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CNRS / Observatoire de Paris / Université Paris-Diderot
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The complex physics of neutron
stars

The description of neutron stars involves many different fields of
physics, with overall conditions that can hardly be tested on
Earth:

cold, highly asymmetric nuclear
matter,

very strong gravitational field
(last stage before black hole),

intense magnetic field, up to
∼ 1017 G,

rapid rotation, implying
relativistic fluid velocities.

⇒need for theoretical models, often involving numerical
simulations



Need for GR
Influence of general relativity (GR) can be measured by the
compactness ratio:

C =
GM

Rc2
. C = 0.5 ⇐⇒ black hole.

GR makes qualitative difference:
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No maximal mass in Newtonian theory!
⇒General Relativity is absolutely necessary. . .



Need for rotation?

Three different EoSs . . .
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Need for rotation

One Eos : SLy4 Douchin & Haensel (2001)
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Rotation is important when dealing with radii. ⇒Need for
precise definitions. . .



Brief history
rotating neutron star models

Hartle & Thorne (1968) : slow rotation approximation,

Bonazzola & Maschio (1971) : Lewis-Papapetrou
coordinates,

Wilson (1972) : differentially rotating stars

Butterworh & Ipser (1975) : Bardeen-Wagoner formulation,

Friedman et al. (1986) and Lattimer et al. (1990) :
realistic EoSs,

Bocquet et al. (1995) : (electro)magnetic field,

. . .

Some codes:

Komatsu et al. (1989) ⇒KEH,

Bonazzola et al. (1993) ⇒ rotstar (lorene)

Stergioulas & Friedmann (1995) ⇒ rns

compared in Nozawa et al. (1998)

Ansorg et al. (2002) ⇒ AKM
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Stationary axisymmetric
spacetimes



Symmetries - Metric

To simplify the problem in GR: use of symmetries ⇒Killing
vector fields:

stationarity

axisymmetry

In adapted coordinates, the metric depend only on (r, θ) and
can take the form (quasi-isotropic gauge):

ds2 = −N2dt2 +A2
(
dr2 + r2dθ2

)
+B2r2 sin2 θ (dϕ− ω dt)2 ,

with the requirement of circularity condition for matter:

no meridional (e.g. convective) currents,

no toroidal magnetic field,

This is quite different from the Schwarzschild gauge used for the
TOV system, in spherical symmetry.



Einstein equations

In quasi-isotropic gauge (+maximal slicing), Einstein equations
turn into a system of four coupled non-linear elliptic PDEs:

∆N = σ1,

∆ω = σ2,

∆(NB) = σ3,

∆(NA) = σ4.

Each σi contains terms involving matter and non-linear metric
terms of non-compact support.
⇒Contrary to spherical symmetry no matching to any known
vacuum solution is possible (no Birkhoff theorem).
⇒Only boundary condition at r →∞: flat metric.



Matter
Stress-energy tensor

The most widely used model for matter is that of a perfect fluid:

Tµν = (e+ p)uµuν + p gµν

uµ : 4-velocity; p: pressure; e: (total) energy density.
Improvements have been implemented, taking into account:

superfluidity, with the two-fluid approach (see later),

electromagnetic field in a perfect conductor (see later) or
superconductor (Bonazzola & Gourgoulhon 1996),

fluid crust, with a model based only on the EoS (e.g. SLy4
by Douchin & Haensel 2001),

elastic crust, with a solid-type model (Carter & Quintana
1972, Beig & Schmidt 2003, Gundlach et al. 2012, . . . ).



Equilibrium & EoS

In the stationary, axisymmetric and circular case, the
conservation of stress-energy turns into a simple first integral of
motion:

h+ logN − log Γ = const.

H = log

(
e+ p

nBm0c2

)
: pseudo-enthalpy, Γ : Lorentz factor.

⇒ equilibrium condition.
The system is closed by the description of microscopic
properties of the fluid: the equation of state:

p(nB), e(nB) or p(H), e(H)

for cold nuclear matter at β-equilibrium.



Global quantities

In general relativity, many quantities (e.g. mass, radius, . . . )
are gauge-dependent. Use of symmetries and physical
definitions to get observationally relevant information:

gravitational mass: Komar mass (stationarity) and ADM
mass (asymptotic flatness) are equal in our case. They can
be computed from the asymptotic behavior of N or as an
integral over the support of Tµν .
⇒ mass felt by a particle orbiting around the star.

baryon mass: just counting the total number of
particles. . . gauge independent.

circumferential radius: ds integrated (with the metric) over
a closed line (circumference), at the equator or passing
through the poles.

angular momentum (axisymmetry) : asymptotic behavior
of ω



Examples
Salgado et al. 1994

Rotation frequency limited by
mass-shedding limit: matter
leaving the star at the equator,
due to centrifugal force.

Impossible to describe in
slow-rotation limit.

Existence of supermassive
sequences: for given baryon mass,
there exist rotating solutions, but
no static one.



Magnetic field



Motivations

Theoretical

conservation of magnetic flux: 1 G for an O-type star of
∼ 10R� ⇒∼ 1012 G.

More if magneto-rotational instability in CC-SN
⇒magnetars.

influence on structure?

Observational

Magnetic slowdown measured through the spin-down Ṗ
gives values of Bpole up to 1016 G,

magnetars could represent as much as 10% of all pulsars
(Muno et al. 2008);

they can produce very strong X- and γ-ray bursts, from the
glitch-like rearrangement of the crust, in which magnetic
field is pinned (e.g. Dec. 2004 with SGR 1806-20).



Model

Rotating stationary axisymmetric star + :

independent currents jα generating the electromagnetic
field (Maxwell equations),

stationary equilibrium with Lorentz force,

symmetry conditions ⇒ magnetic moment aligned with the
rotation axis (no emission of electromagnetic waves),

magnetic field is supposed to be purely poloidal.

