Method and performance of K^+ meson identification in the ${}^{3}\text{H}(e, e'K^+)$ X experiment

GP-PU QE1 2019 Feb. 8th K. Itabashi

Graduate Program on Physics for the Universe

1

東北大学

Contents

- Introduction
- Experimental principle & setup
- Kaon identification (KID) analysis
- Λ, Σ^0 cross section
- Summary

Contents

• Introduction

- Experimental principle & setup
- Kaon identification (KID) analysis
- Λ, Σ^0 cross section
- Summary

Λ hypernuclei

• Life time $\tau_{\Lambda} = 263.2 \text{ ps}$

• Mass : $m_{\Lambda} = 1115.683 \text{ MeV}/c^2$

4

<u>Λ hypernucleus</u>

• Λ + nucleus

Research for the $nn\Lambda$ experiment at GSI

Invariant mass ($t + \pi^-$) distribution at GSI

C. Rappold et al. (HypHI Collabratin), Phys. Rev. C 88, 041001(R) (2013).

Theoretical model [1] →Unbound

[1]E Hiyama, S Ohnishi, BF Gibson, TA Rijken - Physical Review C, 2014

$nn\Lambda$ structure is not understood $\rightarrow nn\Lambda$ state research at JLab

$nn\Lambda$ state research at JLab

³H(*e*, *e'K*⁺)*nnA* experiment at JLab \rightarrow 2018 Oct.— Nov.

Importance of kaon identification

<u>HRS-R (K^+, π^+, p) </u> • K^+ : $nn\Lambda$ events • π^+, p :Background ~100 × N_K

Kaon identification (KID) is very important.

Purpose of my study

 $\frac{^{3}\text{H}(e, e'K^{+})nn\Lambda \text{ experiment at JLab}}{\text{Kaon identification (KID) is very important.}}$

Kaon identification analysis (KID)

- ✓ Performance check of aerogel Cherenkov detectors
 - π^+ , *p* rejection efficiency < 10 %
- \checkmark Performance check of KID method

Consistency check with published data (Λ Cross section)

Contents

- Introduction
- Experimental principle & setup
- Kaon identification (KID) analysis
- Λ, Σ^0 cross section
- Summary

Experimental principle and setup

Gas target system

Aerogel Cherenkov Detectors (AC1, AC2)

	AC1	AC2
Refractive index	1.015	1.055
Aerogel	Matsusita silica aerogel SP15	Matsusita silica aerogel SP50
Thickness	9 cm	5 cm
PMT	Burle RCA 8854	Photonis XP 4572B
Number of PMT	24	26

Contents

- Introduction
- Experimental principle & setup
- Kaon identification (KID) analysis
- Λ, Σ^0 cross section
- Summary

KID analysis overview

AC performance

(a) Calculation of coincidence

(b) checking π^+ , p survival ratio with AC cut

KID check

- (a) Calculation of missing mass and Λ , Σ^0 identification
- (b) Depend of Λ , Σ^0 survival ratio with AC cut
- (c) AC cut tuning with Λ , Σ^0 peak significance
- (d) Estimation of Λ cross section
- (e) comparison with CLAS

AC cut tuning with missing mass Λ/Σ^0

Λ/Σ^0 peak fitting result (no AC cut)

Maximum of peak significance (P.S.)

Result of the KID analysis

Contents

- Introduction
- Experimental principle & setup
- Kaon identification (KID) analysis
- Λ cross section
- Summary

Estimation of Λ cross section

[1] <u>https://hallaweb.jlab.org/equipment/high_resol.html</u>

[2] L. Tang et al., PAC45 http : www:jlab:org=exp p rog=proposals=17=PR12 17 003:pdf

Estimation of Systematic Error

Estimation of cross section

$$\frac{d\sigma_{\Lambda}}{d\Omega} = 400 \pm 20^{+190}_{-130} \ nb/sr$$

 $\frac{\Lambda \operatorname{cross \ section} (\text{CLAS at } \theta_{\gamma K} \sim 0)}{\frac{d\sigma_{\Lambda}^{CLAS}}{d\Omega} \sim 350 \ nb/sr}$

Future analysis with KID method

KID analysis with $H(e, e'K^+)\Lambda/\Sigma^0$ data

- A peak significance $23 \rightarrow 54$
- Λ cross section is consistent with CLAS's data

Ph.D. candidate

³H($e, e'K^+$) $nn\Lambda$ data analysis

- Momentum calibration
- Background rejection (KID)

Summary

Introduction

- GSI reported evidence of $nn\Lambda$ state by $t + \pi^{-}$ final state.
- We performed $nn\Lambda$ experiment at JLab in Oct.— Nov. 2018.

