NSmatter@YITP, Oct. 25, 2013 Baryon-Baryon Interactions obtained from Hypernuclear studies

Tomofumi NAGAE Kyoto University

Contents

- Introduction to Strangeness Nuclear Physics
- Baryon-Baryon Interactions
 - S=-1 Baryon Systems
 - S=-2 Baryon Systems
 - Kaonic Nuclei
- Summary

Hadron Many-Body Systems with Strangeness

- Hypernuclei : Hyperons (Λ, Σ, Ξ) in Nuclei

 Baryon-Baryon Interactions in SU_F(3)

 Role of Strangeness in Dense Matter

Excited levels of Λ -hypernuclei

What's in the Neutron Star Core ?

By F. Weber

E-Nucleus potential?

Chemical Potential:

$$\mu_{B} = m_{B} + \frac{k_{F}^{2}}{2m_{B}} + \frac{U(k_{F})}{2m_{B}}$$

Hyperon-Nucleon Scattering

$$\Sigma^{\pm}p$$
, Λp : only 38 data points

- Ξ⁻p elastic scattering and Ξ⁻p→ΛΛ reaction
- Asymmetry in Λp and
 Σ⁺p elastic scattering

from Dover & Feshbach Ann.Phys.198(90)321

Need hi gh quality data with high stati stics

Baryon-Baryon Interaction

Baryon-Baryon Systems in SU(3)

S=-1 $\Sigma N(T=3/2)\Sigma N - \Lambda N(T=1/2)$ S=-2 $\Sigma \Sigma(T=2)\Xi N - \Sigma \Lambda - \Sigma \Sigma(T=1)\Xi N - \Sigma \Sigma - \Lambda \Lambda(T=0)$ S=-3 $\Xi \Sigma(T=3/2)\Xi \Sigma - \Xi \Lambda(T=1/2)$ S=-4 $\Xi \Xi(T=1)$

S=0 NN(T=0) S=-1 Σ N- Λ N(T=1/2) S=-2 Ξ N- Σ \Lambda(T=1) S=-3 Ξ \Sigma(T=3/2)

10 a

8 5

 $1_{\rm S}$

S=-1 $\Sigma N(T=3/2)$ S=-2 $\Xi N-\Sigma \Lambda-\Sigma \Sigma(T=1)$ S=-3 $\Xi \Sigma-\Xi \Lambda(T=1/2)$ S=-4 $\Xi\Xi(T=0)$

S=-1 Σ N- Λ N(T=1/2) S=-2 Ξ N- Σ A(T=1) Ξ N- Σ Σ - Λ A(T=0) S=-3 Ξ Σ - Ξ A(T=1/2)

8 a

S=-1 Σ N- Λ N(T=1/2) S=-2 Ξ N- Σ A- $\Sigma\Sigma$ (T=1) Ξ N(T=0) S=-3 $\Xi\Sigma$ - Ξ A(T=1/2)

- Understanding of the flavor SU(3) baryon-baryon interaction

 - Repulsive cores in Y-N/Y-Y ?
 What's the origin ?
 - Spin-dependent forces in Y-N/Y-Y.

Dibaryons

 $S=-2 \equiv N-\Sigma\Sigma-\Lambda\Lambda(T=0)$ H Dibaryon ?

Modern Picture of Baryon-Baryon Interactions • Nuclear Force from Lattice QCD

World Facilities in the 21st Century For Strangeness Nuclear Physics

HI, anti-p

GSI/F

(e,e

AIR

J-PARC (K⁻,K⁺), (K⁻,π⁻)

ab

e,e'K+)

J-PARC Facility (KEK/JAEA) South to North

Hadron Exp.

Facility

Neutrino Beams (to Kamioka)

Materials and L Experimenta Facility

Linac

3

Synchrotron

50 Gev Synchrotron

Photo in July of 2009

Hadron Experimental Hall

World highest intensity Kaon beams !

First beam in Feb. 2009

S=-1 Baryon Systems

(π⁺,K⁺) Spectroscopy

▲ A single-particle energy → U_A=28 MeV

H.Hotchi et al., PRC 64, 044302(2001)

Hypernuclear Gamma-rays

Hyperball 1998~

Hypernuclear γ-ray data (2012)

¹⁰B (Κ⁻,π⁻γ) BNL E930('01)

¹²C (π⁺,K⁺γ) KEK E566

¹³C (K⁻, $\pi^{-}\gamma$) BNL E929 (Nal)

by H. Tamura

AN Effective Interaction

$V_{\Lambda N}^{eff} = V_0(r) + V_{\sigma}(r)\vec{s_{\Lambda}}\vec{s_{N}} + V_{\Lambda}(r)\vec{\ell_{\Lambda N}}\vec{s_{\Lambda}} + V_N(r)\vec{\ell_{\Lambda N}}\vec{s_{N}} + V_T(r)S_{12}$ $\Delta \qquad S_{\Lambda} \qquad S_{N} \qquad T$

Parameters in MeV

	Δ	S_{Λ}	S_N	T
A = 7 - ?	0.430	-0.015	-0.390	0.030
A = 11 - 16	0.330	-0.015	-0.350	0.024

Very small LS

by D.J. Millener

JLab: (e,e'K+)

High-resolution Spectrometer in Hall-A & -C

Σ-Hypernuclei

■ One bound state observed: ⁴_∑He

Harada and Akaishi

- Strong Isospin dependence
 - Lane term
 - $U_{C \Sigma} = U^0 + U^t T_{C^{\bullet}t \Sigma} / A$
 - T. Harada et al., Nucl. Phys. A507(1990) 715.
 - T. Harada, PRL 81 (1998) 5287.

