3.1 Applications: neutron star spectroscopy

Part I: continuum spectroscopy

continuum shape is explicitly sensitive to
effective temperature
log g
chemical composition (though mainly through
photoelectric edges)

broad 'features' (bumps, dents):
extremely important clues, but difficult
to interpret uniquely (especially if they involve
a **B**-field)

one thing continuum spectroscopy does: if you know the distance, you can measure the stellar radius!

from the stellar atmosphere: $I_{\nu}(\mathbf{n})$ star is not (angularly) resolved, so we see the *flux*: angle-weighted average of $I_{\nu}(\mathbf{n})$ over the stellar disk; at the stellar surface:

$$F_{\nu} = 4\pi \frac{1}{2} \int_{-1}^{+1} I_{\nu}(\mu) \mu d\mu$$

We measure $f_{\nu} = (R/D)^2 F_{\nu}$, so with D and the correct F_{ν} (from a model atmosphere calculation), get R.

The problem is getting the right F_{ν} .

Pure C atmospheres

We see only the continuum in 0.5-few keV; depends on $T_{\rm eff}$, and (to lesser extent) log g.

Often 'degenerate' with interstellar absorption!!

Suleimanov et al. 2014

broad features (bumps, dents): ? B-fields?

RX J1605.3+3249 van Kerkwijk et al. 2004

XMM-RGS, 110 ksec

if this is resonant cyclotron absorption, must be proton(*): $E_c = qB/mc$, and $B \sim \text{few } 10^{13} \text{ G}$ (from spindown) (but B inconsistent with spindown!)

broad features (bumps, dents): ? B-fields?

(*) problem? transition probability for proton cyclotron transitions is small (m_e/m_p times smaller than corresponding electron resonance)

dents may not always be magnetic resonances

XMM/EPIC PN spectrum of IE1207.4-5209 (in SNRG295.5+10.0) three (?) cyclotron harmonics

Sanwal et al. 2002 (*Chandra*); Mereghetti et al. 2002 (XMM)

cyclotron (electrons): $B \sim 10^{11} \text{ G (*)}$ cyclotron (protons): $B \sim 2 \times 10^{14} \text{ G}$

but spindown: $B_{\text{dipole}} \sim 3 \times 10^{12} \text{ G}(^{**})$

(**) revised to $B < 3 \times 10^{11}$ G, Gotthelf & Halpern 2007 - consistent with e^{-}

(*) B measurement coupled to the unknown redshift!

dents may not always be magnetic resonances

IEI207: deeper XMM data (Bignami et al. 2003)

positive indication for *three* harmonics, maybe four

(my own crazy idea from condensed matter physics: it's the cyclotron energy for an electronic excitation with an effective mass of $\sim 10-30 m_e...$)

dents may not always be magnetic resonances

heavy elements in strong B-field also work! and B more like $\sim 10^{12}$ G!

Mori and Ho, 2007

dents may not be discrete cyclotron resonances (i.e. due to transitions between Landau levels)

problem with cyclotron resonances: higher harmonics should be almost unobservably weak (transition probability scales like E/m_ec^2) (even allowing for rad transfer & saturation in n=1-2)

instead: resonances in ff continuum absorption cross section in presence of B field

model spectra

dependence on $T_{\rm eff}$

dependence on **B**

the biggest mystery of all: the spectrum of RX J1856.5-3754: a perfect blackbody??

spectrum obtained with the LETGS on *Chandra*; $kT_{BB} = 57 + /- 3 \text{ eV}$ (Burwitz et al. 2001)

(based on work by Fred Walter using ROSAT PSPC data)

deep Chandra/LETGS spectrum: still blackbody...

unclear what the measured surface area(s) mean; almost certainly not $4\pi R_{star}^2$

optical and X-ray surface areas do not match (e. g. Kaplan et al. 2011)

If magnetic fields are important, emission spectra will be polarized! we need:

an efficient astrophysical X-ray spectropolarimeter!

Part II: line spectroscopy

potentially much more sensitive to stellar parameters-but requires a lot more photons (and high-resolution spectrometers)

neutron star model atmospheres calculations

I: NLTE, emission lines and edges!

