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common feature of models that include the appearance of ‘exotic’
hadronic matter such as hyperons4,5 or kaon condensates3 at densities
of a few times the nuclear saturation density (ns), for example models
GS1 and GM3 in Fig. 3. Almost all such EOSs are ruled out by our
results. Our mass measurement does not rule out condensed quark
matter as a component of the neutron star interior6,21, but it strongly
constrains quark matter model parameters12. For the range of allowed
EOS lines presented in Fig. 3, typical values for the physical parameters
of J1614-2230 are a central baryon density of between 2ns and 5ns and a
radius of between 11 and 15 km, which is only 2–3 times the
Schwarzschild radius for a 1.97M[ star. It has been proposed that
the Tolman VII EOS-independent analytic solution of Einstein’s
equations marks an upper limit on the ultimate density of observable
cold matter22. If this argument is correct, it follows that our mass mea-
surement sets an upper limit on this maximum density of
(3.74 6 0.15) 3 1015 g cm23, or ,10ns.

Evolutionary models resulting in companion masses .0.4M[ gen-
erally predict that the neutron star accretes only a few hundredths of a
solar mass of material, and result in a mildly recycled pulsar23, that is
one with a spin period .8 ms. A few models resulting in orbital para-
meters similar to those of J1614-223023,24 predict that the neutron star
could accrete up to 0.2M[, which is still significantly less than the
>0.6M[ needed to bring a neutron star formed at 1.4M[ up to the
observed mass of J1614-2230. A possible explanation is that some
neutron stars are formed massive (,1.9M[). Alternatively, the trans-
fer of mass from the companion may be more efficient than current
models predict. This suggests that systems with shorter initial orbital
periods and lower companion masses—those that produce the vast
majority of the fully recycled millisecond pulsar population23—may
experience even greater amounts of mass transfer. In either case, our
mass measurement for J1614-2230 suggests that many other milli-
second pulsars may also have masses much greater than 1.4M[.
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Figure 3 | Neutron star mass–radius diagram. The plot shows non-rotating
mass versus physical radius for several typical EOSs27: blue, nucleons; pink,
nucleons plus exotic matter; green, strange quark matter. The horizontal bands
show the observational constraint from our J1614-2230 mass measurement of
(1.97 6 0.04)M[, similar measurements for two other millisecond pulsars8,28

and the range of observed masses for double neutron star binaries2. Any EOS
line that does not intersect the J1614-2230 band is ruled out by this
measurement. In particular, most EOS curves involving exotic matter, such as
kaon condensates or hyperons, tend to predict maximum masses well below
2.0M[ and are therefore ruled out. Including the effect of neutron star rotation
increases the maximum possible mass for each EOS. For a 3.15-ms spin period,
this is a =2% correction29 and does not significantly alter our conclusions. The
grey regions show parameter space that is ruled out by other theoretical or
observational constraints2. GR, general relativity; P, spin period.
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FIG. 7. (Color online) Mass-radius curves for hybrid stars without mixed phase built with the GM1 and SU(3) HK NJL parametrizations,
slow (a) and fast (b) cases.

by β = 0.02 and γ = 3.00 and a slowly varying field with
β = 0.05 and γ = 2.00 as in the last section. In Figs. 5 and 6,
we plot the EOS of hybrid stars under the influence of weak
(B0 = 1017G) and strong (B0 = 3.1 × 1018G) magnetic fields.
We note that as in the hadronic case the EOS for B0 = 1017G
presents no great difference between fast and slow cases. For
the SU(3) HK (SU(3) RKH) parametrization, the onset of
the quark phase occurs at P ≈ 0.69 fm−4, µn ≈ 1322 MeV
(P ≈ 1.02 fm−4, µn ≈ 1419 MeV) for B0 = 0G. For B0 =
1017G, the onset of the quark phase (SU(3) HK) occurs at P ≈
0.72 fm−4, µn ≈ 1330 MeV regardless of the parametrization
for fast and slow cases. For the SU(3) RKH parametrization
the onset of the quark phase occurs at P ≈ 1.031 fm−4, µn ≈
1422 MeV for B0 = 1017G also for both fast and slow cases.
For B0 = 3.1 × 1018G the contribution of the magnetic field
makes the EOS harder as compared with the EOS for B0 =
1017G and this effect is reflected in the higher values of the
maximum masses. The presence of a strong magnetic field also
affects the onset of the quark phase. In this case, the onset of
the quark phase (SU(3) HK) occurs at P ≈ 0.92 fm−4, µn ≈
1261 MeV, and P ≈ 0.94 fm−4, µn ≈ 1295 MeV, for fast and
slow cases, respectively. For the SU(3) RKH parametrization,
the onset of the quark phase occurs at P ≈ 1.42 fm−4, µn ≈