Repulsive in Medium-Heavy Nuclei

T. Harada, Y. Hirabayashi / Nuclear Physics A 759 (2005) 143–169

Neutron-rich Hypernuclei J-PARC E10 with (π^- , K⁺) reaction A. Sakaguchi et al.

S=-2 Baryon Systems

Double- Λ Hypernuclei

- "Nagara" event; ⁶He
 - Uniquely identified
 - ΔB_^=1.01±0.02+0.18/-0.11 MeV

0.67±0.17 MeV (updated by Nakazawa@Hyp-X)

smaller than before (~4 MeV)

KEK E373

S=-2 World

Energy Spectrum of S=-2 systems

Ξ-hypernuclei : previous measurement

* Previous experiment : BNL-E885

- ★ not clear evidence of Ξ-hypernuclear bound state.
 - * because of limited mass resolution
- * suggest weakly attractive potential of -14 MeV depth.
 - * by shape analysis and counts in bound region, compared with DWIA calc.
- # 89±14 nb/sr (<8deg.); 42±5 nb/sr (<14deg.)</p>

P.Khaustov et al., PRC61(2000)054603

Spectroscopic Study of Ξ -Hypernucleus, $^{12}\Xi$ Be, via the $^{12}C(K^-,K^+)$ Reaction J-PARC E05 • Discovery of Ξ -hypernuclei T. Nagae et al.

• Measurement of Ξ -nucleus potential depth and width S=-2 (Multi-Strangeness System)

> 1.4 GeV/c 1.3 GeV/c

> > 1.2 GeV/c

1.1 GeV/c

1.0 GeV/c

 $\theta = 0^{\circ}$

E05 Phase 2 with S-2S

- Grant-In-Aid for Specially promoted research: 2011 2015
- 60 msr, $\Delta p/p=0.05\% \rightarrow \Delta M=1.5$ MeV
- Construction of S-2S(QQD): ~3 years
 - Installation in 2014
 - Data taking in 2015 with > 150 kW !!

H search at J-PARC E42 • (K⁻,K⁺) reaction by J.K. Ahn & K. Imai et al.

Hyperon Spectrometer $+ K^+$ Spectrometer

Kaonic Nuclei

Meson-Bayon Bound Systems with Strangeness

Kaonic Hydrogen X-ray

800

SIDDHA

 $\epsilon_{1s} = -283 \pm 36(\text{stat}) \pm 6(\text{syst}) \text{ eV}$ $\Gamma_{1s} = 541 \pm 89(\text{stat}) \pm 22(\text{syst}) \text{ eV},$

New FINUDA data on K-pp

■ First evidence of *K*⁻pp with ⁶Li+⁷Li+¹²C

B=115+6/-5+3/-4 MeV м. А Г= 67+14/-11+2/-3 MeV

M. Agnello et al., PRL94, (2005) 212303

Confirmed for ⁶Li only, with better statistics

FSI, $\Sigma N \rightarrow \Lambda N$ conversion cannot explain the new data

DISTO data on K-pp

p+p→K⁻pp + K⁺ at 2.85 GeV M=2267±3±5 MeV/c²

■ Γ= 118±8±10 MeV

T. Yamazaki et al., PRL 104 (2010) 132502.

K-pp: theoretical status

Methods	Binding Energy (MeV)	Width (MeV)
Shevchenko, Gal, Mares Faddeev	50 - 70	~100
Ikeda and Sato Faddeev	60 - 95	45 - 80
Yamazaki and Akaishi Variational (ATMS)	48	61
Dote, Hyodo, Weise Variational (AMD)	20±3	40 - 70

K-pp should exist as a bound state.
Deep or Shallow ??
Width could be 40 – 100 MeV
Λ(1405)-p bound state ? (Arai, Oka, and Yasui)
FSI effects ? (Magas, Oset, Ramos, Toki)

K-pp search experiments at J-PARC

³He(K⁻,n) reaction at 1 GeV/c: E15
 d(π⁺,K⁺) reaction at 1.5 GeV/c: E27

Preliminary Result : ³He(K⁻,n)

$d(\pi^+, K^+)$ reaction

Yamazaki & Akaishi, Phys. Rev. C76 (2007) 045201.

d(π⁺,K⁺) inclusive spectrum; in simulation

d σ^{2} /d Ω /dM $_{2^{\circ}-16^{\circ}(Lab)}$ dσ /dΩ _{2°-16°(Lab)}[μ b/sr/2MeV] 12 QFΣ 10 QFΛ 8 6 K-pp QFY*+πYN 2 **5**0 2.2 2.25 2.3 2.35 2.4 2.15 2.1 2.45 2.5 2.05Missing Mass[GeV/c²]

Range Counter System for E27

- 5 layers (1+2+2+5+2cm)
 - of plastic scinti.
- 39 122 degrees (L+R)
- 50 cm TOF

d(π⁺, K⁺) @1.7GeV/c

Coincidence study

Pion Coincidence Rate

- R_{π} = (Pion coincidence spectrum)/(Inclusive spectrum)
 - $R_{\pi} \propto (\pi \text{ emission BR}) \times (\pi \text{ detection efficiency})$

Proton Coincidence Rate

Summary

- - $B_{\Lambda} = 28 \pm 1 \text{ MeV}$
 - Very small spin-orbit splitting
 - $\Lambda \Lambda$ Interaction; $\Delta B_{\Lambda\Lambda}=0.67\pm0.17$ MeV
 - Σ N Interaction
 - One bound state in ${}^{4}{}_{\Sigma}$ He \leftarrow Isospin dependence
 - $B_{\Sigma_{-}} \sim -30$ MeV (Repulsive in medium-heavy nuclei)
 - Ξ N Interaction
 - B_Ξ~14 MeV; weakly attractive ?
 - KN Interaction; Large attraction in I=0