GP-PU Progress Report :

Overseas Visiting/Axion Portal Monopole Dark Matter

Shu-Yu Ho

Particle Theory and Cosmology Group D2 Student (B7SD2707) Advisor : Prof. Fuminobu Takahashi 05/08/2019

Content of my Progress Report

- Required Credits
- Overseas Visiting
- My recent research

Required Credits

- **GPPU** seminar
 - GSP 12 + GASP 6 (18/30)
- Overseas visiting
 - Germany 5w + Taiwan 3w + Italy 3w (11w/12w)

- •NCTS (National Center for Theoretical Sciences), Taiwan
 - 12/26/2018 ~ 01/03/2019 (1 week)
 - The 5th International Workshop on Dark Matter, Dark Energy and Matter-antimatter Asymmetry (Fo Guang Shan, Kaohsiung)
- •GGI (Galileo Galilei Institute), Florence, Italy
 - \[
 \ldots 01/06/2019 \ldots 01/27/2019 (3 weeks)
 \]
 - ✓ GGI lectures on the theory of fundamental interactions

Modulus Field

 String theory predicts many light scalar moduli fields through compactification.

• In SUSY, a modulus forms a chiral supermultiplet, X.

Moduli Abundance

• We consider only one (string) axion ϕ with a potential

$$V(\phi) \simeq \frac{1}{2}m_{\phi}^2\phi^2$$

At
$$H(t_{\text{osc}}) \approx m_{\phi} \longrightarrow \rho_{\phi, \text{ini}} \simeq \frac{1}{2} m_{\phi}^2 \phi_{\text{ini}}^2$$

$$\Omega_{\phi} h^2 = \frac{\rho_{\phi, \text{ini}} s_0}{\rho_c s} h^2 \simeq \begin{cases} 3.0 \times 10^{10} \left(\frac{g_{\star, \text{osc}}}{106.75}\right)^{-1/4} \left(\frac{m_{\phi}}{0.1 \text{ GeV}}\right)^{1/2} \left(\frac{\phi_{\text{ini}}}{10^{16} \text{ GeV}}\right)^2 & \Gamma_{\text{inf}} > m_{\phi} \\ 2.5 \times 10 \left(\frac{T_{\text{RH}}}{20 \text{ MeV}}\right) \left(\frac{\phi_{\text{ini}}}{10^{16} \text{ GeV}}\right)^2 & \Gamma_{\text{inf}} < m_{\phi} \end{cases}$$

The axion abundance Ω_ϕ can be suppressed if $\phi_{
m ini}$ is sufficiently small.

Cosmological Moduli Problem (CMP)

- If the modulus is stable on a cosmological scale.
 - ✓ Its abundance may exceed the observed DM density.
- If the modulus is unstable and can decay into photons.
 - It may spoil the success of big bang nucleosynthesis (BBN) due to the photo-dissociation of the light elements.
 - ✓ It may overproduce X-ray or gamma-ray fluxes.

moduli problem in cosmology

Bunch-Davies Distribution

Bunch & Davies `78

- Suppose that the axion already acquires its mass (or potential) during inflation.
- The quantum diffusion prevents the axion from falling into the potential minimum.

The Axion Abundance with BD Distribution

The energy density of the axion with BD distribution

$$\phi_{\rm ini} \simeq \sqrt{\frac{3}{8\pi^2}} \frac{H_{\rm inf}^2}{m_{\phi}} \longrightarrow \rho_{\phi, \rm ini} \simeq \frac{3}{16\pi^2} H_{\rm inf}^4 \quad H(t_{\rm osc}) \approx m_{\phi}$$

• The axionic moduli problem is relaxed if $rac{H_{
m inf} \ll \sqrt{m_{\phi} f_{\phi}}$.

$$\Omega_{\phi}h^{2} \simeq \begin{cases} 1.1 \times 10^{-20} \,\mathrm{GeV} \left(\frac{g_{\star,\mathrm{osc}}}{106.75}\right)^{-1/4} \left(\frac{m_{\phi}}{0.1 \,\mathrm{GeV}}\right)^{-3/2} \left(\frac{H_{\mathrm{inf}}}{\mathrm{GeV}}\right)^{4} & \Gamma_{\mathrm{inf}} > m_{\phi} \\ 9.6 \times 10^{-31} \,\mathrm{GeV} \left(\frac{T_{\mathrm{RH}}}{20 \,\mathrm{MeV}}\right) \left(\frac{m_{\phi}}{0.1 \,\mathrm{GeV}}\right)^{-2} \left(\frac{H_{\mathrm{inf}}}{\mathrm{GeV}}\right)^{4} & \Gamma_{\mathrm{inf}} < m_{\phi} \end{cases}$$

One can suppress Ω_{ϕ} by low inflation scale

Upper Bound on *H***inf for Solving CMP**

GGI symbolic prize (GGI T-shirt + pen)

New last supper

Resonant instabilities in cosmology and their observational consequences

Yukawa Institute for Theoretical Physics, Kyoto University May 7 - 20, 2019

Program

May 14 (Day 1) at Panasonic Auditorium, Yukawa Hall

9:50 - 10:00 Opening remarks Jiro Soda (Kobe University)

Chair: Jiro Soda

10:00 - 11:00	Peter Adshead (University of Illinois) Inflation with non-Abelian gauge fields and the origin of the matter-antimatter asymmetry	
11:00 - 11:30	Kohei Kamada (RESCEU, University of Tokyo)	
	Magnetogenesis for Baryogenesis from Axion Inflation	
11:30 - 12:00	Teerthal Patel (Nagoya University)	
(20+10)	Resonant magnetic field generation from axions	
12:00 - 12:30	Shu-Yu Ho (Tohoku University)	
(20+10)	Relaxing the Cosmological Moduli Problem by Low-scale Inflation	

My recent research

- Axion portal (hidden) monopole dark matter (DM):
 - ✓ The monopoles with mass around 1-10 PeV can account for the observed DM.
 - ✓ The monopole DM can couple to nucleon via axion portal.

My recent research

Sergey Alekhin (DESY & Serpukhov, IHEP) et al.. 16'

My recent research