1335 MeV, and P ≈ 1.22 fm−4, µn ≈ 1352 MeV, for fast and
slow cases, respectively. From these results, we can determine
in which way the magnetic field affects the values of pressure
and chemical potential of the transition to the quark phase. We
conclude that when the value of the magnetic field increases the
pressure also increases, while the chemical potential decreases.
This happens for fast and slow cases. Also, one should notice
that the transition to the quark phase, for not too low magnetic
fields, depends on the choice of the parametrization and on the
way they vary inside the star, making the results very model
dependent.

In Fig. 7 and 8, we plot the mass-radius relation for both
weak (B0 = 1017G) and strong (B0 = 3.1 × 1018G) magnetic
fields. As in the case of hadronic matter the tails of the hybrid
stars were obtained with the insertion of the BPS EOS [58].
The values of the maximum masses and radii for a hybrid star
are shown in Tables IV and V. As expected, for B0 = 1017G
the maximum masses and radii do not differ significantly
from those found for B0 = 0 in Ref. [42]. It is worthwhile
to mention that the small difference is a consequence of
considering a different central energy equal to 0.0001 fm−4

instead of 0.187 × 10−9 fm−4 as input to the TOV equations
as done in Ref. [42]. From Tables IV and V we can see that
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C. Hybrid star

There are two ways of constructing a hybrid star, one with
a mixed phase and another without a mixed phase (hadron and
quark phases are in direct contact). In the first case, neutron
and electron chemical potentials are continuous throughout the
stellar matter, based on the standard thermodynamical rules
for phase coexistence known as Gibbs condition [5,42,54,55].
In the second case, the electron chemical potential suffers a
discontinuity because only the neutron chemical potential is
imposed to be continuous. The condition underlying the fact
that only a single chemical potential is common to both phases
is known as the Maxwell condition. Recently, some authors
calculated macroscopic quantities as radii and masses for
hybrid stars with and without mixed phase and they concluded
that the differences were not relevant [42,54,55]. Inspired
by these results, in the present work we choose the simpler
construction for a hybrid star which is based on the Maxwell
condition.

For the construction of a hybrid star with the Maxwell
condition, we just need to find the point where

µH
n = µQ

n and P H = P Q . (43)

To construct a hybrid star we consider a system constituted
by eight baryons in the hadron phase and three quarks in
the quark phase. For the EOS of the hadronic phase we use
Eq. (25) with κb = 0 in the Eqs. (17), (21) and (22) (i.e.,
without anomalous magnetic moment) and for the EOS of the
quark phase we use Eq. (42).

III. RESULTS

In the sequel we consider two different systems under a
strong magnetic field: (a) baryonic and (b) hybrid matters.
In both cases the effects of strong magnetic fields on the
macroscopic properties of compact stars were obtained from
the integration of the Tolman-Oppenheimer-Volkoff (TOV)
equations [56], using as input the EOS obtained from
Subsecs. II A and II C for baryonic and hybrid matters,
respectively.

We assume that the density-dependent magnetic field B in
the EOS is given by [32,35,38,43,57]:

B

(
ρ

ρ0

)
= Bsurf + B0

{
1 − exp

[
−β

(
ρ

ρ0

)γ ]}
, (44)

where ρ =
∑

b ρv
b is the baryon density, ρ0 is the saturation

density, Bsurf is the magnetic field on the surface taken equal
to 1015G in agreement with observational values, and B0 is the
magnetic field for larger densities. The remaining parameters β
and γ are chosen to reproduce two behaviors of the magnetic
field: a fast decay with γ = 3.00 and β = 0.02 and a slow
decay with γ = 2.00 and β = 0.05 whose curves can be seen
in Fig. 1.

