Study on ¹⁰C Tagging Efficiency for KamLAND2-Zen

double beta

Atsuto Takeuchi Research Center for Neutrino Science

2018/02/08 GP-PU QE1

1.Background of this study

- KamLAND-Zen Experiment
- Future Plan : KamLAND2-Zen Experiment

2. Problem in KamLAND2-Zen

- ¹⁰C background
- How to handle the problem

3.Tag efficiency of neutron and ¹⁰C

- neutron tag efficiency
- ¹⁰C tag efficiency

1.Background of this study

- KamLAND-Zen Experiment
- Future Plan : KamLAND2-Zen Experiment

2. Problem in KamLAND2-Zen

- ¹⁰C background
- How to handle the problem

3.Tag efficiency of neutron and ¹⁰C

- neutron tag efficiency
- ¹⁰C tag efficiency

KamLAND-Zen Experiment

KamLAND-Zen Experiment

= Neutrino-less double beta decay ($0\nu\beta\beta$) search of ¹³⁶Xe

Need to improve <u>energy resolution</u> → KamLAND2-Zen Experiment

KamLAND2-Zen Experiment

 High Quantum Efficiency PMT(HQE-PMT)

light yields × 1.9

- Light collection mirror light yields × 1.8
- New liquid scintillator light yield × 1.4

Total light yields × 5

 \square Energy resolution(σ) : 4.2% → ~ 2% @ Q-value \square 2*v*ββ background : ~1/100

<u>Others</u>

- Scintillation mini-balloon for ²¹⁴Bi tag
- New data acquirement circuit(MoGURA2)

Aim to $<m_{\beta\beta} > ~20$ [meV] w/ 1000 kg Xenon in 5 yr

1.Background of this study

- KamLAND-Zen Experiment
- Future Plan : KamLAND2-Zen Experiment

2. Problem in KamLAND2-Zen

- ¹⁰C background
- How to handle the problem

3.Tag efficiency of neutron and ¹⁰C

- neutron tag efficiency
- ¹⁰C tag efficiency

¹⁰C Tag

- · improvement of energy resolution($2\nu\beta\beta$)
- Scintillation mini-balloon(214Bi can be tagged)

 \rightarrow Main background of KamLAND2-Zen = ^{10}C

¹⁰C ··· Cosmic ray muon spallation product

Muon
Neutron capture
β+ decay of ¹⁰C

Tag w/ triple delayed coincidence Tag efficiency : 64±4%

Miss of neutron events

of neutron detection after muon

Cause of neutron missing

- Discriminator does not work
- Data acquirement stuck

Neutron detection will be more difficult in KamLAND2 (light yield \nearrow) \rightarrow Need prevention of overshoot and afterpulse

Using Venetian Blind PMT

Candidate PMT = 20"Box and Line type(R12860 HQE) :

- Good time and light collection property
- High afterpulse rate

R3600 HQE : 20"Venetian Blind type PMT (Used in Outer detector of KamLAND / Super-Kamiokande)

Venetian Blind PMT is superior in terms of neutron detection

Afterpulse rate of HQE-PMTs

New trigger mode

- Mount trigger mode dedicated to neutron detection (Only after muon)
 - \rightarrow Differential hit + Local hit trigger scheme

Differential hit detection

Threshold is set in terms of differential

Can detect signals under baseline shift

By setting threshold in terms of the # of local hit (determined w/ the # of hit PMTs <u>in local area</u>), time window for hit detection can be shorter. \rightarrow influence of afterpulse become smaller

Optimized parameters in previous study (assumption : 10000 p.e. incident)

- Threshold for local hit = 14 ch/16 ch in local area
- Threshold for data acquirement = 65 local hit/118 local hit

ref.) Y.Honda master thesis, Tohoku (2017)

Muon events in KamLAND2

Light incident to PMTs in muon event in KamLAND2 will be more than 10000 p.e.

- More influence of overshoot and afterpulse to neutron detection than expected in previous study
- <u>Afterpulse might disturb event reconstruction</u>

Neutron tag efficiency = Neutron detection efficiency × Neutron reconstruction efficiency

Need more study of new trigger scheme

To evaluate new trigger mode

to investigate neutron tag efficiency

(Neutron tag efficiency = Neutron detection efficiency × Neutron reconstruction efficiency)

- Consider more than 10000 p.e. incident
- Consider influence of afterpulse to event reconstruction
- Check the case that <u>30% of PMTs</u> are Venetian Blind type

:: T.T.S. and light collection efficiency are inferior to those of Box and Line type

1.Background of this study

- KamLAND-Zen Experiment
- Future Plan : KamLAND2-Zen Experiment

2. Problem in KamLAND2-Zen

- ¹⁰C background
- How to handle the problem

3.Tag efficiency of neutron and ¹⁰C

- neutron tag efficiency
- ¹⁰C tag efficiency

Neutron detection efficiency

Simulation of local hit probability with real HQE-PMTs waveform

- LED: 1×10⁴, 2×10⁴, 3×10⁴, 4×10⁴, 5×10⁴, 7×10⁴, 9×10⁴, p.e.
- PLP : ~ 3 p.e.
- Checked two cases
 - 100% Box and Line PMT
 - 30% Venetian Blind + 70% Box and Line

