Study of 3-body system with S=-1

Nuclear physics lab. Yuichi Toyama

Yuichi Toyama

2018/5/8

GPPU status 2018s

Contents

- Introduction
 - Goal of (hyper)nuclear physics
 - $^{3}_{\Lambda}$ H puzzle
- My activities
 - Lifetime measurement of at ELPH
 - Binding energy measurement of at MAMI
 - nn Λ state search at JLab
- Summary & future plans

Goal of (hyper)nuclear physics

Understand deuteron(r~ a few fm) and neutron star(r~10 km) in a same frame work

A ~ 10⁵⁷

3-body system cannot be skipped!

GPPU status 2018s

Goal of (hyper)nuclear physics

Understand deuteron(r~ a few fm) and neutron star(r~10 km) in a same frame work

A ~ 10⁵⁷

r ~ 10 km 3-body system cannot be skipped!

However, understanding of 3-body system with S = -1 is not enough! $(^{3}_{\Lambda}H puzzle)$

2018/5/8

GPPU status 2018s

Difficult to explain B_{Λ} and lifetime of ${}^{3}_{\Lambda}H$ simultaneously

Precise measurement of ${}^{3}_{\Lambda}$ H lifetime is required

[1] M.Juric *et al.*, Nucl. Phys. **B 52**(1973) 1-30.

[2] S.Nagao, Doctoral thesis 2015 Tohoku University.;

A.Esser, S.Nagao, F.Schulz et al., Phys. Rev. Lett. 114(2015)222501.

Difficult to explain B_{Λ} and lifetime of ${}^{3}_{\Lambda}H$ simultaneously

Solution of the puzzle from lifetime measurement

- Short lifetime \Rightarrow Deep bound system more than expected (nnA can be bound?)
- Long lifetime ⇒ Systematic error of previous experiment

Experimental approach to $^{3}_{\Lambda}$ H puzzle

- $^{3}_{\Lambda}$ H : lifetime & B_{\Lambda}
- ${}^{3}_{\Lambda}n$: exist or not

2018/5/8

GPPU status 2018s

My activities in last semester

- Lifetime measurement of ${}^{3}_{\Lambda}$ H at ELPH (Japan)
 - Analysis of phase0 experiment
- Binding energy measurement of ${}^{3}_{\Lambda}$ H at MAMI (Germany)
 - Test experiment for systematic error suppression
- nn Λ state search at JLab (the U.S.)
 - Detector test using cosmic rays

My activities in last semester

- Lifetime measurement of ${}^{3}_{\Lambda}$ H at ELPH (Japan)
 - Analysis of phase0 experiment
- Binding energy measurement of $^{3}_{\Lambda}$ H at MAMI (Germany)
 - Test experiment for systematic error suppression
- nn Λ state search at JLab (the U.S.)
 - Detector test using cosmic rays

Lifetime measurement at ELPH

- Different experimental method from heavy ion collision exp.
 - Different systematic error

Need to establish experimental method

Phase0 experiment at ELPH

Is it possible to measure lifetime of hypernuclei(τ ~200 ps) at ELPH?

 \Rightarrow Show feasibility of lifetime measurement of hypernuclei using Λ

GPPU status 2018s

* Timing counter for Direct Lifetime measurement

Apr. 2017

Phase0 experiment at ELPH

Is it possible to measure lifetime of hypernuclei($\tau \sim 200$ ps) at ELPH?

 \Rightarrow Show feasibility of lifetime measurement of hypernuclei using Λ

* Timing counter for Direct Lifetime measurement

Apr. 2017

Setup of phase0 exp. at ELPH

2018/5/8

GPPU status 2018s

Yuichi Toyama

Invariant mass of p & π^-

$$M_{inv} = \sqrt{(E_p + E_\pi)^2 - (p_p + p_\pi)^2}$$
 (c=1)

GPPU status 2018s

Yuichi Toyama

14

2018/5/8

Decay time spectrum

Delayed component can be seen.

GPPU status 2018s

Decay time spectrum

That's one small step for [a] man, one giant leap for mankind. Neil Alden Armstrong

Decay time spectrum

That's one small step for [a] man, one giant leap for mankind. Neil Alden Armstrong

That's one small step for mankind, one giant leap for me. Yuichi TOYAMA

Activities at Mainz and JLab

Mainz (Feb. 2018)

Beam energy calibration exp.

JLab (Nov. 2017)

Aerogel Cherenkov detector test

2018/5/8

GPPU status 2018s

Summary and future plans

Lifetime measurement of ${}^{3}_{\Lambda}H$ at ELPH

- Phase0 exp. analysis
 - First observation of delayed component from hyperon decay
- Activities at Mainz and JLab
 - Beam energy calibration exp. using undulators at Mainz
 - Detector test at JLab

Summary and future plans

Lifetime measurement of ${}^{3}_{\Lambda}H$ at ELPH

- Phase0 exp. analysis
 - First observation of delayed component from hyperon decay
- Activities at Mainz and JLab
 - Beam energy calibration exp. using undulators at Mainz
 - Detector test at JLab

Future plan of lifetime project

- π detector system test exp. Oct. 2018
- Hypernuclear spectroscopy at ELPH Jan. 2019
- $^{3}_{\Lambda}$ H lifetime measurement 2020

Yuichi Toyama

Overseas training

JLab Jun. 22nd – Jul. 15th

2018/5/8

GPPU status 2018s

Backup

GPPU status 2018s

Yuichi Toyama

Particle ID

GPPU status 2018s

PID (p&π)

GPPU status 2018s

Yuichi Toyama

Detector performance

2018/5/8

GPPU status 2018s

Strategy of hypertriton lifetime measurement

³He target is very expensive \Rightarrow Feasibility exp. is quite important.

Setup of phase0 exp. at ELPH

New detector for decay π Timing counter for Direct Lifetime measurement (TDL)

GPPU status 2018s

Requirements for a detector

- Good time resolution <100 ps
- Compact design
- Work in magnetic field
- Stable performance (~month)

SiPM : MPPC (Hamamatsu) 3x3 mm² effective area 50 µm pixel pitch

<u>Amp. circuit</u> Op. amp : AD8000 (Analog Device) inversed differential circuit

<u>Readout</u> QTC module + CAEN V1290(TDC)

SiPM(MPPC S13360-3050PE)

2018/5/8

Detector update plan

 TDL resolution(140 ps) was main component of response function

Detector update plan

2018/5/8

GPPU status 2018s

Photon beam at ELPH

2018/5/8

32

Λ hypernucleus production

GPPU status 2018s

Yuichi Toyama

Previous experiment @KEK

• (π ⁺, K⁺) reaction

10

(a)

35

R(t)

$$\gamma + p \rightarrow p + \pi^- + \pi^+$$

- Select π^+ & π^- vertex event(PID & opening angle cut)
- Select $MM = M_p$ event

2018/5/8

GPPU status 2018s

2018/5/8

GPPU status 2018s