In Ref. [31], different profiles for the density dependence
of the magnetic field were studied in the context of hadronic
stars and the authors concluded that the equation of state is
insensitive to magnetic fields lower than 1018 G, a behavior
already observed in Refs. [35,37,38] for different models.
Moreover, they found that for magnetic fields higher than
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FIG. 1. (Color online) Variable density-dependent magnetic
fields for B0 = 1017 G (lower curves) and B = 3.1 × 1018 G (upper
curves), for fast (green [gray] line) and slow (red [gray] line) decays.

1018 G, matter becomes unstable due to the increase of
anisotropic effects on the pressure. Taking into account that
1018 G seems to establish two different boundaries and
the anisotropic effects around 3.1 × 1018 G are small [29],
resulting in a small error in the stellar masses if the TOV
equations are used [20], we next use two values for the
magnetic field, namely 1017 G and 3.1 × 1018 G and include
the effects of the AMM.

A. Baryonic matter

In Fig. 2 we show the equation of state for hadronic
matter under the influence of B0 = 1017G, panels (a) and (c),
and B0 = 3.1 × 1018G, panels (b) and (d), magnetic fields,
and with three possible conditions for the inclusion of the
anomalous magnetic moment: (kb = 0) for no corrections,
(kn) and (kp) for the inclusion of the neutron and proton
anomalous magnetic moments, and (kn,p,hyp) for the inclusion
of the corrections for all the baryons, both for slow [panels
(a) and (b)] and fast [panels (c) and (d)] decays. We see no
great difference in any of the cases studied for B0 = 1017G.
As expected, they practically coincide with the nonmagnetized
curve, as can be seen in the zoomed boxes.

At B0 = 3.1 × 1018G we notice the stiffening caused by the
larger magnetic field applied, on both fast and slow cases. On
the zoomed boxes it is possible to notice the stiffening effects of
the inclusion of the corrections due to the magnetic moments,
even when only κn and κp are included. This effect is stronger
for higher energy densities, which coincides qualitatively with
the the effects caused on nucleonic matter found in Ref. [6].
The effect of the inclusion of the anomalous magnetic moment
of all the hyperons only becomes evident at higher values of
the energy density.

In Fig. 3 we present the particle fractions for hadronic
matter with the inclusion of the anomalous magnetic moment
of all particles for B0 = 1017G, panel (a), and B0 = 3.1 ×
1018G, panel (b). By comparing the two graphs, we see
different behaviors of some abundances caused by the increase
in the intensity of the magnetic field, like the kinks produced
on the populations of charged particles, due to the filling of
Landau levels.
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2

matter makes EOS soft. Meanwhile, the neutron stars with about two solar mass have been observed, which rules
out various soft EOS [24, 25]. In practice, most of the hybrid star proposed up to now might be difficult to reach
the observed maximum mass. Even if the hybrid star would be more massive than two solar mass, the quark core
occupies very small region.

Along with the origin of magnetic field of neutron star, the magnetic field strength inside the star is also uncertain.
In fact, the direct observations of the interior properties must be quite difficult. Observationally, the magnetic
distribution outside the star must be dipole one, while that inside the star may be more complex due to the magnetic
instability. According to the virial theorem, the maximum magnetic field for the neutron star with R ≃ 10 km and
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FIG. 1: Image of the energy level for magnetized quark matter. In the case that the Fermi energy of quark matter with flavor
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2 ), the quark matter exists in the state either with the momentum p(1)
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As a result, one can express P as a function of nb, such as
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where B19 is defined by B19 = B/(1019 Gauss). Although the pressure expressed by Eq. (6) depends on B as well
as the baryon number density, we can find that the relation between P and ε becomes that P = ε − 2B, which is
independently of the magnetic field strength. From this relationship, the adiabatic speed of sound, cs = (dP/dε)1/2,
becomes equivalent to the speed of light c. Thus, this is corresponding to the limiting case of a stiff EOS, because cs

can not exceed c to keep the causality.
The condition that the quark matter can settle only in LLL is that EfF <

