Role of the ${}^{7}\text{Be}(n, p_{1}){}^{7}\text{Li}{}^{*}$ Reaction in the Cosmological Lithium Problem Studied with the ${}^{9}\text{Be}({}^{3}\text{He}, \alpha){}^{8}\text{Be}{}^{*}(p){}^{7}\text{Li}$ Reaction

B7SM2004 Shunki Ishikawa

Laboratory of Experimental Nuclear Physics Department of Physics, Graduate School of Science, Tohoku University

Contents

- Motivation
- The ${}^{9}\text{Be}({}^{3}\text{He}, \alpha){}^{8}\text{Be}^{*}(p){}^{7}\text{Li Reaction Measurement}$
- Analysis and Results
- Preliminary Results of Resonance Fit
- Conclusions and Perspectives

Motivation

- Big Bang Nucleosynthesis (BBN) model vs. observation
- Large discrepancy for ⁷Li: Cosmological Lithium Problem
- $t(\alpha, \gamma)^7$ Li followed by 7 Li $(p, \alpha)^4$ He
- ${}^{3}\text{He}(\alpha, \gamma){}^{7}\text{Be} \xrightarrow{EC} {}^{7}\text{Li}$
- Decrease in ⁷Be abundance during BBN may solve the problem.

 $\Omega_b h^2$

Planck

10⁻²

Mass fraction

0.26

0.24

Motivation

• Production: ${}^{3}\text{He}(\alpha, \gamma){}^{7}\text{Be}$ • Destruction: neutron induced reaction ${}^{7}\text{Be}(n,p){}^{7}\text{Li} \rightarrow \text{direct measurement up to 13.5 keV}$ \rightarrow inverse reaction measurements \Rightarrow ⁷Be (n, p_1) ⁷Li^{*} was ignored! Controversial points in n_TOF data (up to 325 keV) • 35% larger cross section at low energy. • Angular distribution was not measured. • ${}^{7}\text{Li}^{*} + p_{1}$ not evaluated separately. • $<\sigma v >$ was deduced using (p, n) data. **Objective**: $^{7}\mathrm{Be}(n, p_{1})^{7}\mathrm{Li}^{*}$ cross section using the inverse reaction data \Rightarrow Experimental determination of Γ_{p1}/Γ_{p0} is required!

We carried out the ${}^{9}\text{Be}({}^{3}\text{He}, \alpha){}^{8}\text{Be}^{*}(p){}^{7}\text{Li}$ reaction measurement at 30 MeV to deduce the branching ratio for the resonance states of ${}^{8}\text{Be}$ at 18.91-20.2 MeV.

Excitation Energy Spectrum of ⁸Be

Reconstruction

Two-Body Kinematics

- Reaction $({}^{9}\text{Be} + {}^{3}\text{He} \rightarrow {}^{8}\text{Be}^{*} + \alpha)$
- Sequential Decay (${}^{8}\text{Be}^{*} \rightarrow {}^{7}\text{Li} + p$)

⁸Be recoils at $180^{\circ} \pm 20^{\circ}$ with $E \simeq 0.2$ MeV

$$E_p^{cm} = \frac{1}{2} m_p c^2 \{ \left(\beta_p^{lab} \cos \theta_p^{lab} - \beta_G \right)^2 + \left(\beta_p^{lab} \sin \theta_p^{lab} \right)^2 \}$$
$$\theta_p^{cm} = \tan^{-1} \left(\frac{\sin \theta_p^{lab}}{\cos \theta_p^{lab} - \beta_G^{lab} / \beta_p^{lab}} \right)$$

Differential cross section in the rest frame of ⁸Be!

