${}^{3}H(e, e'K^{+})X$ 実験における K^{+} 中間子識別手法とその評価 Method and performance of K^{+} meson identification in the ${}^{3}H(e, e'K^{+})X$

物理学専攻 原子核物理研究室 板橋 浩介

1 研究背景と目的

ハイペロンとはsクォークを含んだバリオンであり、ハイ ペロンを含んだ原子核はハイパー核と呼ばれる。陽子・中性 子間に働く相互作用は散乱実験を通してよく理解されてい るが、核子以外のバリオンにおいては、寿命が短いことから 散乱実験を用いたバリオン間相互作用の研究は困難である。 そのため、原子核内にハイペロンが束縛したハイパー核を分 光することにより、ハイペロン-核子間相互作用 (YN 相互 作用)の理解を深めてきた。我々の研究グループはアメリカ の Thomas Jefferson National Acelerator Facility(JLab) において Λ ハイパー核の高分解能分光を行い、ハイペロン の中で最も軽い Λ と核子間の相互作用の研究をしている。

ドイツのダルムシュタットにある重イオン研究所 (GSI) において⁶Li ビームを炭素標的に打ち込む反応から生じた $d+\pi^-, t+\pi^-$ の終状態観測実験が行われた [1]。重イオン 反応により生成された Λ ハイパー核の質量・寿命は崩壊後の $t+\pi^-$ の運動量・崩壊まで進んだ距離の測定から求めるこ とができる。この実験で $t+\pi^-$ の不変質量の分布上に $nn\Lambda$ と思われるピークが観測したと報告された [1]。また、寿命 測定結果から親粒子は弱崩壊の典型的な寿命 ($\tau = 190$ ps) をもつことがわかり、 $nn\Lambda$ が束縛状態である可能性を示す 結果となった。しかし、他の 3,4 体系ハイパー核をよく記 述できている理論モデル [2] を用いて $nn\Lambda$ の計算を行うと $nn\Lambda$ は束縛しないという結果になる。 $nn\Lambda$ の共鳴状態を示 唆する理論モデルは存在する [3] が、GSI で観測された $nn\Lambda$ の束縛状態をこれまでの知見では説明することができてい ない。

この問題を解決するためには、 $nn\Lambda$ の束縛エネルギー (B_{Λ})、エネルギー幅 σ_{Λ} を高精度で決定する必要がある。

そこで我々は高分解能分光を可能とするアメリカ・JLab Hall A において $nn\Lambda$ 束縛状態の存否を決定するために、 $(e, e'K^+)$ 反応を用いた欠損質量分光実験を 2018 年 10 月 から 11 月にかけて行った。この実験では、エネルギー中心 値 ($\Delta E \sim 100 \text{ keV}$)、エネルギー幅 ($\Delta \sigma \sim 100 \text{ keV}$)とい う高精度で $nn\Lambda$ を測定できる。

本研究では、 $nn\Lambda$ の高精度測定のための K^+ 中間子識別 (KID)解析の開発とその評価を行う。運動量校正を目的と して取得した $rmH(e, e'K^+)\Lambda/\Sigma^0$ 事象から、HRS 粒子識 別装置 (AC1, AC2, S2)を用いて、バックグランドとなる π^+ , pの除去を行うことで K^+ 中間子事象の選別および Λ ピーク領域内における S/N 比の向上を行う。

2 実験原理と K⁺ 中間子選別の必要性

図1に本実験で用いた³H($e, e'K^+$) $nn\Lambda$ 反応の概略図を 示す。4.3 GeVに加速させた電子をトリチウム標的 (³H) に 照射し、³H($e, e'K^+$) $nn\Lambda$ 反応により生成された K^+ 中間子 と散乱電子の運動量 ($p_{e'} = 2.2 \text{ GeV}/c, p_K = 1.8 \text{ GeV}/c$) を二台の HRS で測定する。HRS で測定した運動量ベクト ルから、以下の式により欠損質量 $M \ge \Lambda$ の束縛エネルギー を導出する。

$M = \sqrt{(E_e + M_T - E_{e'} - E_K)^2 - (\vec{p_e} - \vec{p_{e'}} - \vec{p_K})^2}$	(1)
$B_{nn\Lambda} = (2m_n + m_\Lambda) - M_{nn\Lambda}$	(2)