√
2!c|efB|, where EfF denotes the

Fermi energy of quark. With the relation of EfF = cpfF in LLL, one can show that the magnetic field strength should
be larger than the critical strength Bc given by
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where ε = 1015 g/cm3 is a typical value at the stellar center.
The situation that the quark matter can settle up to the 2nd Landau level is more complicated. That is, as shown

in Fig. 1, the magnetized quark matter with Fermi energy EfF can exist in the state either with the momentum p(1)
fF

above the lowest energy level Ef
0 or with p(2)

fF above the first excited energy Ef
1 , where EfF is given by
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In this situation, the quark number density and the energy density of quark can be written as
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One expects that, due to the increase of the degree of freedom, the EOS in this situation could become somewhat
softer than the result obtained when the quark matter exists only in LLL, i.e., P = ε − 2B. In practice, one may
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FIG. 2: The critical magnetic field strengths so that quark matter settles only in LLL and up to the 2nd Landau level (2LL)
are shown as a function of the baryon number density nb, where the solid and broken lines correspond to the results for LLL
and 2LL, respectively.

The critical field strengths Bc so that quark matter settles only in the LLL and up to the 2nd Landau level given
by Eqs. (7) and (11), are shown as a function of the baryon number density in Fig. 2. Considering that the baryon
number density at the center of neutron star would be the order of ∼ (5 − 7)n0 fm−3, the effects of the Landau level
become considerably important only when the magnetic field strength is larger than ∼ 1019 Gauss. On the other
hand, although the distribution and strength of magnetic field inside the star are still unclear, the magnetic field may
reach such a large strength in the neutron star core composed of quark matter. We also remark that in any case
the simple dipole magnetic distribution inside the star can not realize enough large strength that the effects of the
Landau levels play important roles in the neutron star core (see for the detailed discussion in Appendix A).

III. HYBRID STAR MODELS

Now, we consider how the properties of hybrid stars could be changed due to the effects of the Landau levels, if
the magnetic field would be enough strong in the stellar core. In particular, we focus on the case that quark matter
settles only in LLL, because such case realizes the stiffest EOS as mentioned in the previous section. The equilibrium
configuration of magnetized neutron star is generally deformed due to the nonradial magnetic pressure. But, as a
first step, we simply neglect the effect of magnetic pressure on the stellar configuration in this paper, i.e., the stellar
configuration becomes spherically symmetric. So, the stellar models are determined by solving the so-called Tolman-
Oppenheimer-Volkof equations together with the relationship between the total energy density and pressure, i.e., the
EOS.

Before considering the stellar models with the effects of the Landau level, for reference, we construct the stellar
model with the same EOSs as in Refs. [30–32]. That is, for hadronic matter, we adopt the EOS based on the non-
relativistic Brueckener-Hartree-Fock approach with Σ− and Λ hyperons [33], which is referred to as “hyperon EOS”
in this paper. For the quark phase, we adopt the sophisticated MIT bag model suggested in Refs. [34, 35], which
are composed of the massless u and d quarks and s quark with the current mass of ms = 150 MeV, where the bag
constant is set to be 100 MeV fm−3. Then, the quark phase is connected to the hadronic matter with a Maxwell
construction. The resultant EOS is referred to as “Maxwell EOS,” where the energy density becomes discontinuous
between 5.93×1014 and 8.82×1014 g/cm3. We show the pressure as a function of the total energy density for hyperon
and Maxwell EOSs in Fig. 3, while the corresponding mass-radius relations of the constructed neutron stars in Fig.
4, where the thick-solid and thick-dotted lines denote the results with hyperon and Maxwell EOSs, respectively. From
Fig. 3, one can see that the quark phase becomes stiffer than the hadronic matter in the high density region. As a
result, the stellar models with quark core can be massive more than those without quark core, as in Fig. 4. However,
the maximum mass of the stellar model with quark core is still too small to explain the observed maximum mass, i.e.,
two-solar mass, which is a big problem for considering hybrid stars.

