中性子星物質におけるハイペロン混合

Y. Yamamoto

Collaborators:

T. Furumoto N. Yasutake Th.A. Rijken

- 1. Neutron-star matter and YN interactions
- 2. Twin Λ hypernuclei in emulsion and Ξ N interaction

中性子星核物質を認識したい!

Σ · & Ξ · mixingに関するRHF/DBHF計算との定性的違いは理解できるか?

Our strategy to neutron stars

Neutron-star EOS derived from Baryon-Baryon interaction model in relation to Earth-based experiments

without ad hoc parameter for stiffness of EOS

on the basis of G-matrix theory

adopted interaction model Extended Soft-Core Model (ESC)

- Two-meson exchange processes are treated explicitly
- Meson-Baryon coupling constants are taken consistently with Quark-Pair Creation model

repulsive cores

Pomeron is a model for multi-gluon exchange

How to determine coupling constants g_{3P} and g_{4P} ?

Nucleus-Nucleus scattering data with G-matrix folding potential

Y. Yamamoto, T. Furumoto, N. Yasutake and Th. A. Rijken: Phys. Rev. C 88 (2013) 022801 (R). G-matrix interaction (→ folding potential)

derived from ESCO8c+MPP+TNA

TNA: Three-Nucleon attraction

Both MPP and TNA are needed to reproduce nuclear saturation property but, essential is MPP for Nucleus-Nucleus scattering data

¹⁶O + ¹⁶O elastic scattering cross section at E/A = 70 MeV

Frozen-Density Approximation is crucial!

MPa: 3-body + 4-body repulsion MPb/MPc: 3-body repulsion

No ad hoc parameter to adjust stiffness of EOS !!!

MPa : K=310 MeV

MPb : K=280 MeV

MPc : K=260 MeV

¹⁶O-¹⁶O scattering data

Massive $(2M_{\odot})$ neutron stars

Softening of EOS by hyperon mixing

Hyperon puzzle!

An idea is Universal Three-Baryon Repulsion (TBR) proposed by Takatsuka

Modeling of TBR in ESC = Multi-Pomeron exchange Potential

Y-nucleus folding potential derived from YN G-matrix interaction $G(r; k_F)$

$$U_{Y}(\mathbf{r}, \mathbf{r}') = U_{dr} + U_{ex}$$

$$U_{dr} = \delta(\mathbf{r} - \mathbf{r}') \int d\mathbf{r}'' \rho(\mathbf{r}'') V_{dr}(|\mathbf{r} - \mathbf{r}''|; \langle k_F \rangle)$$

$$U_{ex} = \rho(\mathbf{r}, \mathbf{r}') V_{ex}(|\mathbf{r} - \mathbf{r}'|; \langle k_F \rangle) \qquad \text{G-matrix interactions}$$

$$V_{dr} = \frac{1}{2(2t_Y + 1)(2s_Y + 1)} \sum_{TS} (2T + 1)(2S + 1) [G_{TS}^{(+)} + G_{TS}^{(-)}]$$

$$V_{ex} = \frac{1}{2(2t_Y + 1)(2s_Y + 1)} \sum_{TS} (2T + 1)(2S + 1) [G_{TS}^{(+)} - G_{TS}^{(-)}]$$

Averaged-
$${
m k_F}$$
 Approximation $\langle
ho
angle = \langle \phi_Y(r) |
ho(r) | \phi_Y(r)
angle \ {
m calculated self-consist} \ \langle k_F
angle = (1.5\pi^2 \, \langle
ho
angle)^{1/3}$

self-consistently

Mixed density $\rho(\mathbf{r}_1, \mathbf{r}_2) = \sum_j \varphi_j^*(\mathbf{r}_1) \varphi_j(\mathbf{r}_2)$ obtained from SkHF w.f.

MPa is better than ESC !!!

