Development of an aerogel Cherenkov counter for the LEPS2 experiment at SPring-8

Research Center for Electron Photon Science (ELPH)

Chihiro Yoshida

GPPU

Contents

- physics motivation : K⁻pp bound state
- LEPS2 experiment
- aerogel Cherenkov counter for LEPS2
- performance tests
 - electron beam test
 - study of scintillation light from reflector
- future plan
- summary

physics motivation

$\overline{K}N$ interaction

It is known that $\overline{K}N$ interaction is attractive from Kaonic-hydrogen X-ray data and $\overline{K}N$ scattering data.

Y.Akaishi and T.Yamazaki assumed that $\Lambda(1405)$ is $\overline{K}N$ bound state and calculated $\overline{K}N$ potential.

- $\overline{K}N$ interaction is strong attractive (I=0).
- Kaonic nucleus exist.

The simplest kaonic nuleus : K-pp bound state.

Y. Akaishi and T. Yamazaki, Phys. Rev. C 65, 044005 (2002)

physics motivation

J-PARC E27

 $\pi^+ d \rightarrow K^+ X \dots K^*$ exchange

missing mass spectrum

+ identify final state ($\Sigma^0 p$)

Binding energy : $95^{+18}_{-17}(stat)^{+20}_{-21}(syst) \,\mathrm{MeV}$

J-PARC E15

 K^{-3} He $\rightarrow n X$

missing mass spectrum

+ invariant mass spectrum (Λp)

Binding energy : $47^{+3}_{-3}(stat)^{+3}_{-6}(syst)$ MeV

width : $115^{+7}_{-7}(stat)^{+10}_{-20}(syst)$ MeV

physics motivation

SPring-8/LEPS

 $\gamma d \rightarrow K^+ \pi^- X \dots K$, K^* exchange

missing mass spectrum

... peak structure was NOT observed.

SPring-8/LEPS2

take data 10 times more than LEPS

missing mass spectrum + invariant mass spectrum

LEPS2 experiment

2019/2/8

GPPU QE1 2018

Aerogel Cherenkov counter

GPPU QF1 2018

Purpose : separate π and K in the momentum region 1 – 2 GeV/c

We use aerogels which refractive index = 1.03.

Requirement

- π detection efficiency > 95%
- acceptance region : 30° 40°
- install in the small gap (10 cm)
- work in the magnetic field
- minimize the material budget

Shape of AC

Shape of aerogels

for AC : trapezoid

accurate size & cutting method were not decided.

for prototype : rectangle

Shape of box

optimize shape of box using an

optical simulation code, Guide-7.

Components of prototype

components

- aerogel (n = 1.03, $10 \times 10 \times 2$ cm, 6 pieces)
- box : polypropylene sheet
- inner reflector (Enhanced Specular Reflector, ESR)
- 3-inch fine-mesh PMT (hamamatsu R5543)

fine-mesh PMT

Single photo-electron signal

number of photo-electron (N_{pe}) follows a poisson distribution.

When pedestal events account for 95%,

2 photo-electron events become about 0.2%.

fine-mesh PMT calibration

calibration

How to make multi photo-electron signal
 Photo-electrons generate following a poisson distribution which mean is μ.

ADC value of each photo-electron signal follows the 1 photo-electron distribution.

• How to estimate mean of N_{pe} of a charge distribution of performance test χ^2 test for comparing a charge distribution of performance test and multi photo signals μ = mean of N_{pe} when χ^2 is minimum.

performance test : electron beam test

performed 2018/07/17 - 19 @LEPS

Purpose

Conditions

- trigger signal : coincidence of 4 plastic scintillator
- trigger rate ~ 50 Hz
- incident position : 0, 60, 120 mm •
- with / without aerogel in the prototype •