Next, we consider the hybrid star models with the effects of LLL. For this purpose, we consider that the quark
phase in Maxwell EOS would be modified due to the existence of strong magnetic field. In the high density region,
such a modified EOS should be expressed as P = ε−2B, as derived in the previous section. Meanwhile, it is not clear
how the EOS for quark matter would be connected with the hadronic matter at the moderate density. So, in this
paper, we adopt three possible cases to construct the modified EOS. That is, the EOS for quark matter is connected
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where B19 is defined by B19 = B/(1019 Gauss). Although the pressure expressed by Eq. (6) depends on B as well
as the baryon number density, we can find that the relation between P and ε becomes that P = ε − 2B, which is
independently of the magnetic field strength. From this relationship, the adiabatic speed of sound, cs = (dP/dε)1/2,
becomes equivalent to the speed of light c. Thus, this is corresponding to the limiting case of a stiff EOS, because cs
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One expects that, due to the increase of the degree of freedom, the EOS in this situation could become somewhat
softer than the result obtained when quark matter exists only in LLL, i.e., P = ε−2B. In practice, one may be able to
derive the explicit relation between P and ε with the above Eqs. (8) – (10), but here we avoid to derive a complicated
expression, because we focus on the stiffest case of EOS with the effects of the Landau levels in this paper. Instead
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and Maxwell EOSs in Fig. 3, while the corresponding mass-radius relations of the constructed neutron stars in Fig.
4, where the thick-solid and thick-dotted lines denote the results with hyperon and Maxwell EOSs, respectively. From
Fig. 3, one can see that the quark phase becomes stiffer than the hadronic matter in the high density region. As a
result, the stellar models with quark core can be massive more than those without quark core, as in Fig. 4. However,
the maximum mass of the stellar model with quark core is still too small to explain the observed maximum mass, i.e.,
two-solar mass, which is a big problem for considering hybrid stars.

Next, we consider the hybrid star models with the effects of LLL. For this purpose, we consider that the quark
phase in Maxwell EOS would be modified due to the existence of strong magnetic field. In the high density region,
such a modified EOS should be expressed as P = ε−2B, as derived in the previous section. Meanwhile, it is not clear
how the EOS for quark matter would be connected with the hadronic matter at the moderate density. So, in this
paper, we adopt three possible cases to construct the modified EOS. That is, the EOS for quark matter is connected
with the hadronic matter (A) at the upper limit of the density discontinuity in Maxwell EOS, i.e., εu = 8.82 × 1014

g/cm3, (B) at the lower limit of the density discontinuity in Maxwell EOS, i.e., εl = 5.93×1014 g/cm3, and (C) at the
density defined as εm = (εu + εl)/2, as shown in Fig. 3. Probably, almost all possibilities how to connect the EOS for
quark matter modified by the strong magnetic field with the hadronic EOS must be covered by the above cases from
(A) to (C), although the value of B might be different from the value of bag constant in Maxwell EOS because of the
existence of magnetic field. In fact, such a connection between the quark and hadronic matter is effectively shifted
the value of the bag constant into B = 237.3 MeV fm−3 for the case (A), B = 160.9 MeV fm−3 for the case (B), and
B = 192.8 MeV fm−3 for the case (C). Anyway, we believe that the three cases are sufficient to see the qualitative
behavior of the hybrid star models with the effects of the Landau level. Hereafter, we refer to these modified EOSs
as “Landau-A,” “Landau-B,” and “Landau-C” EOSs.

Fig. 4 shows the mass-radius relations of the hybrid stars constructed with the Landau-A (solid line), Landau-B
(broken line), and Landau-C EOSs (dotted line). From this figure, we find that the maximum mass of the hybrid star
becomes larger for the stellar model with EOS connected to the hadronic matter at the lower energy density, i.e., the
maximum masses are 2.80M⊙ for the Landau-B EOS, 2.56M⊙ for the Landau-C EOS, and 2.31M⊙ for the Landau-A
EOS. Since the Landau-A EOS is the softest among the three EOSs due to the existence of a large discontinuity
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result, the stellar models with quark core can be massive more than those without quark core, as in Fig. 4. However,
the maximum mass of the stellar model with quark core is still too small to explain the observed maximum mass, i.e.,
two-solar mass, which is a big problem for considering hybrid stars.