 $M_T(^{3}H の質量), m_n$ (中性子の質量)は既知の値であり、 $E_e, \vec{p_e}$ (電子線のエネルギー・運動量)は加速器によりコントロールされている。

この実験では、 K^+ 中間子側の HRS には π^+ , p 粒子が混 入する。そのため、 $nn\Lambda$ の観測を成功させるためには K^+ 弁別が極めて重要となる。

3 K⁺ 中間子識別法

本研究では K^+ 中間子側の R-HRS に設置した (図 2) 二 種類のエアロゲルチェレンコフ検出器 (AC1, AC2) と二種 類のシンチレーショントリガーカウンター (S0, S2) を用い て K^+ 中間子識別解析を行った。

図 2: K⁺ 中間子側の HRS 検出器パッケージ概略図

■ シンチレーショントリガーカウンター

HRS では二種類のシンチレーショントリガー (S0, S2) で粒子の通過したタイミングの測定を行う。また、本実験では HRS 両アームの S0, S2 をトリガー条件に組み込んでおり、式 (3) の条件でデータを取得した。

$$(S0 \& S2)_L \& (S0 \& S2)_R$$
 (3)

■ エアロゲルチェレンコフ検出器

AC1, AC2 には屈折率 n = 1.015 と n = 1.055のエアロゲルをした。R-HRS で測定した中心運動量 p = 1.8 GeV/cの K^+ 中間子に対しては、AC2 のみでチェレンコフ光が検出される。

4 *K*⁺ 中間子識別解析

観測により得られた Λ , Σ^0 の質量分布と既知である Λ, Σ^0 の質量値を比較し、エネルギー校正を行う。 $nn\Lambda$ の 観測感度とエネルギー決定精度を高めるために Λ, Σ^0 の +分な統計数とピーク領域内の高い信号・ノイズ比 (S/N) が求められる。そのため、R-HRS における K^+ 中間子の 高効率測定と π^+ , pの高効率除去が重要となる。本研究で は、エネルギー校正を行うために取得した $H(e, e'K^+)\Lambda/\Sigma^0$ データを用いて識別解析に使用する事象選定条件の最適 化と識別能力の評価を行った。K+ 中間子イベントの選択 を行うために HRS に設置されている AC1, AC2 を用い た。1.8 GeV/cの π^+ 中間子が通過した場合、本実験で得 られる光電子数の和 (N_{AC1}, N_{AC2}) はおおよそ (N_{AC1} = 2.0 PEs, $N_{AC2} = 20$ PEs) となった。両アームの S2 の 時間差 $(t_{S2}^R - t_{S2}^R)$ をとった coincidence time に AC カッ ト (AC1<2.0 PEs) 条件を課した場合、π⁺, p の残存率 (SR_{π}, SR_{p}) はそれぞれ 20 %, 95 % となり、AC1 のカッ ト条件を用いることによって π⁺ の除去できることを確認 した。

$\blacksquare \Lambda, \Sigma^0$ 質量欠損分布における AC カット条件の最適化

 $H(e, e'K^+)\Lambda/\Sigma^0$ ピークの事象数は AC の事象選定を変化 させた際の K⁺ 中間子残存率に単調比例する。また、本研 究では Λ のピークがバックグランドに対し最も優位となる 量を Λ イベント数 (S) とバックグランド N を用いて

$$FOM = \frac{S_{\Lambda}}{\sqrt{N}} \tag{4}$$

関数 (FOM) を定義し、FOM が最大となるカット条件を最 適な事象選定条件として定義した。この結果、以下のような エアロゲル検出器を使った最適な事象選定条件を導出した。

$$AC1 < 0.6 \text{ PEs}$$
 (5)

$$1.6 < AC2 < 11.5 \text{ PEs}$$
 (6)

