2020 Fall, GPPU Progress report

Progress in my glueball study Keita Sakai, Nuclear theory group

What I want to know ... Origin of glueball mass
Glueball ... hadron consisted of gluons only

Lattice QCD predicts its mass

What makes this mass?

Known mass generation mechanism

- Higgs Mechanism
- Quark condensate (Nambu Mechanism)

Mass measurement in lattice QCD

- From asymptotic behavior of 2 pt function

Normal way

- As a expectation value of EMT operator

To do the 2nd way: "Good" glueball 2pt func.

$$
\begin{gathered}
\left\langle G(\tau) G^{\dagger}(0)\right\rangle \simeq e^{-M_{G} \tau}, \quad M_{\text {eff }}(\tau)=-\log \frac{G(\tau+1)}{G(\tau)} \quad \text { Effective mass } \\
\text { With large } \mathrm{t}
\end{gathered}
$$

Contribution of excited states "Good" means...

- Less
- Long

To get good 2pt func.
We proposed a new technique: "Spatial flow method"

Result

Effective mass with spatial flow

By using spatial flow,

About 2x
 better precision

Long plateau like behavior

Plans of research in next few years

1. This year and next year
-Study about spatial flow method

almost finishing
-Glueball mass calc. from EMT
2. After that

Full QCD study about glueball mass

Seminar points

GSP:0
GASP:2
Not good…

Overseas studies

Symposium etc.

- The 38th International Symposium on lattice field theory (July 25-31, 2021)
- The 14th Quark Confinement and the Hadron Spectrum (Aug. 2-7, 2021)

Joint research
(As candidates,)

- The University of Stavanger (Norway)
-The University of Adelaide (Australia)
- The University of Kentucky (U.S.)
(I will decide about this more specifically after submitting my paper…)