Experiment

- $p_{e'}$, p_K were measured with two HRSs.
- Large backgrounds (K^+ : $\pi^+ = 1$: 100) contaminated in K^+ side HRS.

KID analysis

• I optimized AC cut by maximizing peak significance. Λ events \rightarrow 55 %, Λ peak significance 23 \rightarrow 54

<u>A cross section</u>

- With KID analysis, I estimated Λ cross section $(d\sigma_{\Lambda}/d\Omega = 400 \text{ nb/sr})$
- A cross section is consistent with CLAS's data $(d\sigma_{\Lambda}/d\Omega \sim 350 \text{ nb/sr})$
 - KID method is established. $\rightarrow nn\Lambda$ analysis

Back UP

AC2 upper cut

Λ, Σ^0 fitting result with AC cut

Experimental kinematics

HRS acceptance $\Delta p/p = 4.5 \%$ $\Delta p_{e'} = 90 \text{ MeV}/c, \Delta p_K = 80 \text{ MeV}/c$

¹H(*e*, *e'K*⁺)Λ/Σ⁰ data

$$\succ (p_{e'}, p_K) = (2.1, 1.8) \text{ GeV}/c$$

 \succ Beam charge 4.7 C (~5 days)
 \triangleright I analyzed 2.4 C/4.7 C

Σ^0 Fitting result

Peak significance with AC1, AC2 cut

Virtual photon flux statistical error

$$E'_e = 2.1 \, \mathrm{GeV}$$

- Angle acceptance $\pm 2.0^{\circ}$ $\Gamma = 3.2^{+1.5}_{-0.9} \times 10^{-6}$
- Momentum bite $\pm 100 \text{ MeV}$

$$heta_{ee'} = 11.2^\circ, E_{e'} = 2200 \text{ MeV}$$

 $\Gamma = 4.9 \times 10^{-6}$
 $heta_{ee'} = 15.2^\circ, E_{e'} = 2000 \text{ MeV}$
 $\Gamma = 2.2 \times 10^{-6}$

$$\Gamma = 3.2^{+1.7}_{-1.0} \times 10^{-6}$$

Acceptance

 $\Omega = 4 \times \arcsin(\sin\alpha \sin\beta)$ = 7 msr (\alpha = 1.7, \beta = 3.4) = 4 msr(\alpha = 1.1, \beta = 3.0)

 $6^{+1}_{-2} msr$

Virtual photon Flux

$$\Gamma = \frac{\alpha}{2\pi^2 Q^2} \frac{E_{\gamma}}{1 - \varepsilon} \frac{E'_e}{E_e}, \qquad E_{\gamma} = \omega + \frac{q^2}{2m_p},$$

Coincidence time

Draft

Draft slide

Particle identification with coincidence time

Coincidence time [ns]

Coincidence time(*ct*) cut

-1.0 < ct < 1.0 ns

Missing mass

What is $nn\Lambda$ state??

³H(*e*, *e'K*⁺)*nn* Λ experiment at JLab

$$M_{HYP} = \sqrt{\left(E_{beam} + M_{target} - E_{e'} - E_K\right)^2 - (\vec{p}_e - \vec{p}_{e'} - \vec{p}_K)^2}$$

Momentum [MeV/c]

Momentum [MeV/c]

Coin ACC

Experimental principle

Research for the $nn\Lambda$ state at JLab

High resolution and accuracy is achieved at JLab Precise accuracy : $\Delta B_{\Lambda} \sim 100$ keV, $\Delta \sigma \sim 100$ keV

44

Missing mass distribution

<u>Λ, Σ^0 missing mass:</u>

$$M_X = \sqrt{\left(E_e + m_p - E_{e'} - E_K\right)^2 - \left(\overrightarrow{p_e} - \overrightarrow{p_{e'}} - \overrightarrow{p_K}\right)^2}$$