100

65

 $\theta \sim 40^\circ$ 50

65

PMT

π detection efficiency

Charge distribution (with aerogel)

estimate π detection efficiency

2019/2/8

GPPU QE1 2018

K mis-identification probability

2019/2/8

GPPU QE1 2018

Suppression of K mis-identification probability

Event selection using time information

Scintillation light is emitted slower than

Cherenkov light.

limit **Δ**TDC [ns] between

AC and trigger scintillator

Charge distribution π detection efficiency > 95% K misID probability < 11% → Event selection using time information is useful to suppress K misID probability

ADC [ch]

Compare test results and simulation

mean N_{pe} of Cherenkov light from aerogels

= mean N_{pe} (with aerogel) – mean N_{pe} (without aerogel)

Position dependence is larger than test results.

 Simulation neglecting absorption of light by aerogel

The tendency of position dependence is almost same to test results.

 \rightarrow In a aerogel, light is scattered than absorbed.

Study of scintillation light from reflector

measure an intensity of emission light from a sample when induce exicitation light Using HITACHI spectro-fluorophotometer F-4500.

Scintillation light which wavelength is about 400 - 500 nm is emitted from ESR.

From aluminizedmylar, scintillation light is not emitted.

future plan

• Optimize shape of AC box using simulation neglecting light absorption by

• Construct AC using ESR and aluminizedmylar.

reflectivity of ESR : ~ 98% , reflectivity of aluminized mylar : ~ 92%

... Scintillation light will be suppressed by using aluminizedmylar.

Cherenkov light will also become small.

perform beam test and decide to use which reflector

• Mass production, take physics data in 2020.

aerogal.

summary

- We will plan to do K-pp bound state search experiment using $\gamma d \rightarrow K^+ \pi^- X$.
- We developed the aerogel Cherenkov counter for π/K separation in the momentum region 1 2 GeV/c.
- We performed electron beam test and study scintillation light from reflector.
 - When π detection efficiency > 95% (threshold 36 ch), K misID probability is ~ 17% Event selection using time information suppresses K misID probability to ~ 11%.
 - Scintillation light which wave length is 400 500 nm is emitted from ESR.
 Scintillation light will be suppressed by using aluminized mylar.
- As a next step, we will optimize shape of AC box using simulation neglecting light absorption by aerogel. Then decide to use which reflector (ESR or aluminizedmylar).

appendix

2019/2/8

Т.

GPPU QE1 2018

.**T**.

γ ray generated by backward Compton scattering

$$E_{\gamma} = E_1 \frac{1 - \beta \cos \theta_1}{(1 - \beta \cos \theta_2) + \frac{E_1}{E_e} (1 - \cos(\theta_2 - \theta_1))}$$

When use a laser which wave length is 266 nm, $E_{\gamma max} \sim 2.9 \text{ GeV}.$

When use a laser which wave length is 355 nm, $E_{\gamma max} \sim 2.4$ GeV.

PID using TOF

maximum momentum which Barrel RPC can separate TOF of π and K more than 6 σ

- → Barrel RPC can not separate π and K scattered less than 50°.
- → < 30° : Forward RPC, $30^{\circ} 40^{\circ}$: AC2, $40^{\circ} 50^{\circ}$: AC1

ratio of π and K events scattering 30° – 40°

calculate ratio of π and K events scattering 30° – 40° using SAID.

caluculated reactions ($E_{\gamma} = 2.5 \text{ GeV}$)

Requirement for AC

Simulation condition

Simulation code : Guide-7

Condition

- incident particle : π
- momentum : 2.0 GeV/c
- reflectivity of reflector : 98%
- PMT response range : 200 650 nm
- PMT quantum efficiency : 20%

I. Adachi et al., Nucl. Instrum. Methods. A, 639 222-224 (2011)

fine-mesh PMT

mesh dynodes are placed with a narrow gap

- to efficientry multiply photoelectron in the magnetic field
- Single photo-electron signal is NOT a gaussian.
- The relation of ADC and mean of number of photo-electron (N_{pe}) is not linear.

