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Overview

Tunneling is essential for fusion reaction

There is no established microscopic method
which can describe tunneling

O

We try to construct a new method with tunneling

with Time Dependent Generator Coordinate Method (TDGCM)

-

We show a limit of validity of an approximation method in TDGCM
for nuclear reaction calculation




Nuclear fusion reaction
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Nuclear fusion reaction

IfE >V,
- Fusion occurs classically

Potential

fE<V,
Fusion only occurs
with tunneling

!

Distance

Tunneling is essential
for low energy fusion

E<V,
for fusion in stars




Theory of fusion reactions

1. Macroscopic method
Describes fusion reaction

r as a two-body problem

many

Low calc. cost .
empirical parameters

2 . Microscopic method
Describes fusion reaction

based on nucleon degrees of freedom
@ few

. High calc. cost
empirical parameters
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Theory of fusion reactions

1. Macroscopic method
Describes fusion reaction

r as a two-body problem

many
empirical parameters

{Microscopic me@ « Today’s Topic

Describes fusion reaction

based on nucleon degrees of freedom
@ few ,
High calc. cost

empirical parameters

Low calc. cost
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Microscopic theory
Describe nuclear reaction
based on nucleon degrees of freedom

Major method: Time Dependent Hartree-Fock (TDHF)

Many-body wave function Equations of motion
- Slater determinant > for single particle
(Mean-field approximation) wave functions

®(t) = Ae1()pa(t) ... 0a(t)}  ihpa = hlplpa

Used for nuclear reaction calc.
forE >V,

C. Simenel EPJA48(12)152



Nuclear Collision with TDHF
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Fusion cross-section
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There is no established
microscopic theory which can describe tunneling
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Theory with tunneling effect

Q

There is no established microscopic
method with tunneling effect

@

The theory beyond mean field is needed

Time-Dependent
Generator Coordinate Method
(TDGCM)
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Time-Dependent Generator Coordinate Method

Wave function of the system
-» Superposition of Slater determinants

Weight
function

}
V(0) = [ daf(a.t)|2(a.t)) qum

Slater
determinant

P. G. Reinhard, R. Y. Cusson and K. Goeke
Nucl. Phys. A 398 141-188(1983)

}

Generator Coordinate : (],

cf. TDHF

W(t)) = [®(t))

Macroscopic quantities

(e.g. Deformation parameter)

Weight function f and Slater determinants
are determined by Time-dependent variational method
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Time-Dependent Generator Coordinate Method

/da’ (®(a,t)|H —i0:|®(a’, 1)) f(a,t)

_ z’/da,’ (®(a,1)|D(d’. 1)) f(d'. 1)

L Zﬂaa’fa’ :iZNaa’fa’

Now = (P(a,t)|®(a’, 1)) : Norm kernel
Hoa = (P(a,t)|H —i0;|®(a’,t)) : Hamiltonian kernel

Time evolution of f is determined by these Hqo and N,/
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Time-Dependent Generator Coordinate Method

. e Haa' = <q)(a,t)]H—i8t|<I>(a’,t)>
;Haa,’fa’ —’L%:Naa, fa {Naa’ :((I)(a,t)@(a',t»

®(a,t)) mp |OTPHE) (q 1))

instead of solving variational equation

P. G. Reinhard, R. Y. Cusson and K. Goeke
Nucl. Phys. A 398 141-188(1983)

(a)

(a)
ihp;"" = hlpale;
RF - & A{p @@ @
(a,t) = A{epy” A}

Each |®"™PHE) (1)) is independent of f(t) and |<I>§;]2HF) (1))
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Description tunneling with TDGCM

Choose initial relative momentum of the system p;
as generator coordinate

_ _ | (TDHF)
W (%)) /dpzf(pwt) ‘(I)P?: (t)) 1 Calc. these quantities

Norm kernel : N(pz,pj) (@p, |Dp,)
Hamiltonian kernel :  H(p;, pj) = (Pp, | H — 10| Dp,)

One dimensional
‘He + *He (o + @) Collision
' |

R L
2

2
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Approximation in TDGCM

Gaussian Overlap Approximation (GOA)

N(p,p') ~= e~ @) /4
H(p,p') ~ e~ PPV /4% (Hy + Hy(p — p')?)

Simplity Hf =iNf
Frequently used for static GCM calculation
For nuclear reaction calculation ...
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Norm kernel before collision

Norm kernel (real) ~ Time evolution of density _
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Norm kernel

o O O

Time evolution of Norm kernel(abs,p,,=10.34[MeV/c])

o

Norm kernel after collision
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Norm kernel is no longer
Gaussian form
after collision
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Hamiltonian kernel before collision

Time evolution of density

Hamilonian kernel (real,p,,=84.57 [MeV/c])
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Solid line * Fit with
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T ~ Gaussian X quadratic polynomial
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|H kernel|[MeV]

Hamiltonian kernel after collision

100
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|H kernel| after collision (p,=10.34[MeV/c])
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Validity of Gaussian Overlap Approx.

Norm kernel

Hamiltonian kernel

Before collision

After collision

O
X

O
X

Time evolution
after collision
is needed
to describe tunneling

GOA does not work

‘ for nuclear reaction calculation
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Conclusion

* In nuclear fusion reaction for E <V,

tunneling effect is essential

N

 Mean field approximation (TDHF)
fails to describe tunneling

‘

* Time-Dependent Generator Coordinate Method
as beyond mean field

¥

* Gaussian Overlap Approximation
(with momentum as generator coordinate)
does not work in nuclear reaction calculation
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Next step

Calculation without Gaussian overlap approximation

)

TDGCM can describe tunneling or not ?

Future work

Calculations which include
variation with respect to Slater determinants

W(t)) = /daf(a t) 2P (1)) m [w(1) fdaf(a,t)@a(t»

Full variational principle