$\blacksquare \Lambda$, Σ^0 の質量欠損分布とイベント数の評価

(式 5, 6)の選定条件を用いた際の Λ , Σ^0 の質量欠損分布 は図3の青でハッチングした領域に示す。黒線は上記の選 定条件を適用させていない質量欠損分布である。 Λ, Σ^0 の ピークをACカット前、カット後でそれぞれガウス関数で フィットし、 Λ , Σ^0 のイベント数と S/N 比をそれぞれ求め た (表 1)。式 (5, 6)の選定条件を用いた場合、 Λ, Σ^0 の事象 数は 46 %, 69 % と減少しているがピーク領域内での S/N 比は Λ ピークでは 9 倍以上向上していることがわかる。

表 1: Λ, Σ⁰ 質量欠損分布のフィット結果

Particles	AC cut	Events	S/N	Survival rate
Λ	×	1590	1.02	1.0
	\bigcirc	732	5.6	0.46
Σ^0	×	384	0.17	1.0
	\bigcirc	274	2.2	0.7

■ $p(\gamma^*, K^+)\Lambda/\Sigma^0$ 生成断面積の見積もり

得られた Λ, Σ^0 のイベント数から $p(\gamma^*, K^+)\Lambda/\Sigma^0$ の生 成断面積の見積もりを行った。 $p(\gamma^*, K^+)\Lambda/\Sigma^0$ の生成断面 積は

$$\frac{d\sigma}{d\Omega} = \frac{1}{N_T} \frac{1}{N_{\gamma^*}} \frac{1}{\varepsilon_{SR}} \quad \frac{1}{\varepsilon_K \Delta \Omega} N_{\Lambda, \Sigma^0} \tag{7}$$

と書ける。ここで NT は水素ガス標的中の水素原子の個数、 $N_{\gamma*}$ は仮想光子の個数、 $\Delta\Omega$ は HRS の立体角、 N_{Λ,Σ^0} は それぞれ Λ, Σ^0 粒子の個数を表している。また、 ε_{SR} は検 出器群における K^+ 中間子の残存率、 ε_K は K^+ 中間子の 検出効率である。得られた Λ, Σ^0 のイベント数と検出器の 検出効率を式(7)に代入することにより本実験で得られた Λ, Σ^0 の生成断面積は

$$\sigma_{\Lambda} = 1.3 \times 10^2 \ nb/sr \tag{8}$$

$$\sigma_{\Sigma^0} = 32 \ nb/sr \tag{9}$$

と見積もることができた。2018 年 CLAS で測定された (γ, K^+) 反応による Λ の微分断面積は $\sigma_{\Lambda} \sim 350 \ nb/sr[5]$ であり、本解析で得られた微分断面積より2,3倍程度大き い。本解析では、HRS のアクセプタンスに対して、一様な virtual photon の仮定をしていることから仮想光子の過剰 な見積もりをしている。また、図??のΛピークは右にテー ルを持っているが、本解析ではバックグランドとして扱っ ている。以上のことから Λ イベント弁別における系統誤差 や仮想光子数の正確な見積もりを今後考慮していく必要が ある。

5 まとめ

nnA 探索実験が 2018 年 10 月から 11 月にかけて JLab において行われ、本研究では K+ 中間子事象選択のための 条件最適化とその評価を行った。HRS-R に多量に混入する $\pi^+, \, p$ の中から K^+ 中間子の同定を行うために屈折率が異 なる AC1, AC2 (n₁ = 1.015, n₂ = 1.055) を導入し、解析 を行った。K⁺ 中間子の収量を維持しつつ、S/N を高める 事象選定条件を H(e,e'K⁺)Λ/Σ⁰ 事象を用いた解析手法に より導出した。その結果、K⁺ 中間子の残存率 46 %,Λ 事象 に対する S/N=5.6 を達成した。本研究で求めた最適条件を ³H(e,e'K⁺)nnΛ 事象にも適応し、高分解能分光を行う。

- C. Rappold et al., Phys. Rev. C 88, 041001(R).
- Inappoint et al., Phys. Rev. C 89, 061302(R) (2014).
 Iraj R. Afnan and Benjamin F. Gibson Phys. Rev. C 92, 054608 [3] Published 11 November 2015. J. Alcorn et al., Nuclear Instruments and Methods in Physics Research A 522 (2004) 294–346. [4]
- M. E. McCracken et al. (CLAS Collaboration) Phys. Rev. C 81, [5]025201 - Published 11 February 2010