performance test : proton beam test

performed 2018/10/17 - 18 @CYRIC

Purpose

to check a light output of $\beta < \beta_{th}$ particle

- compare light output with and without aerogel
- position dependence

Conditions

- trigger signal : coincidence of plastic scintillator
- trigger rate ~ 50 Hz
- incident position : 0, 60, 120 mm
- with / without aerogel in the prototype

light output with and without aerogel

•

GPPU QE1 2018

Study of scintillation light from reflector

2018/11/18 @KEK

^{回新格子} HITACHI spectro-fluorophotometer F-4500

Condition

- excitation wavelength : $200 600 \text{ nm} (\Delta 5 \text{ nm})$
- emission wavelength : $200 600 \text{ nm} (\Delta 5 \text{ nm})$

Cherenkov light from air

calculate ratio of Cherenkov N_{pe} from aerogel and air

refractive index of air = 1.0002

 $\rightarrow \beta_{th} = 0.9998 \; (\beta_{electron} > \beta_{th} \; , \beta_{proton} < \beta_{th})$

$$\frac{d^2 N_{pe}}{dLd\lambda} = \frac{2\pi\alpha z^2}{\lambda} \left(1 - \frac{1}{\beta^2 n^2}\right)$$

flight pass L : ~ 7 cm (aerogel), ~ 8 - 12.5 cm (air)

integrate from 200 – 650 nm (PMT response range)

 $\rightarrow N_{pe}(aerogel): 614, N_{pe}(air): 4.8-7.7$

$$\rightarrow$$
 N_{pe} (air)/N_{pe} (aerogel) < about 1%

Cherenkov light by δ -electron

kinetic energy distribution of δ -electron

$$\frac{d^2N}{dTdx} = \frac{1}{2}Kz^2\frac{Z}{A}\frac{1}{\beta^2}\frac{F(T)}{T^2}$$

 $F(T) = (1 - \beta^2 T / T_{max})$

maximum kinetic energy of δ -electron

 (T_{max})

$$T_{max} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma m_e / M + (m_e / M)^2}$$

integrate $\frac{d^2N}{dTdx}$ from Cherenkov kinetic energy threshold T_{th} to T_{max}

→ mean of number of generated δ -electron

number of generated δ -electron

follows a poisson distribution.

- → probability of number of generated δ -electron becomes more than 1
 - = δ -electron generating probability

 (P_{δ})

incident particle	β	T _{max} [MeV]	P_{δ}
electron	~]	35.6	0.04
proton	~ 0.4	< <i>T</i> _{th}	-

 \rightarrow effect of δ -electron is less than 4%

light source

light source when electron beam test and proton beam test

incident particle	with or without aerogel	light source	
electron (β~1)	with aerogel	Cherenkov light from aerogel	
		Cherenkov light from air	
		Cherenkov light by δ -electron	
		Scintillation light from reflector	
	without aerogel	Cherenkov light from air	
		Scintillation light from reflector	
proton (β~0.4)		Cherenkov light by δ -electron	
	with aerogei	Scintillation light from reflector	
	without aerogel	Scintillation light from reflector	

response by 1.5 GeV/ $c \pi$ and K

Cherenkov light :
$$\frac{d^2 N_{pe}}{dLd\lambda} = \frac{2\pi\alpha z^2}{\lambda} \left(1 - \frac{1}{\beta^2 n^2}\right)$$

Scintillation light $\propto \frac{1}{\beta^2}$

incident particle	β	N _{cherenkov}	$N_{scintillation}$	N _{all}
electron (80 MeV)	~ 1.0	16.5	3.0	19.5
π (1.5GeV/ <i>c</i>)	0.996	14.2	3.0	17.2
K (1.5 GeV/ <i>c</i>)	0.950	-	3.3	3.3

scale the charge distribution of electron beam test

• When threshold is 32 ch, π detection efficiency : 95%, K misID probability : 25%

Event selection using time information ...

• When threshold is 20 ch, π detection efficiency : 95%, K misID probability : 11%