II: Fe K spectroscopy

neutron star atmospheres

calculated with code TLUSTY (Hubeny, adapted for this problem by Lanz)

$$T_{\text{eff}} = 1.5 \times 10^7 \text{ K},$$

 $\log g = 14.3$
H + Fe; Fe/H = 10^{-4}

note the difference LTE/NLTE: lines, edges appear in emission in NLTE lines may go into emission as T_{eff} goes up

Chandra HETGS EXO0748-676 burst spectrum

H-like Fe Lyman spectroscopy:

pressure ionization as a log g diagnostic

 $T_{\text{eff}} = 1.5 \times 10^7 \text{ K}; \log g = 14.3; \text{Fe/H} = 10^{-4}$ no Stark broadening

 $T_{\text{eff}} = 1.0 \times 10^7 \text{ K}; \log g = 14.3; \text{Fe/H} = 10^{-4}$ with Stark broadening

NLTE; extreme broadening;

more work: radiative transfer in lines; accurate atomic models; broadening theory!

effect of varying Fe abundance

code built by Rauch, Suleimanov, Werner

is line spectroscopy feasible?

Fig. 2. Two energy spectra of burst D. Spectrum I (upper-left panel) is the average for the first 8 s from the burst onset, and Spectrum II (upper-right panel) is the average over the period 8-36 s from the onset. The best-fit blackbody models according to equation (1) are shown by the histograms, respectively. The distributions of mean χ²-values of three consecutive energy bins are shown in the lower panels.

same source, different detector

Turner&Breedon/ Exosat ME 1984 counters Argon-filled, no edge at 4.5 keV

burst spectrum of EXO0748-676: ? redshifted H, He-like Fe Balmer lines ? if so, z = 0.35Cottam, Paerels, Mendez (2002)/ XMM-RGS

at the time: $f_{spin} = 95$ Hz!! but now $f_{spin} = 550$ Hz; also: viewed edge-on...

also did a deep observation of the Fe Lyman band with *Chandra* HETGS: negative result

also did a deep observation of the Fe Lyman band with *Chandra* HETGS: negative result

red: the non-burst spectrum scaled as template

reobservation with XMM/RGS

Cottam et al., 2008

Kong et al. 2007 XMM/RGS GS1826-24

GS1826-238 with Chandra HETGS (Marshall)

Burst Peak Results

Fe XXV Hα limit is not as good as in EXO 0748 XMM data (Cottam et al. 2002)

brief break

3.2 Applications: Future Plans, and the SXS microcalorimeter spectrometer on Astro-H

photospheric line spectroscopy:

focus on X-ray bursts: non-magnetic; metals should be present in photosphere

target selection:
a slow-spin NS, or a
low-inclination binary, or
try to spin-phase resolve the bursts

slow-spin bursting neutron star

we know of *one*: source X-3 in the globular cluster Terzan 5; but it is transient

[Previous | Next | ADS |]

EXO 1745-248 is an 11 Hz Eclipsing Pulsar

ATel #2929; T. E. Strohmayer (NASA/GSFC), C. B. Markwardt (NASA/GSFC) on 13 Oct 2010; 05:29 UT

Distributed as an Instant Email Notice Transients
Credential Certification: Craig B. Markwardt (craigm@lheamail.gsfc.nasa.gov)

Subjects: X-ray, Request for Observations, Binary, Globular Cluster, Neutron Star, Transient, Pulsar

Referred to by ATel #: 2932, 2933, 2939, 2940, 2946, 2952, 2958, 2974, 3000, 3044, 3264, 3714, 3892

Heinke et al. (2006)

RXTE pointed observations of the ongoing outburst of EXO 1745-284 (ATEL #2919, #2920, #2922, #2924) began at approximately 2010-10-13 at 00:13 UTC, for an exposure of 3.2 ksec. The flux of the source is approximately 95 mCrab (2-10 keV). The observation reveals strong pulsations at a barycentric frequency of 11.0452(2) Hz.

