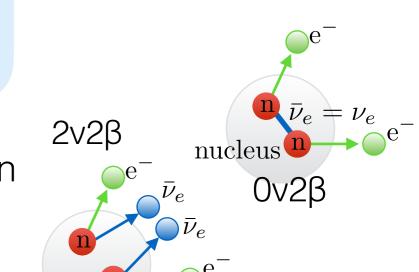
Energy Estimator Development for KamLAND-Zen

GPPU Research Progress Presentation Oct. 10, 2019

Haruhiko MIYAKE

RCNS, Tohoku University

Neutrinoless Double Beta Decay (0v2β)


- Neutrino mass is assumed to be zero in standard model.
- Neutrino oscillation experiments show that neutrinos have mass.
- Next our Questions.
 - 1. Why is neutrino mass overwhelmingly lighter than other quarks or leptons?
 - 2. Are neutrino and anti-neutrino the same particle?(Is neutrino Majorana particle?)

If neutrinos are Majorana...,

- Explain small neutrino mass.
- Suggests the existence of ultra-heavy neutrinos.

Whether neutrinos are Majorana is important question for both **particle physics** and **cosmology**.

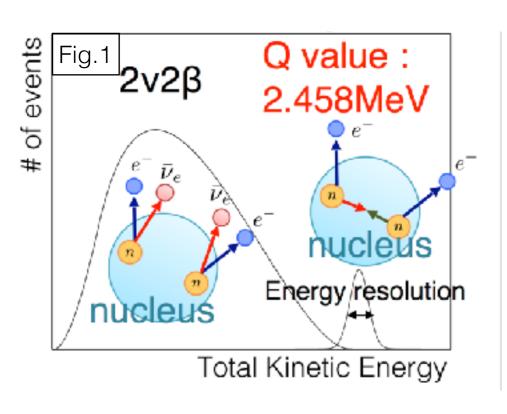
→ 0v2β is test for Majorana nature of neutrinos.

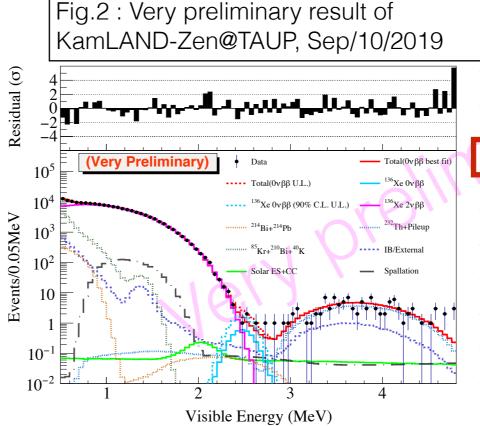
Heavy neutrinos may have

played an important role in

nucleus

the evolution of the universe.




KamLAND-Zen

KamLAND-Zen explores 0v2β of ¹³⁶Xe and achieved world's best sensitivity of 0v2β observation.

- 0ν2β and 2ν2β can be distinguished from the difference in energy spectrum of two electrons.(Fig.1)
- Since the detector resolution is finite, the two spectra overlap.(Fig.2)
- We have succeeded in reducing radioactive impurities in the detector.
- Next dominant background is 2v2β -> Energy resolution is important.

Observed events	8
Best-fit total events	10.7
Ονββ	2.8
2νββ	5.1
²¹⁴ Bi in LS	0.4
²¹² Bi- ²¹² Po pile-up	0.4
Film BG (²¹⁴ Bi)	0.9
Spallation (10C)	0.2
Spallation (137Xe)	0.1
Spallation (short-lived)	0.2
Solar 8 B $ u$	0.4
	•

Progress status & Prospect

Energy reconstruction tool development

We need higher energy resolution.

- ~2.45 MeV (ROI of $0v2\beta$) is not good.
 - -> This is the next target.
- I want to finalize this work in this academic year.

Next year, I want to try new analysis technique.

- Machine Learning
- Bayesian inference
- -> We have strong collaborators in data science @ IIIII

Apply new technique to KamLAND-Zen analysis

KamLAND-Zen analysis??

I'm not sure my D-thesis theme. I have to compete with my colleagues.

Plan of overseas training

Destination: MIT (Boston)

Pourpose : Develop particle identification tools based on Neural Networks

with collaborators at MIT.

Time : May, 2020 -> March, 2021 (11 months)

Current Status

Consult with my supervisors and Miwa-san.

Send some e-mails to Prof. Lindley Winslow at MIT.

-> She gave me a positive answer.

Prepare application form of overseas training. (海外研修申請書)

□ Visa

☐ Housing —→

Housing may be main problem because of expensive rent. (>~\$800/month)