Define:

fields, as observed by the Eulerian observer
Eµ = Fµν n

ν ,

Bµ = −1/2 εµνρσ n
ν F ρσ.

global charge Q and magnetic dipole moment M deduced
from asymptotic behavior of Eµ and Bµ, respectively.



Magnetic field equations

DνF
µν = µ0j

µ can be written

∆3At = S1 (jµ, gµν , Aµ,+derivatives)

∆̃3

(
Aϕ
r sin θ

)
= S2 (jµ, gµν , Aµ,+derivatives)

,Lorentz force appears in the first integral of motion

H(r, θ) + ν(r, θ)− ln Γ(r, θ)−
∫ Aϕ(r,θ)

0
f(x)dx = 0

f arbitrary function such that jϕ − Ωjt = (ε+ p)f(Aϕ),

perfect conductor relation inside the star At = −ΩAϕ + C.

Non-isotropic stress-energy tensor

TEM
µν =

1

4π

(
FµρF

ρ
ν −

1

4
F ρσFρσgµν

)
.



Maximal field
Bocquet et al. (1995)

Non-rotating star with a polar magnetic field of ∼ 6× 1017 G.
⇒Stars with magnetic field can support more mass
⇒Negligible influence of the electric charge or different current
functions f .



Poloidal / toroidal ~B field
see also talk by K.Kiuchi

⇒ Models with poloidal magnetic field are unstable (e.g. Ciolfi
et al. 2011)

Models with purely
toroidal field have been
built (Kiuchi & Yoshida
2008, Frieben & Rezzolla
2012)

they show prolate shapes

unstable, too . . .
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from Kiuchi & Yoshida (2008)

⇒ mixed configurations, with stratification. . . (Yoshida et al.
2012).



Two fluids



Motivations

Theoretical

At nuclear density the critical temperature:
Tcrit ' 0.6×∆(T = 0)

with ∆ ∼ 1− 3 MeV
⇒ superfluid component some minutes after their birth.

Observational

Some pulsars exhibit sudden changes in the rotation period:
instead of regularly slowing down, it shows rapid speed-up.
⇒within the two-fluid framework:

the outer crust (+fluid) is slowed down, not the inner fluid;

until the stress (or interaction) between both becomes
larger than some threshold.

can turn into a “starquake”.



Hydrodynamics
from Carter, Langlois, et al.

Two-fluid model

1 superfluid neutrons (crust and outer core).

2 protons, nuclei and electrons locked together (called
“protons”).

Conserved 4-currents nµn and nµp,

The Lagrangian density Λ = −E depends only on the three
possible scalar products between these 4-vectors.

4-momenta as conjugates of currents: dΛ = pn
µdn

µ
n + pp

µdn
µ
p;

generalized pressure Ψ = −E − pn
µn

µ
n − pp

µn
µ
p.

Equations of motion take the integral form:
N

Γn
µn = constn

and
N

Γp
µp = constp



Equation of state
The EOS depends only on densities and “relative speed” ∆

x2 = −gµνnµnnνp, ∆2 =

[
1−

(nnnp

x2

)2
]

=
(Un − Up)2

(1− UnUp)2

First law of thermodynamics to define µn and µp

dE = µndnn + µpdnp + e d∆2,

Simple 2-fluid polytrope EoS

E = ρc2 +
1

2
κnn

2
n +

1

2
κpn

2
p + κnpnnnp + κ∆nnnp∆2.

ρ = mnnn +mpnp

κnp : symmetry energy

κ∆: entrainment coefficient

⇒all physical features: entrainment + symmetry energy

Ψ =
1

2
κnn

2
n +

1

2
κpn

2
p + κnpnnnp + κ∆nnnp∆2



Results
Prix et al. (2005)

(a) (b) Om
Om Kepler limit

no chemical
equilibrium at the
center, Kepler limit
determined by the
outer fluid, even if
rotating slower.
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Oblate-prolate configuration

made possible by counter-rotation and
the effective interaction potential, which
tends to “separate” both fluids.



Equation of state



Main uncertainty
No possibility to compute nucleon-nucleon interaction from
QCD first principles;

⇒ use effective models calibrated on Earth-based experiments
(hot, symmetric matter)

Many models for
nuclear interaction

⇒ quite different
properties for neutron
stars

from Demorest et al. (2010)

following Lattimer & Prakash (2001)

Inverse problem: get information about nuclear interactions
from astrophysical observations; as e.g. Steiner et al. (2010)



Inverse problem
Steiner et al. (2010)
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from six neutron stars:

3 X-ray burst type sources

3 quiescent low-mass X-ray
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⇒ probability distribution in
the M −R plane, for each
neutron star.

Parametrized EoS

ε = f
(
nB;K,K ′, . . .

)
⇒able to fit some “standard” EoSs for neutron stars, as SLy4.



Inverse problem
Steiner et al. (2010)
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Markov chain Monte-Carlo method within Bayesian
approach
Determination of the M −R relation

⇒ Reconstruction of the EoS from the observations.
⇒ Within the parametrized model, rather soft EoS near

nuclear saturation density.



Conclusions

Observation / analysis

Very nice approach to
reconstruct EoS properties
from neutron star
observations.

Observations acquire much
better accuracy.

Better accuracy in the
determination of the EoS?

Numerical models

Rotation easy to take into
account.

Magnetic fluid much better
understood than before.

Superfluid models need only a
realistic nuclear physics input.

Elastic crust could soon be
modelled.

⇒Need to take into account more refined neutron star models
than TOV. . . see e.g. Cadeau et al. (2007)
There exist several codes able to take into account more
detailed physics: interactions between groups are needed!
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