a low-inclination binary

recent progress in optical spectroscopy finds narrow lines in LMXB's with measurable orbital velocity

Example: Ser X-I: narrow lines reveal binary period (2.2 hrs), and: radial velocity amplitude very small, so: $i < 10^{\circ}$!! (Cornelisse et al. 2013)

a low-inclination binary

low inclination means: neutron star seen nearly pole on

spin phase resolution: either continuum or line: Doppler shifts

emission during early burst phases often spin-modulated

need ~100 microsecond time resolution

what about using spectroscopy of the accretion flow? slide from presentation by Jon Miller (U Michigan)

NuSTAR: Serpens X-I

Excellent fit with reflection. Disk illumination by blackbody. Gaussian ruled out $> 5\sigma$ No pile-up.

R
$$\leq$$
 7.8 GM/c²
z \geq 0.16
R \leq 6 GM/c² = 12.6 km
z \geq 0.22

relativistically broadened Fe K

for all of the above ideas: need lots of photons, and possibly high time resolution (sub-msec)

compare the collecting areas for the current grating spectrometers with that of the Astro-H microcalorimeter, especially above 2keV!

Figure 1. Schematic view of the ASTRO-H satellite. The total mass at launch will be $\sim 2700\,\mathrm{kg}$. ASTRO-H will be launched into a circular orbit with altitude of $500-600\,\mathrm{km}$, and inclination of $\sim 31\,\mathrm{degrees}$.

Table 1. ASTRO-H Mission

Launch site	Tanegashima Space Center, Japan		
Launch vehicle	JAXA H-IIA rocket		
Orbit Altitude	\sim 550 km		
Orbit Type	Approximate circular orbit		
Orbit Inclination	~ 31 degrees		
Orbit Period	96 minutes		
Total Length	14 m		
Mass	~ 2.7 metric ton		
Power	< 3500 W		
Telemetry Rate	8 Mbps (X-band QPSK)		
Recording Capacity	12 Gbits at EOL		
Mission life	> 3 years		

reference: Takahashi et al., http://arxiv.org/abs/1210.4378

also note: grating spectrometers rely on CCD readout (4 sec integration time!)

the resolving power of the μ Calorimeter also favors E > 2 keV

Astro-H and the Soft X-ray Spectrometer (SXS)

detection principle: photon energy > directly to heat

$$\Delta T = E_{\gamma}/c_{\rm V}$$

T-jump large if c_V small:

- (I) small mass
- (2) very low *T*!!

(heat capacity of solids collapses below Debye temperature)

noise level: spontaneous heat exchange with bath

from the X-ray Quantum Calorimeter experiment; McCammon et al. 2002

Stat Mech/ Canonical Ensemble:

$$\Delta E^2 = kT^2 \frac{\partial \langle E \rangle}{\partial T}$$

make this very small, at low T! (QM)

leads to nearly constant energy resolution, ΔE

practical implementation for Astro-H: 4-5 eV resolution future large observatories: < I eV

note: make imaging arrays thermal relaxation timescale sets count rate limit, now ~ 10 msec; but t-resolution ~5 µsec

Figure 4. Laboratory X-ray spectrum obtained with the Astro-H Soft X-Ray Spectrometer engineering model detector assembly. The spectrum shows the enormous spectral dynamic range that can be obtained. The spectral resolution is 4.2 eV over the entire array, and is achieved over the full energy range where astrophysically abundant atomic transitions will be detected (less than about 8 keV), providing a resolving power of about about 1400 at 6 keV. The required resolution is 7 eV.

Takahashi et al. 2012

Figure 3. The SXS engineering model detector assembly. At the center of the assembly is the x-ray calorimeter housing. This is suspended from the outer structure using Kevlar, and electrical connections to the housing are made using tensioned wires to reduce the sensitivity to microphonics. At the center of the calorimeter housing is an aluminum/polyimide blocking filter and a ⁵⁵Fe calibration source used to illuminate a dedicated calibration pixel for monitoring the absolute gain. The overall assembly is about 12.7 cm in diameter.

