Lepton Flavor Universality tests with inclusive $B \rightarrow X_s l^+ l^-$ decays at Belle II

GP-PU Progress Status Presentation 29th May, 2020

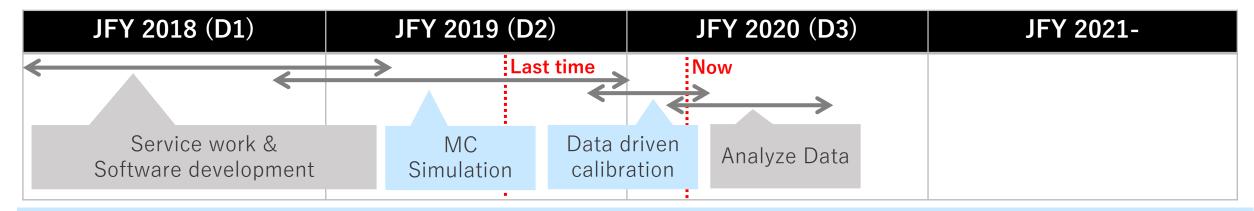
Yo Sato

Experimental Particle Physics Group

Lepton Flavor Universality (LFU) : e, μ, τ are identical, except for masses

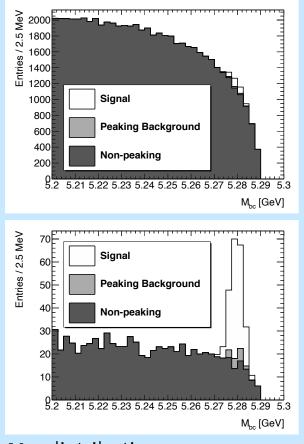
LFU tests in B meson decay

Br $B \longrightarrow K^{(*)} \mu^+ \mu^ R_{K^{(*)}} \equiv$ Br

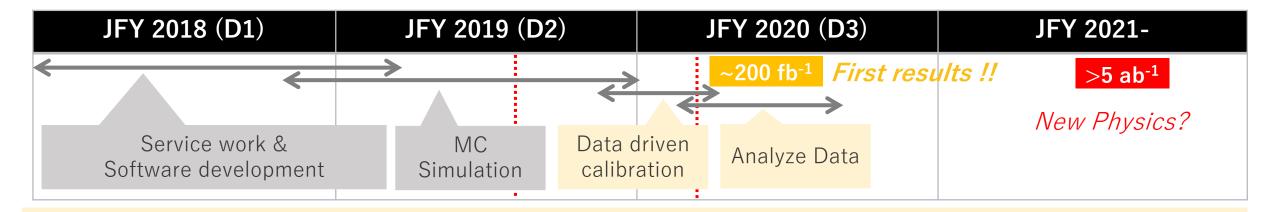

Standard Model expectation : $R_K \simeq R_{K^*} \simeq 1.00$

Latest results in LHCb :

 $R_{K} = 0.846^{+0.060}_{-0.054} (\text{stat.})^{+0.016}_{-0.014} (\text{syst.}),$ $R_{K^{*}} = 0.69^{+0.11}_{-0.07} (\text{stat.}) \pm 0.05 (\text{syst.})$



Observables ?	$R_{?} \equiv \frac{Br\left(B \Rightarrow ? u^{\dagger} u^{\dagger}\right)}{Br\left(B \Rightarrow ? e^{\dagger} e^{\dagger}\right)}$ $Test LFU$	Br $\begin{bmatrix} B \Rightarrow ? & \downarrow \uparrow \downarrow \downarrow \end{bmatrix}$ & Br $\begin{bmatrix} B \Rightarrow ? & e^{\uparrow} & e^{-} \end{bmatrix}$ Determine a model
(K), (K*)	Theoretical uncertainty : ~1% → High accuracy test	Theoretical uncertainty : 20-50% → Not accurate enough
$X_{S} \xrightarrow{K} \xrightarrow{K} \xrightarrow{K} \xrightarrow{\pi} \xrightarrow{K} \xrightarrow{\pi} \cdots$	Theoretical uncertainty : ~1% → High accuracy test	Theoretical uncertainty : ~10% → High accuracy test



Established the analysis method with MC simulation.

- Reconstruction of $B \rightarrow X_s l^+ l^-$ from 40 final states.
 - $X_s \rightarrow Kn\pi \ (0 \le n \le 4), 3K. \ l = e, \mu$
- Background suppression with a machine learning technics.
 - Employed Boosted Decision Tree (BDT)
 - 54.3% of signal are kept, while 99.4% of backgrounds are rejected. (Comparison between right two figures)
- Estimation of sources of peaking background.
 - Signal yield is obtained by fitting $M_{bc}(=\sqrt{E_{beam}^2 p_B^2})$. Need to estimate peaking backgrounds.

 M_{bc} distributions. before(top)/after(bottom) BDT

Estimate and correct differences between data and MC.

- Correct reconstruction efficiency differences.
 - Use $B \to X_s J/\psi(\to l^+l^-)$ as control samples.
- Estimate the shape and yield of peaking background in M_{bc} .
 - (e.g.) $B^+ \to K^+\pi^+\pi^-$ mis-identified as $B^+ \to K^+\pi^+\pi^-$. Kinematics is very similar with signal, so they can have a peak on the M_{bc} distribution.
- \square Analyze real data and measure $Br(B \rightarrow X_s l^+ l^-)$ and R_{X_s} .
 - Fitter of M_{bc} is going to be prepared. The shapes of the M_{bc} distribution are determined from control data.
 - The first measurements in Belle II. The first measurement of R_{X_s} in the world !!

GPPU activities

Points:

• GSP: 20, GASP: 1, GEP: 14.

Research trips : 57 days in total

□ 8th January – 2nd February, 2019. DESY (Hamburg, Germany)

- Lepton ID systematics study with DESY colleagues as a service job.
- □ 15th May 15th June, 2019, DESY (Hamburg, Germany)
 - Software development for the reconstruction of $B \rightarrow X_s \ l^+ \ l^-$

(plan, ~40 days?)

- □ 13th May (still ongoing, ~30 days?), Indiana University (USA) Remotely.
 - Discuss with theorists about the effects of the bremsstrahlung on results.

□ 28th July – 5th Auguste (9 days) ICHEP (virtual)