

北京大学物理学院 School of Physics, Peking University

Furong Xu (许甫荣)

(I) Nuclear theoretical researches in China (incompletely)

(II) Nuclear education in China (incompletely)

(III) Resonance and continuum in atomic nuclei

-- Core Gamow shell model with realistic nuclear forces --

ANPhA symposium (Nov. 23-25, 2016, Sendai Japan)

Governing Board

Yanlin Ye (Co-Director, PKU)

Furong Xu (Managing Director, PKU)

Wenlong Zhan (CAS)

Huanqiao Zhang or Chenjian Lin (CIAE)

Yu-Gang Ma (SIAP)

Zhongzhou Ren (Nanjing U.)

Yuhu Zhang (IMP-CAS)

Shan-Gui Zhou (ITP-CAS)

P. Danielewicz (Co-Director, MSU)

Bao-An Li (PI, Texas A&M)

W. Nazarewicz (MSU/FRIB)

J. Piekarewicz (FSU)

B. Sherrill (MSU)

Nuclear theory researches in China In Beijing

PKU (structure)

- Ab initio (MBPT, GSM, BHF, SM): excited-state spectra, binding energies ...
- DFT (relativistic and non-relativistic): halo, rotations ...
- ITP-CAS (structure)

.....

- DFT (relativistic): halo, fission, superheavy ...
- **BNU (structure and reaction)**
- Transport model: superheavy, heavy ion collision
- **CIAE (structure and reaction)**
- DFT (relativistic), PSM, QMD: structure, rotations, heavy ion collision
- **Beihang (structure and reaction)**
- **Reaction models, DFT, nuclear forces**

In other cities

Nanjing

Clustering

Nuclear symmetry energy

SJU

Algebra model, masses...

PSM, rotations...

Symmetry energy, heavy ion collision

SIAP-CAS

Heavy ion collision, clustering

IMP-CAS

Nuclear matter...

Huzhou

Structure, rotations, QMD heavy ion collision ...

Some other theory groups in China

Some examples in theoretical researches in China

Shape Decoupling in Deformed Halo Nuclei

Nuclear shape & fission barrier from MDC-CDFT

- A <u>multidimensionally</u>-constrained covariant density functional theory (MDC-CDFT) was developed
- Including all shape degrees of freedom $\beta_{\lambda\mu}$ with even μ , e.g., β_{20} , β_{22} , β_{30} , β_{32} , β_{40} , β_{42} , β_{44} , ...
- Used to study fission barriers & exotic shapes, e.g., β₃₂ (tetrahedral) shape

Example: Lowering effect of triaxiality (β_{22} or γ) on the 2nd fission barrier of actinides

Lu_Zhao_Zhou2011_PRC84-014328 Lu_Zhao_Zhou2012_PRC85-011301R Zhao_Lu_Zhao_Zhou2012_PRC86-057304 Lu_Zhao_Zhao_Zhou2012_PRC85-024312 Lu_Zhao_Zhao_Zhou2014_PRC89-014323 Lu_Hiyama_Sagawa_Zhou2014_PRC89-044307 Zhao_Lu_Vretenar_Zhao_Zhou2015_PRC91-014321 Zhao_Lu_Niksic_Vretenar_Zhou2016_PRC93-044315 Zhou2016_PhysScr91-063008(Review)

Relativistic Hartree(-Fock)-Bogoliubov models

	Spherical Nuclei	Deformed Nuclei			
Box Boundary	Meng_Ring1996_PRL77-3963 Meng1998_NPA635-3 Poschl+1997_PRL79-3841 Long+2010_PRC81-024308	SGZ+2010_PRC82-011301R Li+2012_PRC85-024312 Li+2012_ChinPhysLett29-042101 Chen+2012_PRC85-067301			
³¹ Ne					