Table 2. Key parameters of the ASTRO-H payload

Parameter	Hard X-ray	Soft X-ray	Soft X-ray	Soft γ -ray
	Imager	Spectrometer	Imager	Detector
	(HXI)	(SXS)	(SXI)	(SGD)
Detector	Si/CdTe	micro	X-ray	Si/CdTe
technology	cross-strips	calorimeter	CCD	Compton Camera
Focal length	12 m	5.6 m	5.6 m	_
Effective area	$300 \text{ cm}^2@30 \text{ keV}$	$210 \text{ cm}^2@6 \text{ keV}$	$360 \text{ cm}^2@6 \text{ keV}$	$>20 \text{ cm}^2@100 \text{ keV}$
		$160 \text{ cm}^2 @ 1 \text{ keV}$		Compton Mode
Energy range	5 –80 keV	0.3 - 12 keV	$0.5-12~\mathrm{keV}$	40 – 600 keV
Energy	2 keV	< 7 eV	< 200 eV	< 4 keV
resolution	(@60 keV)	(@6 keV)	(@6 keV)	(@60 keV)
(FWHM)				
Angular	<1.7 arcmin	<1.3 arcmin	<1.3 arcmin	_
resolution				
Effective	$\sim 9 \times 9$	$\sim 3 \times 3$	$\sim 38 \times 38$	$0.6 \times 0.6 \text{ deg}^2$
Field of View	arcmin ²	arcmin ²	arcmin ²	(< 150 keV)
Time resolution	25.6 μs	5 μs	$4 \sec/0.1 \sec$	25.6 μs
Operating	−20°C	50 mK	−120°C	−20°C
temperature				

this we may be able to do with the SXS on Astro-H

Figure 3: High resolution X-ray spectroscopy of the photospheric emission of a hot neutron star is sensitive to the fundamental stellar parameters, through the effects of pressure broadening, relativistic kinematics (rotation, Doppler shift, time dilation, beaming), and general relativity (light bending around the star, gravitational redshift, frame dragging) on atomic absorption lines (Ozel and Psaltis 2003; Bhattacharyya, Miller, and Lamb 2006). The absorption line spectrum of a $1.4M_{\odot}$ neutron star, spinning at 45 Hz, showing the effects of rotational Dopplersplitting, observed at 2 eV spectral resolution (left panel), in 120 sec of exposure of a moderately bright X-ray burst with the microcalorimeter spectrometer as envisioned for the IXO mission. Black and red histograms refer to a star with a radius of 9 and 11.5 km, respectively. Emission is concentrated in a hot equatorial belt, seen at 5 degree inclination. The absorption line is Fe XXVI $H\alpha$. High time resolution spectroscopy can phase-resolve the Doppler broadening of a rapidly spinning star (400 Hz) if the surface emission is azimuthally asymmetric. With ~ 100 eV energy resolution, and sub-msec time resolution (such as for the fast timing instrument on IXO), the Doppler profiles in the right hand panel will be phase-resolved, allowing unambiguous determination of the line broadening mechanism, and an absolute radius measurement (Fe XXVI Ly α ; same stellar parameters as before).

from a White Paper submitted to NRC/NAS Decadal Survey (Paerels et al. 2010)

two examples from other fields (simulated)

measuring the turbulent velocity field in the intracluster gas

(check on hydrostatic equilibrium, measure gravitational potential to measure total cluster massimportant cosmological data)

measure the thermal Doppler widths as a function of atomic mass behind supernova remnant shocks

(check on post-shock e/i equilibration; physics of collisionless shocks)

$$kT_i = \frac{1}{2}M_i v_{\text{shock}}^2 ? \to kT_e?$$

some final thoughts about NS spectroscopy

we should try everything! strive towards multiply redundant techniques detailed line spectroscopy can do that: gives gravitational redshift (M/R)spin-broadening: Doppler (R if spin known) GR effects (M/R) modify line shape pressure broadening: $log g (M/R^2)$ multiple lines in same series break degeneracies combine with continuum shape, spindown rate, etc. find best targets! (exceptionally difficult problem)

And with Astro-H we may have the first chance to do this!