Towards microscopic description of nuclear fusion reactions based on the time-dependent generator coordinate method

Naoto Hasegawa

Nuclear theory group Department of physics

8th February 2019

Tunneling is essential for fusion reaction

There is no established microscopic method which can describe tunneling

We try to construct a new method with tunneling

with Time Dependent Generator Coordinate Method (TDGCM)

We show a limit of validity of an approximation method in TDGCM for nuclear reaction calculation

Nuclear fusion reaction

Theory of fusion reactions

1. Macroscopic method

Describes fusion reaction as a two-body problem

Low calc. cost

many empirical parameters

2. Microscopic method

Describes fusion reaction based on nucleon degrees of freedom

few empirical parameters

High calc. cost

Theory of fusion reactions

1. Macroscopic method

2.

Describes fusion reaction as a two-body problem

Low calc. cost

many empirical parameters

Microscopic method

Today's Topic

Describes fusion reaction based on nucleon degrees of freedom

few empirical parameters

High calc. cost

Microscopic theory Describe nuclear reaction based on nucleon degrees of freedom Major method: Time Dependent Hartree-Fock (TDHF)

Many-body wave function → Slater determinant (Mean-field approximation)

Equations of motion for single particle wave functions

 $\Phi(t) = \mathcal{A}\{\varphi_1(t)\varphi_2(t)\dots\varphi_A(t)\}$ $i\hbar\dot{\varphi}_{\alpha} = h|\rho|\varphi_{\alpha}$

Used for nuclear reaction calc. for $E > V_b$

C. Simenel EPJA48('12)152

Nuclear Collision with TDHF

Fusion cross-section

There is no established microscopic theory which can describe tunneling

Theory with tunneling effect

There is no established microscopic method with tunneling effect

The theory **beyond mean field** is needed

Time-Dependent Generator Coordinate Method (TDGCM)

Time-Dependent Generator Coordinate Method

Wave function of the system Superposition of Slater determinants

Generator Coordinate : Ω Macroscopic quantities (e.g. Deformation parameter)

Weight function f and Slater determinants are determined by Time-dependent variational method

Time-Dependent Generator Coordinate Method

$$\int da' \langle \Phi(a,t) | H - i\partial_t | \Phi(a',t) \rangle f(a',t)$$
$$= i \int da' \langle \Phi(a,t) | \Phi(a',t) \rangle \dot{f}(a',t)$$

$$\sum_{a'} \mathcal{H}_{aa'} f_{a'} = i \sum_{a'} \mathcal{N}_{aa'} \dot{f}_{a'}$$

 $\begin{cases} \mathcal{N}_{aa'} = \langle \Phi(a,t) | \Phi(a',t) \rangle & : \text{Norm kernel} \\ \mathcal{H}_{aa'} = \langle \Phi(a,t) | H - i\partial_t | \Phi(a',t) \rangle & : \text{Hamiltonian kernel} \end{cases}$

Time evolution of f is determined by these $\mathcal{H}_{aa'}$ and $\mathcal{N}_{aa'}$

Time-Dependent Generator Coordinate Method

$$\sum_{a'} \mathcal{H}_{aa'} f_{a'} = i \sum_{a'} \mathcal{N}_{aa'} \dot{f}_{a'} \begin{cases} \mathcal{H}_{aa'} = \langle \Phi(a,t) | H - i \partial_t | \Phi(a',t) \rangle \\ \mathcal{N}_{aa'} = \langle \Phi(a,t) | \Phi(a',t) \rangle \end{cases}$$

$$|\Phi(a,t)\rangle \implies |\Phi^{(\text{TDHF})}(a,t)\rangle$$

instead of solving variational equation

P. G. Reinhard, R. Y. Cusson and K. Goeke Nucl. Phys. A 398 141-188(1983)

TDHF

$$i\hbar\dot{\varphi}_i^{(a)} = h[\rho_a]\varphi_i^{(a)}$$

$$\Phi(a,t) = \mathcal{A}\{\varphi_1^{(a)}\varphi_2^{(a)}\dots\varphi_A^{(a)}\}$$

Each $|\Phi_a^{(\text{TDHF})}(t)\rangle$ is independent of f(t) and $|\Phi_{b\neq a}^{(\text{TDHF})}(t)\rangle$

Description tunneling with TDGCM

Choose initial relative momentum of the system p_i as generator coordinate

$$|\Psi(t)\rangle = \int dp_i f(p_i, t) |\Phi_{p_i}^{(\text{TDHF})}(t)\rangle$$
 Calc. these quantities

Norm kernel :
$$\mathcal{N}(p_i, p_j) = \langle \Phi_{p_i} | \Phi_{p_j} \rangle$$
Hamiltonian kernel : $\mathcal{H}(p_i, p_j) = \langle \Phi_{p_i} | H - i \partial_t | \Phi_{p_j} \rangle$

Approximation in TDGCM

Gaussian Overlap Approximation (GOA)

$$\mathcal{N}(p, p') \simeq e^{-(p-p')^2/4\mu} \mathcal{H}(p, p') \simeq e^{-(p-p')^2/4\mu} \left(H_0 + H_2(p-p')^2\right)$$

Simplify
$$\hat{\mathcal{H}}f = i\hat{\mathcal{N}}\dot{f}$$

Frequently used for static GCM calculation For nuclear reaction calculation ...

Norm kernel before collision

 $p_i - p_j$: Difference of relative momentum of each system

$$\mathcal{N}(p_i, p_j) = \langle \Phi_{p_i} | \Phi_{p_j} \rangle$$

Solid line : Fit with Gaussian

Norm kernel after collision

Norm kernel is no longer Gaussian form after collision

Hamiltonian kernel before collision

 $\mathcal{H} \simeq$ Gaussian imes quadratic polynomial

Hamiltonian kernel after collision

Hamiltonian kernel is no longer **Gaussian** × **quadratic polynomial** after collision

Validity of Gaussian Overlap Approx.

	Norm kernel	Hamiltonian kernel
Before collision	\mathbf{O}	Ο
After collision		

GOA does not work

for nuclear reaction calculation

Conclusion

- In nuclear fusion reaction for $E < V_b$ **tunneling effect** is essential
- Mean field approximation (TDHF) fails to describe tunneling
- Time-Dependent Generator Coordinate Method as beyond mean field

 Gaussian Overlap Approximation (with momentum as generator coordinate) does not work in nuclear reaction calculation 21

Calculation without Gaussian overlap approximation

TDGCM can describe tunneling or not ?

Future work

Calculations which include variation with respect to Slater determinants

$$|\Psi(t)\rangle = \int daf(a,t) \left|\Phi_{a}^{(\text{TDHF})}(t)\right\rangle \quad \Longrightarrow \quad |\Psi(t)\rangle = \int daf(a,t) \left|\Phi_{a}(t)\right\rangle$$

Full variational principle