Next, we consider the hybrid star models with the effects of LLL. For this purpose, we consider that the quark
phase in Maxwell EOS would be modified due to the existence of strong magnetic field. In the high density region,
such a modified EOS should be expressed as P = ε−2B, as derived in the previous section. Meanwhile, it is not clear
how the EOS for quark matter would be connected with the hadronic matter at the moderate density. So, in this
paper, we adopt three possible cases to construct the modified EOS. That is, the EOS for quark matter is connected
with the hadronic matter (A) at the upper limit of the density discontinuity in Maxwell EOS, i.e., εu = 8.82 × 1014

g/cm3, (B) at the lower limit of the density discontinuity in Maxwell EOS, i.e., εl = 5.93×1014 g/cm3, and (C) at the
density defined as εm = (εu + εl)/2, as shown in Fig. 3. Probably, almost all possibilities how to connect the EOS for
quark matter modified by the strong magnetic field with the hadronic EOS must be covered by the above cases from
(A) to (C), although the value of B might be different from the value of bag constant in Maxwell EOS because of the
existence of magnetic field. In fact, such a connection between the quark and hadronic matter is effectively shifted
the value of the bag constant into B = 237.3 MeV fm−3 for the case (A), B = 160.9 MeV fm−3 for the case (B), and
B = 192.8 MeV fm−3 for the case (C). Anyway, we believe that the three cases are sufficient to see the qualitative
behavior of the hybrid star models with the effects of the Landau level. Hereafter, we refer to these modified EOSs
as “Landau-A,” “Landau-B,” and “Landau-C” EOSs.

Fig. 4 shows the mass-radius relations of the hybrid stars constructed with the Landau-A (solid line), Landau-B
(broken line), and Landau-C EOSs (dotted line). From this figure, we find that the maximum mass of the hybrid star
becomes larger for the stellar model with EOS connected to the hadronic matter at the lower energy density, i.e., the
maximum masses are 2.80M⊙ for the Landau-B EOS, 2.56M⊙ for the Landau-C EOS, and 2.31M⊙ for the Landau-A
EOS. Since the Landau-A EOS is the softest among the three EOSs due to the existence of a large discontinuity
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4, where the thick-solid and thick-dotted lines denote the results with hyperon and Maxwell EOSs, respectively. From
Fig. 3, one can see that the quark phase becomes stiffer than the hadronic matter in the high density region. As a
result, the stellar models with quark core can be massive more than those without quark core, as in Fig. 4. However,
the maximum mass of the stellar model with quark core is still too small to explain the observed maximum mass, i.e.,
two-solar mass, which is a big problem for considering hybrid stars.

Next, we consider the hybrid star models with the effects of LLL. For this purpose, we consider that the quark
phase in Maxwell EOS would be modified due to the existence of strong magnetic field. In the high density region,
such a modified EOS should be expressed as P = ε−2B, as derived in the previous section. Meanwhile, it is not clear
how the EOS for quark matter would be connected with the hadronic matter at the moderate density. So, in this
paper, we adopt three possible cases to construct the modified EOS. That is, the EOS for quark matter is connected
with the hadronic matter (A) at the upper limit of the density discontinuity in Maxwell EOS, i.e., εu = 8.82 × 1014

g/cm3, (B) at the lower limit of the density discontinuity in Maxwell EOS, i.e., εl = 5.93×1014 g/cm3, and (C) at the
density defined as εm = (εu + εl)/2, as shown in Fig. 3. Probably, almost all possibilities how to connect the EOS for
quark matter modified by the strong magnetic field with the hadronic EOS must be covered by the above cases from
(A) to (C), although the value of B might be different from the value of bag constant in Maxwell EOS because of the
existence of magnetic field. In fact, such a connection between the quark and hadronic matter is effectively shifted
the value of the bag constant into B = 237.3 MeV fm−3 for the case (A), B = 160.9 MeV fm−3 for the case (B), and
B = 192.8 MeV fm−3 for the case (C). Anyway, we believe that the three cases are sufficient to see the qualitative
behavior of the hybrid star models with the effects of the Landau level. Hereafter, we refer to these modified EOSs
as “Landau-A,” “Landau-B,” and “Landau-C” EOSs.