Quark-Pauli effect in ESC08 models

ESC core = pomeron + ω

Repulsive cores are similar to each other in all channels

Assuming

"equal parts" of ESC and QM are similar to each other

Almost Pauli-forbidden states in [51] are taken into account by changing the pomeron strengths for the corresponding channels phenomenologically

$$g_P \longrightarrow factor * g_P$$

Table III. $SU(6)_{fs}$ -contents of the various potentials on the isospin, spin basis. =

(S,I)	$V = aV_{[51]} + bV_{[33]}$
(0,1)	$V_{NN} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$ $V_{NN} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$
(1,0)	$V_{NN} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$
(0, 1/2)	$V_{\Lambda\Lambda} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$
(1,1/2)	$V_{\Lambda\Lambda} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$
(0, 1/2)	$V_{\Sigma\Sigma} = \frac{17}{18}V_{[51]} + \frac{1}{18}V_{[33]}$
(1, 1/2)	$V_{\Sigma\Sigma} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$
(0, 3/2)	$V_{\Sigma\Sigma} = \frac{3}{9}V_{[51]} + \frac{5}{9}V_{[33]}$ $V_{\Sigma\Sigma} = \frac{8}{9}V_{[51]} + \frac{1}{9}V_{[33]}$
(1, 3/2)	$V_{\Sigma\Sigma} = \frac{8}{9}V_{[51]} + \frac{1}{9}V_{[33]}$

(S, I)	$V = aV_{[51]} + bV_{[33]}$
(0, 0)	$V_{\Lambda\Lambda,\Lambda\Lambda} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$
(0, 0)	$V_{\Xi N,\Xi N} = \frac{1}{3}V_{[51]} + \frac{2}{3}V_{[33]}$
(0, 0)	$V_{\Sigma\Sigma,\Sigma\Sigma} = \frac{11}{18}V_{[51]} + \frac{7}{18}V_{[33]}$
(0,1)	$V_{\Xi N,\Xi N} = \frac{7}{9}V_{[51]} + \frac{2}{9}V_{[33]}$
(0, 0)	$V_{\Sigma\Lambda,\Sigma\Lambda} = \frac{2}{3}V_{[51]} + \frac{1}{3}V_{[33]}$
(0, 2)	$V_{\Sigma\Sigma,\Sigma\Sigma} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$
(1,0)	$V_{\Xi N,\Xi N} = \frac{5}{9}V_{[51]} + \frac{4}{9}V_{[33]}$
(1, 1)	$V_{\Xi N,\Xi N} = \frac{17}{27}V_{[51]} + \frac{10}{27}V_{[33]}$
(1, 1)	$V_{\Sigma\Lambda,\Sigma\Lambda} = \frac{2}{3}V_{[51]} + \frac{1}{3}V_{[33]}$
(1, 1)	$V_{\Sigma\Sigma,\Sigma\Sigma} = \frac{16}{27}V_{[51]} + \frac{11}{27}V_{[33]}$

Pauli-forbidden state in $V_{[51]} \longrightarrow$ strengthen pomeron coupling

$$\Sigma^+ p(^3S_1, T = 3/2), \Sigma N(^1S_0, T = 1/2), \text{ and } \Xi N(^1S_0, T = 1)$$

全部考慮: ESC08c

Table 1: Values of U_{Σ} at normal density and partial wave contributions with Continuous Choice.

model	T	$^{1}S_{0}$	${}^{3}S_{1}$	$^{1}P_{1}$	$^{3}P_{0}$	$^{3}P_{1}$	$^{3}P_{2}$	D	U_{Σ}
ESC08c	1/2	11.1	-22.0	2.4	2.1	-6.1	-1.0	-0.7	
	3/2	-12.8	30.7	-4.8	-1.8	6.0	-1.4	-0.2	+1.4
ESC08b	1/2	10.3	-25.5	1.4	2.5	-5.9	0.3	-0.8	
	3/2	-10.4	52.4	-3.0	-2.7	5.9	-4.4	-0.1	+19.8