Nakamura ... 2014_PRL112-142501

Clustering in nuclei

PRL 110, 262501 (2013)	PHYSICAL REVIEW LETTERS	week ending 28 JUNE 2013	Zhou+2013_PRL111-103604
Nonlocalized Cl	lustering: A New Concept in Nuclear Cluster Struct	ture Physics	Cluster model
Bo Zhou, ^{1,2,3,*} Y. Fun	Container picture		
PRL 113, 032506 (2014)	PHYSICAL REVIEW LETTERS	week ending 18 JULY 2014	He2014_PRL113-032506
Giant Dipole Resona	nce as a Fingerprint of α Clustering Configuration	s in ¹² C and ¹⁶ O	QMD model
W.B. He (何万兵), ^{1,2} Y.G. M	【a (马余刚), ^{1,3,*} X.G. Cao (曹喜光), ^{1,†} X.Z. Cai (蔡翔舟), ¹ and	d G.Q. Zhang (张国强) ¹	GDR connected to clusterring
PRL 115, 022501 (2015)	PHYSICAL REVIEW LETTERS	week ending 10 JULY 2015	Zhao_Itagaki_Meng2015 PRL115-022501
k	Rod-shaped Nuclei at Extreme Spin and Isospin	1 c *	Cranking RMF model
P. W. Zh			

Clustering at extreme

spin & isospin

(II) Nuclear Science Education in China

Recent History:

- In 1990s, we had hard time for nuclear science (not only nuclear physic) : less funding, less students...
- Many departments of nuclear physics were closed down
- Nuclear physics was no longer a major for undergraduate programs (NOT allowed to recruit new undergraduates!)
- > Beginning from 2002, we started struggling, argued, discussed...
- Air pollution became more serious, and nuclear power stations become important in China.
- > This is the big point with that we talked to Education Ministry.
- > Many activities for nuclear science future...

Steering committee for high education in nuclear engineering and technology, Ministry of Education of China

核工程与核技术专业教学指导委员会

姓名	学校	任职
康克军	清华大学 副校长	主任
许甫荣	北京大学 系主任	副主任
张福宝	国防科工委 司长	副主任
张建民	西安交大 系主任	副主任
程建平	清华大学 常务副校长	秘书长

形势,到2020年需要培养核专业人才要比上述预测数字还要大,因此,核工业面临艰巨的人才培养任务

Situation started changing around 2005 !

普通高等学校本科专业目录 (2013年教育部公布)

0702	物理学类	0702	物理学类
070201	物理学	070201	物理学
070202	应用物理学	070202	应用物理学
070203	核物理	070204S	核物理

Year 2013

Year 2006

2007年全国核专业本科招生规模

清华大学	工程物理	90	成都理工大学	辐射防护与环境工程	30
清华大学	核工程与核技术	60	东华理工学院	辐射防护与环境工程	40
西安交通大学	核工程与核技术	65	兰州大学	辐射防护与环境工程	32
上海交通大学	核工程与核技术	75	西南科技大学	辐射防护与环境工程	70
哈尔滨工程大学	核工程与核技术	250	南华大学	核反应堆工程	40
成都理工大学	核工程与核技术	60	东华理工学院	核化工与核燃料工程	40
东华理工学院	核工程与核技术	60	兰州大学	核化工与核燃料工程	25
华北电力大学	核工程与核技术	60	南华大学	核化工与核燃料工程	45
南华大学	核工程与核技术	130	东华理工学院	核技术	40
南华大学	核工程与核技术 (核防护方向)	45	兰州大学	核技术	30
沈阳工程学院	核工程与核技术	35	南华大学	核技术	45
四川大学	核工程与核技术	60	南华大学	核物理	30
西南科技大学	核工程与核技术	80	四川大学	核物理	40
重庆大学	核工程与核技术	30		合计	1607

Up to date: more than 50 new schools of nuclear science and technology, established in China...

目前设有核专业的高校(不完全统计)

北京大学	清华大学	东华理工学院	黑龙江大学
中国科技大学	北京师范大学	沈阳工学院	上海大学
西安交通大学	郑州大学	武汉大学	华北电力大学
上海交通大学	东北师范大学	南京大学	西南大学
哈尔滨工程大学	兰州大学	南华大学	西南科技大学
浙江大学	南京航天航空大学	成都理工大学	重庆大学
四川大学	新疆大学	吉林大学	天津大学

(III) Our group's works on : Resonances and continua in atomic nuclei

Two most fundamental problems in nuclear structure calculations

1. Nuclear Force ?

Realistic *NN* forces *vs* phenomenological potentials **2. Many-Body Problems (Correlations)**

ph excitations beyond mean field (HF)