Fig. 4 shows the mass-radius relations of the hybrid stars constructed with the Landau-A (solid line), Landau-B
(broken line), and Landau-C EOSs (dotted line). From this figure, we find that the maximum mass of the hybrid star
becomes larger for the stellar model with EOS connected to the hadronic matter at the lower energy density, i.e., the
maximum masses are 2.80M⊙ for the Landau-B EOS, 2.56M⊙ for the Landau-C EOS, and 2.31M⊙ for the Landau-A
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FIG. 6: The boundary between the quark and hadronic phases in the hybrid stars constructed with the Landau-A, -B, and -C
EOSs, where RQ and MQ denote the quark core radius and mass for each stellar model.

in large part by the quark matter, which can be larger than 2M⊙. Furthermore, in order to examine the qualitative
behavior of hybrid stellar models, we simply consider three different connections of quark matter with the hadronic
matter. As a result, we find that the stellar model constructed with EOS connected to the hadronic matter at the
lower energy density can realize more massive stellar model with smaller central energy density. In this paper, we
consider simple stellar models as a first step, where we neglect the magnetic pressure and the deformation of stellar
shape. Such additional effects will be taken into account elsewhere. In addition, one might also have to consider the
hadron-quark mixed phase in the more realistic stellar models [30, 31]. At any rate, one could see the properties of
such phase modified by the strong magnetic field via the observations of the stellar oscillations [32, 36, 37], which tells
us an additional information about the strongly magnetized compact objects.
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APPENDIX A: STELLAR MODELS WITH DIPOLE MAGNETIC FIELD

In this appendix, we especially consider a dipole magnetic field with the ideal MHD approximation, as in Refs.
[36, 38]. That is, an axisymmetric, poloidal magnetic field produced by a four-current Jµ = (0, 0, 0, Jφ) is considered,
where the electromagnetic four-potential becomes very simple such as Aµ = (0, 0, 0, Aφ). From the Maxwell equations
Fµν

;ν = 4πJµ with the expansions of Aφ and Jφ as

Aφ(r, θ) =
∑

aℓ(r) sin θ∂θPℓ(cos θ), (A1)

Jφ(r, θ) =
∑

jℓ(r) sin θ∂θPℓ(cos θ), (A2)

one can obtain the elliptic equation describing the ℓ-th order potential aℓ;

a′′
ℓ + (Φ′ − Λ′)a′

ℓ −
ℓ(ℓ + 1)

r2
e2Λaℓ = −4πe2Λjℓ, (A3)

where a prime and ∂θ denote the partial derivative with respect to r and θ, respectively, while Pℓ(cos θ) is the ℓ-th
order Legendre polynomial. For a dipole magnetic field, i.e., ℓ = 1, the potential outside the neutron star, a(out)

1 , is
analytically determined by setting j(out)

1 = 0 and e2Φ = e−2Λ = 1 − 2M/r [39];

a(out)
1 (r) = −3µbr2

8M3

[
ln
(

1 − 2M

r

)
+

2M

r
+

2M2

r2

]
, (A4)

where µb is the magnetic dipole moment observed at infinity. On the other hand, the potential inside the neutron
star, a(in)

1 , is obtained by numerically solving Eq. (A3) in such a way that a(in)
1 should be connected to a(out)

1 at the



ssuummmmaarryy  

•  wwee  ccoonnssiiddeerr  tthhee  eeffffeecctt  ooff  tthhee  lloowweesstt  LLaannddaauu  lleevveell  oonn  tthhee  
hhyybbrriidd  NNSS,,  dduuee  ttoo  tthhee  eexxiisstteennccee  ooff  ssttrroonngg  mmaaggnneettiicc  ffiieelldd  

•  tthhee  rreessuullttaanntt  hhyybbrriidd  NNSS  ccaann  bbeeccoommee  qquuiittee  mmaassssiivvee  
•  qquuaarrkk  mmaatttteerr  ccaann  ooccccuuppyy  iinn  llaarrggee  ppaarrtt  ooff  NNSS  

–  “hhyybbrriidd  qquuaarrkk  ssttaarr”  
–  mmaassssiivvee  nneeuuttrroonn  ssttaarr  ~~  hhyybbrriidd  qquuaarrkk  ssttaarr  ????  

•  wwee  mmaayy  aallssoo  ttaakkee  iinnttoo  aaccccoouunntt     
–  mmaaggnneettiicc  ccoonnffiigguurraattiioonn  ((&&  sstteellllaarr  ddeeffoorrmmaattiioonn))  
–  tthhee  mmaaggnneettiicc  pprreessssuurree  iinn  EEOOSS  
–  tthhee  eeffffeecctt  ooff  mmaaggnneettiicc  ffiieelldd  oonn  hhaaddrroonn  pphhaassee  
–  tthhee  hhaaddrroonn--qquuaarrkk  mmiixxeedd  pphhaassee  
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