# **Towards an observation of decoherence of entangled-photons**

Instructors: Dr. Atsuko K. Ichikawa (atsuko.ichikawa.c6\_at\_tohoku.ac.jp),

Dr. Lukas Berns (berns.lukas.e5 at tohoku.ac.jp)

(Physics & Chemistry Annex 1<sup>st</sup> floor)

GPPU Experimental Point (GEP): 4

## Goal of Study

In this course, you will learn about single near-infrared photon detection, fiber-based optomechanics and the well-known strange phenomenon in quantum mechanics.

### **Contents**

The ultimate goal of this project is to observe 'wavefunction collapse' of photon polarization by decoherence of the entangled-photon. The equipments to be used are a polarization entangled 1550 nm photon Source, single-photon avalanche diode and fiber optmechanics etc.

In this year, we aim

1. to detect single 1550 nm-wavelength photon

and

2. construct a fiber-based polarization beam splitter and to confirm the entanglement of two photons from the source

# Textbook and References

https://doi.org/10.1016/j.chip.2022.100005 https://www.thorlabs.com/newgrouppage9.cfm?objectgroup\_id=3161&pn=PFS-FFT-1X2-1550 https://www.ozontios.com/ALLNEW\_RDE/DTS0184.ndf

https://www.ozoptics.com/ALLNEW\_PDF/DTS0184.pdf

**Progress Schedule** 



| $\diamond$ | Day 1                                                                                 |
|------------|---------------------------------------------------------------------------------------|
|            | Lecture 1: single photon avalanche diode (SPAD) and it's read out                     |
|            | Experiment 1: operation of SPAD                                                       |
| $\diamond$ | Day 2                                                                                 |
|            | Experiment 2: detection of near infrared single photons                               |
| $\diamond$ | Day 3                                                                                 |
|            | Experiment 3: construction of a fiber-based polarization beam splitter                |
| $\diamond$ | Days 4                                                                                |
|            | Experiment 4: confirmation of the entanglement of two photons from the entangled two- |
|            | photon source                                                                         |

### **Other Details**

| onici Dennis       |                                                                                                                                                       |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Course Period      | 2023 Summer                                                                                                                                           |  |
| Place              | Physics & Chemistry Annex 1 <sup>st</sup> floor                                                                                                       |  |
| Number of Students | 1—4                                                                                                                                                   |  |
| Evaluation method  | The evaluation method will be based on the discussion during the experiment $(70\%)$ , and the presentation or report after the experiment $(30\%)$ . |  |

## In Addition