Pauli-forbidden state in QCM \rightarrow strong repulsion in T=3/2 3S_1 state

older versions

ESC04a	1/2	11.6	-26.9	2.4	2.7	-6.4	-2.0	-0.8	
	3/2	-11.3	2.6	-6.8	-2.3	5.9	-5.1	-0.2	-36.5
NSC97f	1/2	14.9	-8.3	2.1	2.5	-4.6	0.5	-0.5	
	3/2	-12.4	-4.1	-4.1	-2.1	6.0	-2.8	-0.1	-12.9

Hyperon-mixed Neutron-Star matter with universal TBR (MPP)

EoS of $n+p+\Lambda+\Sigma+e+\mu$ system

ESC08c(YN) + MPP(YNN) +TBA(YNN)

 $ESCO8b(\Sigma N)$

β -stable n+p+ Λ + Σ matter

stronger Σ n repulsion

Events of twin- Λ hypernuclei in emulsion and Ξ N interactions

Importance of precise data of B_{Λ} obtained from (e,e'K) reactions

E176 events

Event I (most probable mode) [1]

(A)
$$\Xi^{-} + ^{12}C \rightarrow^{9}_{\Lambda} Be + ^{4}_{\Lambda} H$$
 ($B_{\Xi^{-}} = 0.82 \pm 0.17 \text{ MeV}$),
(B) $\Xi^{-} + ^{12}C \rightarrow^{9}_{\Lambda} Be + ^{4}_{\Lambda} H^{*}$ ($B_{\Xi^{-}} = -0.23 \pm 0.17 \text{ MeV}$),

Event II (three possibilities) [2]

(A)
$$\Xi^{-} + ^{12}\text{C} \to_{\Lambda}^{9} \text{Be} + ^{4}_{\Lambda} \text{H}$$
 $(B_{\Xi^{-}} = 3.89 \pm 0.14 \text{ MeV})$,
(B) $\Xi^{-} + ^{12}\text{C} \to_{\Lambda}^{9} \text{Be}^{*} + ^{4}_{\Lambda} \text{H}$ $(B_{\Xi^{-}} = 0.82 \pm 0.14 \text{ MeV})$,
(C) $\Xi^{-} + ^{12}\text{C} \to_{\Lambda}^{9} \text{Be} + ^{4}_{\Lambda} \text{H}^{*}$ $(B_{\Xi^{-}} = 2.84 \pm 0.15 \text{ MeV})$,
(D) $\Xi^{-} + ^{12}\text{C} \to_{\Lambda}^{9} \text{Be}^{*} + ^{4}_{\Lambda} \text{H}^{*}$ $(B_{\Xi^{-}} = -0.19 \pm 0.15 \text{ MeV})$,

Assuming Ξ - absorption from 2P orbits leads to consistent interpretations

KISO event

$$\Xi^- + {}^{14}\mathrm{N} \rightarrow {}^{10}_{\Lambda} \mathrm{Be} + {}^{5}_{\Lambda} \mathrm{He}$$

(A)
$$^{10}_{\Lambda}$$
Be in ground state $(B_{\Xi^{-}} = 3.82 \pm 0.18 \text{MeV})$,

(B)
$$^{10}_{\Lambda}$$
Be in excitation of 2.68MeV $(B_{\Xi^-} = 1.14 \pm 0.18 \text{MeV})$

JLAB E05-115

Predicted by Ehime+Yamamoto

Progress of Theoretical Physics, Vol. 105, No. 4, April 2001

 ΞN and $\Xi \Xi$ OBEP and Ξ^- -Nucleus Bound States

Masahiro Yamaguchi, 1 Kouji Tominaga, $^{1,*)}$ Yasuo Yamamoto 2 and Tamotsu Ueda 1

Twin dataを用いた 唯一の理論! NPでrejected!