Trigger on neutron/afterpulse

- Trigger issues on neutron events
- · Trigger on afterpulse converges within about 20 μ s (not data acquirement stuck)

All neutron events data is recorded

Neutron tag efficiency = <u>Neutron detection efficiency</u> × Neutron reconstruction efficiency

 \rightarrow Neutron tag efficiency is determined by reconstruction efficiency

Simulation of reconstruction considering afterpulse rate is needed.

Rate of afterpulse following muon event

· Checked afterpulse rate in non-LASER region of acquired waveform

Venetian Blind PMT : Lower afterpulse assuming reconstruct

- \cdot Box and Line case
- \rightarrow w/ Box and Line PMT
- Box and Line + Venetian Blind case
 - \rightarrow only w/ Venetian Blind PMT

Event reconstruction efficiency(Box and Line)

- Imitiated hit data of neutron events in KamLAND2 with data of ⁶⁰Co at center of KamLAND
- Checked reconstruction efficiency after adding hit data of fake signal artificially

Event reconstruction with Box and Line PMT

Event reconstruction efficiency(Venetian Blind)

light collection and T.T.S. are considered

Neutron tag

All the neutrons can be tagged within dT ~ 40 µs even after muons which produce ¹⁰C

Neutron tag efficiency

Neutron tag efficiency p_E

• Present : $p_E = 54\%$

new data acquirement system

 $p_E = 88.80 \pm 2.00\%$ (only Box and Line PMT)

new data acquirement system + Venetian Blind PMT

$$p_E = 92.28 \pm 1.83\%$$
 (Box and Line + Venetian Blind PMT)

Neutron detection efficiency will be improved by new data acquirement system
Efficiency will be enhanced with Venetian Blind PMT

10C Tag efficiency P

present :
$$P = 64\% \rightarrow \begin{cases} \frac{P = 98.75 \pm 0.03\%}{P = 98.82 \pm 0.02\%} & \text{(only Box and Line)} \end{cases}$$

Backgrounds in 5years measurement

KamLAND-Zen (calculated by result of KamLAND-Zen 400)

BG	events[/5 yr]
$2\nu\beta\beta$	36.9
10 C	20.8

- energy resolution : $4\% \rightarrow 2\%$
- · analysis : r < 1 m \rightarrow 2 m
- shower tag method for ¹⁰C

(total tag efficiency : 87.0%)

KamLAND2-Zen (w/o new data acquirement system)

BG	events[/5 yr]
2νββ	2.77
10 C	18.6

energy region : -2 σ ~ +2 σ

Considering new data acquirement system

Box and Line			
BG	events[/5 yr]		
2νββ	2.77		
10 C	1.79		

Dave and Line

70% Box and Line + 30% Venetian Blind

BG	events[/ 5yr]		
2νββ	3.41	←increase because of less light collection	
10 C		1.69	

Due to new data acquirement system, ¹⁰C BG will decrease dramatically

(Using only Box and Line type is better in terms of total background amount)

In 5 years measurement …

• ²¹⁴Bi can be tagged

 \cdot ⁸B solar u

- Limit on half-life of 0vbb : $T_{1/2}^{0v} > 1.89 \times 10^{27}$ [yr] (90% C.L.)
- Limit on Majorana effective mass : $\langle m_{\beta\beta} \rangle < 14.5 39.0$ [meV] (90% C.L.)

1.Background of this study

- KamLAND-Zen Experiment
- Future Plan : KamLAND2-Zen Experiment

2. Problem in KamLAND2-Zen

- ¹⁰C background
- How to handle the problem

3.Tag efficiency of neutron and ¹⁰C

- neutron tag efficiency
- ¹⁰C tag efficiency

- •KamLAND2-Zen = Futeure plan for KamLAND-Zen($0\nu\beta\beta$ search)
 - It is concerned that detection efficiency of neutron and ¹⁰C tag efficiency will become worse
- Property of Venetian Blind PMT(R3600 HQE) was studied under intense light incident
 - Revealed that V.B. PMT is effective to improve neutron detection efficiency
- •New trigger scheme for neutron detection was studied
 - Incident in KamLAND2 was reprodeuced
 - Influence of fake signals to event reconstruction was considered
 - \cdot Effectiveness of Venetian Blind PMT was also investigated
 - neutron tag : $54\% \rightarrow 88.80 \pm 2.00\%$ (B&L), $92.28 \pm 1.83\%$ (B&L+VB)
 - ¹⁰C tag : $64\% \rightarrow 98.75 \pm 0.03\%$ (B&L), $98.82 \pm 0.02\%$ (B&L+VB)