab ready to use (Late 2017) Planned experiments SABRE-South (2017)

TPC-experiment: CYGNUS Directional Dark Matter, Neutrinoless ββ R&D Other possibilities **Non HEP**: Astrobiology, Cancer research

Subatomic Physics in Adelaide

- Particle theory and experiment
- SABRE experiment at SUPL
- 60-70 staff, postdocs, students
- Extensive International Collaborations

Australian Research Council

CSSM : Centre for the Subatomic Structure of Matter

The Strong Force, QCD & Lattice QCD

- Origins of nuclear structure
 - ✓ Quark-meson coupling (QMC) model
- Nuclear matter Neutron stars
- Hadron structure
 - ✓ Spin of the proton

Leinweber, Thomas, Williams, Young, Zanotti

QMC Binding Energies: Isotopes & Isotones

Typically better than 0.5% across entire periodic table

Neutron stars

International collaboration

ANU collaboration

Lattice QCD – Nature of A(1405)

It is a Kbar-N bound state

 \mathcal{G}_M for the $\Lambda(1405)$ at $Q^2 \sim 0.16 \,\mathrm{GeV}^2$

J. M. M. Hall, *et al.* [CSSM] "Lattice QCD Evidence that the Λ(1405) Resonance is an Antikaon Nucleon Molecule" Phys. Rev. Lett. **114**, 132002 (2015), arXiv:1411.3402 [hep-lat]

Hamiltonian analysis of Lattice data as function of quark mass: Adelaide Initiative

Hamiltonian model fit: $\Lambda(1405)$ again

Changing Nature of S= -1 $\frac{1}{2}$ **Resonance**

ANU: Australian National University - Canberra

SOLEROO: radioactive beam production

SolenoGam: conversion electron spectroscopy, isomers fission dynamics

CUBE: two-body

Hyperfine Spectrometer:

environmental, biomedical,

AMS Enge gas-filled magnet: astrophysics, technology

CAESAR: time-correlated spectroscopy, nuclear structure

Research Areas

Quantum Physics with Nuclei

- Collectivity (Shapes, Vibrations, Fission, ...)
- Correlations (Clustering, Entanglement, Shells, ...)
- Tunnelling (Coupling, Dissipation, Decoherence, Fusion, Reactions, Decay,...)

Nuclei in the Cosmos

- Nucleosynthesis (Supernovae, Li problem, Hoyle State, ...)
- Dark Matter (Nuclear Recoil Detection Stawell Underground Physics Lab)

Nuclei for Society

- Environment (Erosion rates, ...)
- Health (Auger electrons from radioisotopes, ...)
- Security and Safeguards (Education, ...)

Nuclear Structure; Nuclear Reactions; Accelerator Mass Spectrometry; Hyperfine Interactions; Medical Applications

International connections

Research overview: some examples

Australian National University

Research at ANU

Quasifission & Making Heavy Nuclei

Time Dependent Hartree Fock

(Cedric Simenel)

$^{40}Ca + ^{238}U \rightarrow (Z=112) \rightarrow _{82}Pb + _{30}Zn$

PHYSICAL REVIEW LETTERS

week ending 31 OCTOBER 2014

Interplay between Quantum Shells and Orientation in Quasifission

A. Wakhle, C. Simenel,^{*} D. J. Hinde, M. Dasgupta, M. Evers, D. H. Luong, R. du Rietz, and E. Williams Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia

3-6 years Accelerator & Beam lines

Time

6-9 years and beyond

Accelerator development aspirations

- New beam lines
- New Linac 4× higher field gradient
- New Linac injector
 - ✓ Parallel operation of 14UD and Linac

 Prepared for new NCRIS infrastructure program

Argonne cryomodules

Cost

- 2 fit present Linac footprint
 - ✓ Two give 35 MV boost
 - ✓ 4 times present Linac
 - ✓ USD \$4M each

GSI/FAIR alternative

• Collaborative arrangement

Australian Government

Australian Nuclear Science and Technology Organisation

Richard Garrett

ANSTO Large Scale Research Infrastructure

Products and Indications

Product	Indication
Mo-99	Bulk export – Tc-99m generator
Gentech /Tc-99m	Organ imaging of the liver, lung, bone, kidney & heart
Sodium Iodide I-131	Hyperthyroidism & Thyroid cancer
Quadramet Sm-153	The relief of bone pain in patients with painful osteoblastic skeletal metastases
Chromium Cr-51	The determination of GFR rate
lutetium-177	Diagnosis and treatment of Neuroendocrine. Tumors
Gallium Ga-67	Hodgkin's Disease, lymphomas and bronchogenic carcinoma. Acute infections
mIBG I-123	Detection, staging and follow-up of neuroblastomas.
Thallium TI-201	Myocardial perfusion imaging
¹⁸ F-FDG	Diagnosis, staging and monitoring of Cancer treatment

ANSTO Nuclear Partnerships and Collaboration

IAEA International Atomic Energy Agency

j-PARC

Forum for Nuclear Cooperation in Asia

M RESEARCH TO INDUSTR

R

KAERI

International Partnerships

X-ray Free Electron Laser & Neutron spallation sources

Particle Therapy Program Australia

Anatoly Rozenfeld

-Planning Facilities Proton and HIT facilities:

NSW – National Particle Therapy Research and Treatment Centre at Westmead Children Hospital (2 accelerators for HIT and PT, in process of submission Steering Committee report to government

Victoria -

Proton Therapy Centre associated with new Comprehensive Cancer Centre in Melbourne

Queensland – Proton Therapy private facility (HITACHI)

South of Australia -Proton therapy facility

Summary

- Much smaller community (~250) than Japan or China
- Nearer in size to Korea but not as ambitious in terms of facility construction
- Although SABRE at SUPL is a big step forward
- Major potential initiatives for future:
 - Associate membership of CERN
 - Formal link to FAIR