T	$^{1}S_{0}$	${}^{3}S_{1}$	${}^{1}P_{1}$	$^{3}P_{0}$	$^{3}P_{1}$	$^{3}P_{2}$	U_{Ξ}	Γ^c_{Ξ}
0	1.4	-8.0	-0.3	1.8	1.4	-2.1		
1	10.7	-11.1	1.1	0.7	-2.6	-0.0	-7.0	4.5

Ξ -nucleus folding model

$$U_{\Xi}(\mathbf{r}, \mathbf{r}') = U_{dr} + U_{ex} ,$$

$$U_{dr} = \delta(\mathbf{r} - \mathbf{r}') \int d\mathbf{r}'' \rho(\mathbf{r}'') V_{dr}(|\mathbf{r} - \mathbf{r}''|; k_F)$$

$$U_{ex} = \rho(\mathbf{r}, \mathbf{r}') V_{ex}(|\mathbf{r} - \mathbf{r}'|; k_F) ,$$

$$\begin{pmatrix} V_{dr} \\ V_{ex} \end{pmatrix} = \frac{1}{2(2t_Y + 1)(2s_Y + 1)} \sum_{TS} (2T + 1)(2S + 1) [\mathcal{G}_{(\pm)}^{TS} \pm \mathcal{G}_{(\mp)}^{TS}]$$

$$\bar{k}_F = (1 + \alpha) (1.5\pi^2 \bar{\rho})^{1/3}$$
$$\bar{\rho} = \langle \phi_\Xi(r) | \rho(r) | \phi_\Xi(r) \rangle$$

Table 3: Calculated quantities in Ξ^-+^{12} C and Ξ^-+^{14} N systems for $\alpha=0.10$ and 0.02. Binding energies B_{Ξ^-} and conversion width $\Gamma^c_{\Xi^-}$ are in MeV. R.m.s. radius $\sqrt{\langle r^2 \rangle}$ is in fm.

				_
$\Xi^{-} + ^{12}\mathrm{C}$		$\alpha = 0.10$	$\alpha = 0.02$	_ _ EXP
$\overline{1S}$	B_{Ξ^-}	3.83	4.88	- LAI
	$\Gamma^c_{\Xi^-}$	1.49	1.71	
	$\sqrt{\langle r^2 \rangle}$	3.34	3.00	
2P	B_{Ξ^-}	0.68	1.00	$B_{\Xi^{-}} = 0.82 \pm 0.17 \text{ MeV}$
	$\Gamma^c_{\Xi^-}$	0.44	0.69	
	$\sqrt{\langle r^2 \rangle}$	7.54	5.70	
$\Xi^{-} + ^{14}N$		$\alpha = 0.1$	$\alpha = 0.02$	_
1S	B_{Ξ^-}	4.82	5.98	_
	$\Gamma^c_{\Xi^-}$	1.87	2.10	
	$\sqrt{\langle r^2 \rangle}$	3.18	2.91	
2P	$B_{\Xi^{-}}$	1.22	1.70	$B_{\Xi^{-}} = 1.14 \pm 0.25 \text{MeV}$
	$\Gamma^c_{\Xi^-}$	0.77	1.04	
	$\sqrt{\langle r^2 \rangle}$	5.66	4.69	$^{10}_{\Lambda}{ m Be}$ (Jlab E05-115)
	0.9 ~	~ 1.5 MeV	$1.6 \sim 2.2$	$\overline{\mathrm{MeV}}$
		second	first	excited state of ${}^{10}_{\Lambda}{ m Be}$

Strength of Ξ N interaction in ESC08c is consistent with B_Ξ data from twin Λ -hypernuclei in emulsion

To study Ξ mixing in neutron-star matter

Conclusions

ESC08c+MPP+TBA model

- * MPP strength determined by analysis for 160+160 scattering
- * TNA adjusted phenomenologically to reproduce $E/A(\rho_0) = -15.8 \text{ MeV}$ with $\rho_0 = 0.16 \text{ fm}^{-3}$
- * Consistent with hypernuclear data
- * No ad hoc parameter to stiffen EOS
 BB interactions based on on-Earth experiments

MPa set including 3- and 4-body repulsions leads to massive neutron stars with $2M_{\odot}$ in spite of significant softening of EOS by hyperon mixing

E mixing does not change the conclusion qualitatively