Our HF-MBPT calculations for binding energies with N³LO + SRG

⁴ He		SRG flow parameter λ (fm ⁻¹)			
	1.5	2.0	2.5	3.0	
Expt. [60]	-28.296	-28.296	-28.296	-28.296	
NCSM [61]	-28.20	-28.41	-27.43	-26.80	
SHF	-25.754	-21.864	-15.854	-10.278	
PT2	-1.788	-5.088	-9.652	-13.783	
PT3	-0.391	-0.899	-1.523	-1.953	
SHF+PT2+PT3	-27.933	-27.850	-27.029	-26.013	
160	SRG flow parameter λ (fm ⁻¹)				
001	1.5	2.0	2.5	3.0	
Expt. [60]	-127.619	-127.619	-127.619	-127.619	
SHF	-169.968	-133.169	-85.173	-44.102	
PT2	-10.132	-29.497	-59.617	-88.326	
PT3	-0.794	-1.931	-4.630	-7.339	
SHF+PT2+PT3	-180.893	-164.597	-149.419	-139.767	

- **A:** Yes ! BUT the convergence is slow !
 - An intermediate step to speed up convergence
 - Renormalization of bare forces
 - Transfer bare force from uncorrelated basis to correlated basis

⁴He

-25

-26

MeV]

🗣 🗝 bare

chiral EFT NN + NNN

22

🔻 SRG

• Renormalized interaction includes already some many-body correlations, e.g., induced-3NFs

G-matrix, V_{low-k}, LS, UCOM, SRG

Realistic forces + renormalization + many-body correlations

One-Boson exchange potential

QCD-based Chiral EFT

From T. Hatsuda (Oslo 2008)

One-pion exchange

by Yukawa (1935)

Repulsive core by Jastrow (1951)

Renormalization: uncorrelated basis correlated basis

Unitary transformation:

$$\widetilde{A} = C^{\dagger}AC = \widetilde{A}^{[1]} + \widetilde{A}^{[2]} + \widetilde{A}^{[3]} + \cdots$$

Induced many-body correlations (forces)

e.g., induced-3NFs

Core Gamow Shell Model with realistic nuclear forces

Michel, Nazarewicz, Ploszajczak, Rotureau et al., 2003--

$$V = V_{WS} + V_{J,T} \begin{pmatrix} \mathbf{r}_1 & \mathbf{r}_2 \\ \mathbf{r}_1 & \mathbf{r}_2 \end{pmatrix} \qquad V(\mathbf{r}_i, \mathbf{r}_j) = -V_{SGI}^{(J,T)} \exp\left[-\left(\frac{\mathbf{r}_i - \mathbf{r}_j}{\mu}\right)^2\right] \delta(r_i + r_j - 2R_0)$$

conventional γ-ray spectra ¹⁸⁸Pb: prolate and oblate bands

 $V_{\text{SGI}}^{(J)}$ is the strength in the JT channel

J. Pakarinen et al., PRC 72, 011304(R) (2005)

Michel, Nazarewicz, Płoszajczak, Vertse, Phys. G: Nucl. Part. Phys. 36 (2009) 013101

Our Gamow shell model with an inert core

- 1. Start from realistic nuclear forces;
- 2. No limitation on the number of valence particles;
- 3. Extend Q-box + folded diagrams to complex-k space to construct model-space effective interaction in Gamow basis
- 4. Calculate excited-state spectra including resonance widths.

Realistic CGSM with CD-Bonn

Realistic nuclear forces

Gamow shell model calculations

Nondegenerated extended Kuo-Krenciglowa folded-diagram method (EKK) by Takayanagi, NPA 852, 61 (2011)

Convergences of spectroscopic calculations

Binding energy: CGSM= - 50.7 MeV; Expt= - 41.3 MeV

3NFs are important for binding energy calculations

Our CD-Bonn CGSM, compared with conventional H.O. SM

Y. Kondo et al., PRL 116, 102503 (2016)

3NF effects

²²O core (N=14, 16 new closed shells)

Summary

I. Nuclear theory researches in China

II. Nuclear education in China (last 15 years)

Ab initio nuclear structure calculations of my group

Realistic nuclear forces (CD Bonn)

We have developed the full Qbox folded diagrams to nondegenerate complex-*k* space, which includes contributions from core polarization and excluded Q space.

 Successfully applied to excited-state spectra of weakly-bound or unbound oxygen isotopes.

Thank you for your attention !

ANPhA symposium (Nov. 23-25, 2016, Sendai Japan)