σ AND κ MESONS AS BROAD DYNAMICAL RESONANCES IN ONE-MESON-EXCHANGE MODEL

Ngo Thi Hong Xiem and Shoji SHINMURA Graduate School of Engineering Gifu University, Japan

Content

- 1. Introduction
- 2. One meson exchange potential
- 3. Scattering
- 4. Resonances
- 5. Conclusion

Introduction

- Many model of meson-meson interaction
 - Quark Model
 - Chiral perturbation
 - J.A.Oller, E.Oset, Nucl.Phys A620, 438-456(1997).
 - J.A.Oller, E.Oset, Phys. Rev. D 59, 074001 (1999).
 - A.G.Nicola and J.R.Pelaez arXiv:help-ph/0109056v2 (2001).
 - LQCD
 - Silas R. Beane, Thomas C. Luu et al, Phys. Rev D 77, 094507 (2008).
 - Meson exchange model
 - D. Lohse et al, Nuc. Phys. A516, 513-548 (1990).
- In meson-meson interaction $\pi\pi$, πK scatterings have been investigated both in experiments and theories.
- Construct a unified hadron-hadron potential model which appropriate for all BB, MB and MM interactions.
- <u>Meson-exchanged models</u> keeps its validity as a suitable effective description of the h-h interactions in the low-energies region.

Introduction

- By *SU*(3)-symmetric one-meson exchange mechanisms, we construct:
 - $K^{bar}K^{bar}$ (S = -2)

•
$$\pi K^{bar} - \eta K^{bar} (S = -1)$$

•
$$\pi\pi - KK^{bar} - \eta\pi - \eta\eta \ (S=0)$$

•
$$\pi K - \eta K(S = 1)$$

• KK (S = 2)

Prog. Theor. Exp. Phys. (2014) 023D04 doi: 10.1093/ptep/ptu001

Meson exchange potential

Meson exchange potential

- Interaction Lagrangians
- Interaction Hamiltonian $W = -\int Ld^3x$
- Transition operator T(z) are represented by a series expansion defined by all diagrams containing an incoming and outgoing two-meson state.
- One meson potential can determined

Coupling constants

• SU(3) Symmetric Lagrangians

$$\mathcal{L}_{pps} = \frac{f_{pps}}{m_{\pi}} Tr[\partial^{\mu} P \partial_{\mu} PS]$$

$$\mathcal{L}_{ppv} = g_{ppv} Tr[((\partial^{\mu} P)P - P(\partial^{\mu} P))V]$$

$$\mathcal{L}_{ppt} = g_{ppt} \frac{2}{m_{\pi}} Tr[(\partial_{\mu} P \partial^{\nu} P)T^{\mu\nu}]$$

•
$$f_{pps}$$
, g_{ppv} , g_{ppt} : coupling constants

- P is 3 × 3 matrix representation of the pseudo-scalar octet.
- S is 3×3 matrix representation of the scalar octet.
- V is 3 × 3 matrix representation of the vector octet.

•
$$P_8 = \begin{pmatrix} \frac{\pi_0}{\sqrt{2}} + \frac{\eta_8}{\sqrt{6}} & \pi^+ & K^+ \\ \pi^- & -\frac{\pi_0}{\sqrt{2}} + \frac{\eta_8}{\sqrt{6}} & K^0 \\ K^- & \overline{K}^0 & -\sqrt{\frac{2}{3}}\eta_8 \end{pmatrix};$$

• $P_1 = \eta_1$
• $V_8 = \begin{pmatrix} \frac{\rho^0}{\sqrt{2}} + \frac{\phi}{\sqrt{6}} & \rho^+ & K^{*+} \\ \rho^- & -\frac{\rho^0}{\sqrt{2}} + \frac{\phi}{\sqrt{6}} & K^{*0} \\ K^{*-} & \overline{K}^{*0} & -\sqrt{\frac{2}{3}}\phi \end{pmatrix};$

•
$$S_8 = \begin{pmatrix} \frac{a_0}{\sqrt{2}} + \frac{f_0}{\sqrt{6}} & a^+ & \kappa^+ \\ a^- & -\frac{a_0}{\sqrt{2}} + \frac{\phi}{\sqrt{6}} & \kappa^0 \\ \kappa^- & \bar{\kappa}^0 & -\sqrt{\frac{2}{3}}\phi \end{pmatrix};$$

