Experiments at JAEA and GSI

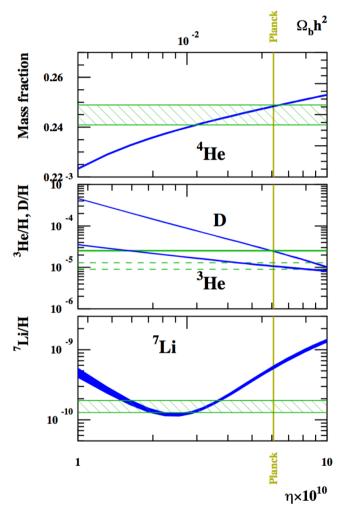
Shunki Ishikawa

Doctoral 1st year Laboratory of Experimental Nuclear Physics

10.10.2019

Cosmological Lithium Problem

The primordial abundances of light elements produced by the Big Bang Nucleosynthesis (BBN): D, ³He, ⁴He, ⁷Li, ...

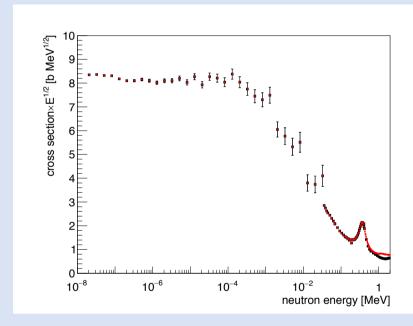

Only the ⁷Li abundance prediction is 3-4 times larger than observed value!

What are the possible solutions from nuclear physics?

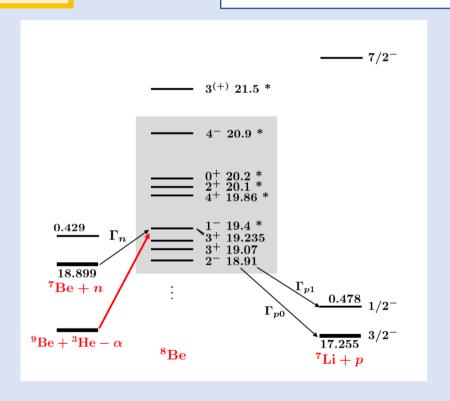
>> Destruction of ⁷Be (the main source of ⁷Li)

The cross section of the 7 Be(n, p_1) 7 Li*(0.478 MeV; 1/2 –) reaction is missing!

Note: Li-7 is readily disintegrated by the (p, α) reaction during BBN.


A. Coc, arXiv:1707.01004v1 [astro-ph.CO]

Methodology


 (n, p_0) cross section

 7 Be (n, p_1) 7 Li*

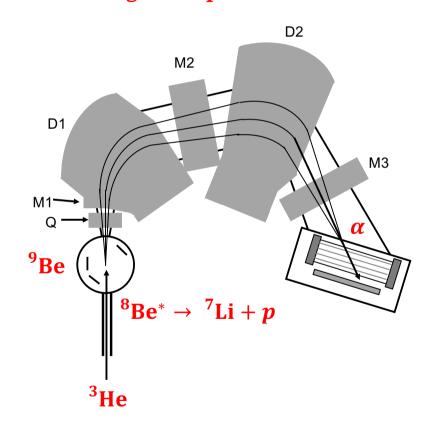
 Γ_{p1}/Γ_{p0} ratio

- $^{7}\text{Li}(p, n_0)$ $^{7}\text{Be reaction}$
- "R-matrix Theory"

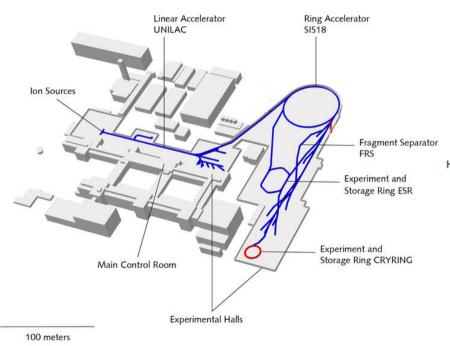
- (Next slide)

Experiment at JAEA

 Γ_{p1}/Γ_{p0} ratio


2018 April

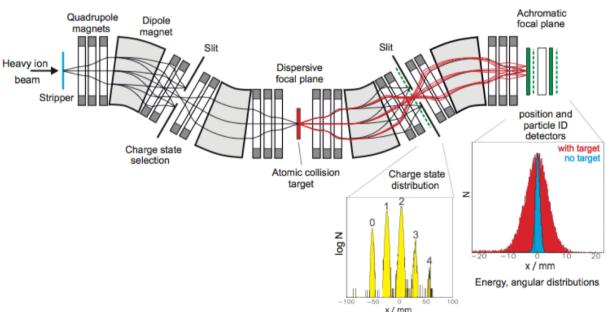
- The ${}^{9}\text{Be}({}^{3}\text{He},\alpha){}^{8}\text{Be}^{*}(p){}^{7}\text{Li reaction}$ measurement at 30 MeV
- ENMA beam-line
- Preliminary results obtained
- More statistics needed.


plan for 2019/2020

• The ${}^{9}\text{Be}(p,d)$ ${}^{8}\text{Be}^{*}(p)$ ${}^{7}\text{Li reaction}$ measurement at 30 MeV

ENMA magnetic spectrometer

Experiment at GSI



https://www.gsi.de/en/researchaccelerators/accelerator_facility.htm

"Accurate stopping-power measurement of heavy ions in gases and solids"

2018 Jul.-Dec. Exp. preparation 2019 Aug.-Oct. Exp. preparation

2019 Nov.- Beam time (Not yet scheduled)

C. Scheidenberger, et al., Phys. Rev. Lett. 73 (1994) 50.