Improvement of Energy Estimation Tools for KamLAND-Zen

GP-PU Progress Status Presentation

Haruhiko Miyake RCNS, Tohoku Univ.

Neutrinoless double-beta decay search (0vββ)

- Double beta decay
 - $2\nu\beta\beta$ mode: emits two neutrinos(observed)
 - $0\nu\beta\beta$ mode: emits no neutrino(NOT observed)
- Direct test of Majorana nature of neutrinos ($v = \overline{v}$?).
- Lepton number violation
 - -> Phenomena beyond the Standard Model
- Access neutrino mass via $0\nu\beta\beta$ decay half life .

Current status of KamLAND-Zen

($0\nu\beta\beta$ decay search of ¹³⁶Xe with KamLAND)

- Two main background sources :
 - $2\nu\beta\beta$ decay mode
 - -> Enhancing the energy resolution is needed.
 - Muon spallation products (Most dominant)
 - -> Particle ID(β , γ) method is promising.
- Target sensitivity ($T_{1/2}^{0\nu} > 5 \times 10^{26}$ yr in 5 years)

Background reduction(1)

- $2\nu\beta\beta$ (Target : Reduce by ~1/3)
 - High energy resolution is needed.
 - However, increase of degraded(low-gain) PMTs in KamLAND detector resulted in deterioration of energy resolution.
 - ->Reuse of degraded PMTs
 - 18.3% reduction have been accomplished (QE1 report, this is not sufficient).
 - -> Amplifier installation campaign is in progress.
 - Enhancing hit probability is essential to achieve high energy resolution.
 - 400 degraded channels will be amplified.
 - Amplified channel's response have recovered.

Blue curve : expected curve in good PMTs The response have recovered by amp.

Background reduction(2)

- Long-lived muon spallation products
 - Long-lived($T_{1/2} > 10^2 \sim 10^5$ sec) isotopes from ¹³⁶Xe spallation are dominant.
 - Many long-lived isotopes decay are accompanied by γ-rays.

-> Distinguishing β and γ , they can be tagged.

Difference of timing spectrum (S. Hayashida D-thesis)

- Neural network technique for PID have been developed (previous study)
 - Current problem is its efficiency estimation.
 (Currently it has large errors(~20%) due to data driven method.)
- -> Accurate Monte Carlo sim tools are needed to estimate neural network efficiency precisely.
- Information of degraded PMTs(Low hit probability, low-gain) should be included.

Other topics, Overseas training & D-thesis

- Source calibration campaign is planed in this year.
 - Charge and Timing waveform of source event is necessary to develop Monte Carlo tools.
- Overseas training
 - MIT plan (3 months stay) depends on COVID-19 situation.
 - Alternative plan is remote training .
 - Currently consulting with Prof. Winslow in MIT.
 - Topic will be KamLAND-Zen analysis (not the other experiment).
 - Looking for better solution for me.
 - Weekly online meeting and discussion by e-mail may be compromise.
- D-thesis
 - KamLAND-Zen data analysis.