$$\left(\frac{d^3\sigma}{dE_X d\Omega_\alpha d\Omega_p}\right)^{cm} = \frac{|1+\gamma\cos\theta_p^{cm}|}{(1+2\gamma\cos\theta_p^{cm}+\gamma^2)^{3/2}} \times \left(\frac{d^3\sigma}{dE_X d\Omega_\alpha d\Omega_p}\right)^{lab}$$

$$\gamma=\beta_G/\beta_p^{cm}$$

Angular Distribution

Fit with a series of Legendre polynomials up to 3rd order

$$\left(\frac{d^3\sigma}{d\Omega^2 dE_X}\right)_{cm} = \sum_{L=0}^3 A_L P_L(\cos\theta_p^{cm})$$

where

$$P_0 = 1$$

$$P_1 = \cos \theta_p^{cm}$$

$$P_2 = \frac{1}{2} (3\cos^2 \theta_p^{cm} - 1)$$

$$P_3 = \frac{1}{2} (5\cos^3 \theta_p^{cm} - 3\cos \theta_p^{cm})$$

then,

$$\frac{d^2\sigma}{d\Omega_{\alpha}dE_X} = \int d\Omega_p \sum_{L=0}^3 A_L P_L(\cos\theta_p^{cm})$$

Differential Cross Section

- (a) ${}^{9}\text{Be}({}^{3}\text{He}, \alpha){}^{8}\text{Be}^{*}(p_{0}){}^{7}\text{Li}_{gs}$ reaction
- (b) ${}^{9}\text{Be}({}^{3}\text{He}, \alpha){}^{8}\text{Be}^{*}(p_{1}){}^{7}\text{Li}_{1st}^{*}$ reaction
- (c) the ratio of data in (b) to the ones in (a)

Ratio is:

about 10% around 18.9 MeV. \rightarrow near 2⁻(18.91 MeV) resonance \rightarrow much larger than the prior results ($\simeq 1\%$) \rightarrow truly a large Γ_{p1}/Γ_{p0} ? \rightarrow a new resonance state below 18.91 MeV?

about 5% around 19.2 MeV. \rightarrow near 3⁺(19.235 MeV) resonance \rightarrow small at the important energy region in BBN.

about 80% around 19.8 MeV. \rightarrow large contribution at the 19.86 MeV resonance.

Resonance Fit Results

SLBW (18.91 - 20.2 MeV) fit Preliminary Results

E_X [MeV]	J^{π}	Γ_{p1}/Γ_{p0}	$\Gamma_{p1}/(\Gamma_{p0}+\Gamma_{p1}) \ [\%]$
18.91	2^-	$2.32{ imes}10^9{\pm}5.73{ imes}10^{18}$	$100{\pm}139$
19.07	3^{+}	$1.27 \times 10^{-1} \pm 2.97 \times 10^{-2}$	11.3 ± 2.6
19.235	3^+	$1.33 \times 10^{-2} \pm 5.38 \times 10^{-3}$	$1.3{\pm}0.5$
19.4	1-	$1.69 \times 10^{-4} \pm 5.84 \times 10^{-1}$	$0.01{\pm}58$
19.86	4^{+}	$2.09{ imes}10^8{\pm}6.49{ imes}10^{15}$	$100{\pm}37$
20.1	2^{+}	$1.44 \times 10^{-1} \pm 4.44 \times 10^{-1}$	12.6 ± 38.6
20.2	0^{+}	$1.92 \times 10^{-1} \pm 1.06 \times 10^{-1}$	16.1 ± 8.6

- Large p1 contribution at 18.91 and 19.86 MeV resonance states.
- Small contribution at 19.235 MeV.

Conclusions and Perspectives

- The ${}^{9}\text{Be}({}^{3}\text{He}, \alpha){}^{8}\text{Be}^{*}(p){}^{7}\text{Li}$ reaction measurement to deduce the Γ_{p1}/Γ_{p0} ratio for each of the resonance states of ${}^{8}\text{Be}$.
- Succeeded in measuring the $^{7}\text{Li}^{*} + p_{1}$ events!
- Large ratios were found around $E_X = 18.91$, 19.86 MeV.
- Small ratio around the most important energy region ($E_X = 19.235 \text{ MeV}$), suggesting that the ${}^7\text{Be}(n, p_1){}^7\text{Li}{}^*$ reaction cross section may not solve the lithium problem.
- Systematic errors.
- Resonance fit should be more rigorous. Then, evaluate the reaction rate $<\sigma v>$ and run the BBN calculation!
- Need to improve the statistical accuracy \rightarrow Additional beam time!