Status of Data Analysis for the Next-Generation Ap Scattering Experiment at J-PARC

M2 Tamao Sakao Hypernuclear Physics Experiment Gr.

2020/10/09

GPPU Status Report / Oct 9, 2020

The Necessity of the Scattering Experiments

The YN Interaction

.

- **Theory**: Cannot explain two- M_{\odot} neutron stars.
 - Two-body & many-body repulsive forces are necessary in high-density matter. •
- **Necessity**: Precise two-body information. .
- **Method**: Scattering Exp. (for the YN two-body).

Historical BG: Very limited YN scattering data. •

- **Our Plan**: The <u>A p scattering</u> experiment (with our kinematical analysis).
 - **Statistics**: 100 times the past. •

2.5

2.0

1.0

0.5

0.0

 α

Observed (1.97 ± 0.04) M_{\odot} neutron star (J1614-2230), other ones (J1903+0327, J1909-3744) and main EOS theory model curves.

11

Radius (km)

12

13

14

15

10

9

The Ap Scattering Experiment

- <u>Challenging Point</u>
 - **Reaction**: The (π^{-}, K^{0}) reaction. \leftarrow Still not to be established!!
 - **Detection**: $\pi^+ \& \pi^-$, separately.
 - Analysis Flow:

• It is possible to tag produced Λ .

- It is possible to detect $K^0 \; w/$ large solid angle.

The Ap Scattering Identification

- Kinematical Calculation Method
 - Object:
 - 1. Recoil p angle & energy
 - 2. Scattered Λ angle & energy
 - Kinematical Index:
 - 1. Δp : from scattered Λ
 - 2. Δ E: from recoil p
- Possibility of the Λp Scattering Identification
 - @JPS 2020 Autumn

Detected particle

Decay π - & p

Recoil p & Decay p

Recoil p, Decay π - & p

Case #

1

2

3

- We succeeded in finding that events.
 - \rightarrow Our analysis methods are effective.
 - \rightarrow It is possible to yield more Λp scattering events.

Calculated items

Λ momentum & angle

Recoil p energy & Λ angle Recoil p energy, Λ momentum & angle

Characteristics of the Research

