Nucleon isovector couplings from lattice QCD at the physical point

Tsukamoto Natsuki

19/05/08

Tsukamoto Natsuki

Nucleon isovector couplings from lattice QCD

19/05/08 1/7

Collaborators

- E. Shintani (Riken)
- Y. Aoki (Riken)
- K.-I. Ishikawa (Hiroshima Univ.)
- Y. Kuramashi (Univ. of Tsukuba)
- S. Sasaki (Tohoku Univ.)
- T. Yamazaki (Univ. of Tsukuba)

Collaborators

- E. Shintani (Softbank)
- Y. Aoki (Riken)
- K.-I. Ishikawa (Hiroshima Univ.)
- Y. Kuramashi (Univ. of Tsukuba)
- S. Sasaki (Tohoku Univ.)
- T. Yamazaki (Univ. of Tsukuba)

He had quit physics! I had succeed to some of the his work.

Tsukamoto Natsuki

Nucleon isovector couplings from lattice QCD

The nucleon matrix elements of the bilinear operator are affected by the QCD correction.

 $\langle N | \overline{q} \Gamma q | N \rangle \sim g_{\Gamma} \overline{u}_s \Gamma u_s$

charge	operator	interest	precision(expr.)
vector	$\overline{m{q}}\gamma_{\mu}m{q}$	proton size	few % level(radius)
axial	$\overline{\pmb{q}}\gamma_{5}\gamma_{\mu}\pmb{q}$	neutron life time	sub-percent level
tensor	$\overline{\mathbf{q}}\sigma_{\mu u}\mathbf{q}$	neutron EDM	> 50% level
(p)scalar	$\overline{q}(\gamma_5)q$	TeV scale coupling	N/A

We can also access the information of the charge distribution via the coupling as a function of the momentum transfer, form factor.

Nucleon form factor/couplings using PACS10 Conf.

PACS performed the realistic simulation using PACS10 Conf.

PACS10 Gauge Configuration

- physical pion mass ($m_{\pi} = 135 \text{MeV}$)
- large volume (10.8fm)³
 - $L^{3}T = 128^{4}$ generated
 - $L^3 T = 160^4$ generated
 - $L^3 T = 256^4$ on-going?
- We are free from the systematics error!

https://www.itmedia.co.jp/news/arti-

cles/1711/20/news134.html

Achivement $(L^3 T = 128^4)$

- accurate determination of g_A
- few-percent determination of the proton radius

PRD 99 014510(2019) Actually I'm not concerned with this work.

• More precise/accurate determination

- more measurements
- measurements in the fine lattice
- non-standard nucleon coupling
 - scalar
 - tensor (renormalization required!)
- non-local nucleon coupling
 - quark helicity operator (renormalization required!)
 - quark momentum fraction operator (renormalization required!)
- three-quark operator
 - nucleon decay operator (renormalization required!)

Althought there are many thing to do, we want to reveal the any property of the nucleon. The renormalization constant is strongly required!!!

- computing the nucleon correlators using existing code for more accurate/precise determination
- computing the renormalization constant for the non-standard, non-local or three quark operators
- analyzing the raw data

Computer Resource

- LX 406Re-2 in Tohoku Univ.
- Oakforest PACS in JCAHPC (U. of Tokyo, U. of Tsukuba)
- Cygnus(sigunasu? kigunasu?) in U. of Tsukuba

Schedule

- Writing up the paper for the old study until the end of May
- Oral presentation in Lattice 2019 (Wuhan/Bukan) June
- ECT* TALENT School 2019 July-August (not confirmed)

Schedule

- Writing up the paper for the old study until the end of May
- Oral presentation in Lattice 2019 (Wuhan/Bukan) June
- ECT* TALENT School 2019 July-August (not confirmed)
- (Not academic) Job hunting March-???...

Schedule

- Writing up the paper for the old study until the end of May
- Oral presentation in Lattice 2019 (Wuhan/Bukan) June
- ECT* TALENT School 2019 July-August (not confirmed)
- (Not academic) Job hunting March-???...

Toward the doctoral thesis

- necessary
 - more accurate/precise determination of nucleon form factors
 - non-standard nucleon couplings such as tensor and scalar couplings
- not necessary I think
 - nucleon non-local matrix elements, structure functions
 - three-quark operators, nucleon decay
- I don't want to think about
 - hyperon decay, f_3, g_2 form factors