 $S_1 = \sigma$

Form Factors

- Monopole Type
 - *t*-channel

•
$$F^{(t)}\left(q_{\alpha}^{2}\right) = \frac{\Lambda^{2} - m_{\alpha}^{2}}{\left(\Lambda^{2} + q_{\alpha}^{2}\right)}$$

• s-channel

•
$$F^{(s)}(\omega_p^2) = \frac{\Lambda^2 + m_\alpha^2}{(\Lambda^2 + \omega_p^2)}$$

• Forth-order (s-channel)

•
$$F_4(\omega_p^2) = \frac{\Lambda^4 + m_\alpha^4}{(\Lambda^4 + \omega_p^4)}$$

- Λ : cut-off parameters
- q_{α} : momentum
- m_{α} : mass of exchanged mesons
- ω_{α} : total energy

Parameters

m_0	Mono.
ρ	1126.66877
ε_1	2112.07666
K^*	1403.13526
κ	1522.01264
f_2	1367.63563

	Mono.
$\Lambda_{\eta KK^*}$	864.0841
$g_{KK^{bar}a_0}$	0.0408802
$\Lambda_{KK^{bar}a_0}$	1233.61523
$m_0(a_0)$	1235.73076
$\Lambda_{KK^{bar}\phi}$	2137.02377
$m_0(\phi)$	1150.23241

	Monopole		
$g_{\pi\pi ho}$	0.50101		
$g_{\pi\pi f_2}$	0.02843626		
$g_{\pi\pi\epsilon_1}$	0.01620557		
$g_{\pi\pi\kappa}$	0.191683×10^{-3}		
$\Lambda_{\pi\pi ho}$	2896.41242		
$\Lambda_{\pi KK^*}$	2301.47525		
$\Lambda_{K\overline{K} ho}$	3923.01907		
$\Lambda_{K\overline{K}\omega,\phi}$	4520.8249		
$\Lambda_{\pi\pi ho-sch}$	2757.75065		
$\Lambda_{\pi\pi f_2-sch}$	1481.43534		
$\Lambda_{\pi\pi\epsilon_1-sch}$	1159.73371		
$\Lambda_{\pi KK^*-sch}$	4061.81573		
$\Lambda_{\pi K \kappa - sch}$	3622.67379		

Phase shift results

Phase shift results

Resonances

Poles with s-channel meson exchange

- $V = V_t + V_s$
 - V_s contains s-channel diagrams
 - V_t contains t-channel diagrams
 - $V_s(p',p) = \sum_i \gamma_i(p') \Delta_i(P) \gamma_i(p)$ with bare mass and bare coupling constant
- $T = T_t + T_s$ • $T = \chi^*(n') \Lambda^*(\mathbf{P}) \chi^*(n)$

•
$$T_s = \gamma^*(p')\Delta^*(P)\gamma^*(p)$$

•
$$\Delta^*(P) = \frac{\Delta(P)}{1 - \Delta(P)\Sigma(p)}$$
: dressed propagator

- $\Sigma(p)$: self-energy
- $\gamma^*(p)$: dressed vertex

Pure Dynamical Poles (without s-channel exchange)

*This resonance renormalization follow: H.Polinder an Th. A. Rijken Phys. Rev. C 72, 065211 (2005)

Resonances results

Resonances results

"I-dd-kap7" u 1:2:5

Resonances

	Exp. Data (PDG)	Monopole	
<i>a</i> ₀ (980)	[984,-(25÷50)]	[860, -20]	
$f_0(980)$	[980, -(20 ÷ 50)]	[980, -70]	
$f_2(1270)$	[1275(1.2), -92(2)]	[1280, -100]	*
κ(1430)	[1412(6), -147(12)]	[1440, -50]	
κ(700)		[640, -200]	
<i>K</i> *(892)	[892, -25]	[910, -20]	
φ(1020)	[1019, -2]	[1020, -2]	
$\rho(770)$	[771, -75]	[790, -50]	
<i>σ</i> ₁ (600)	[400 - 1200, -(300 - 500)]	[550, -360]	
σ_2		[410, -550]	

$$\left[M,-\left(\frac{\Gamma}{2}\right)\right]$$

Conclusion

- This calculation are well reproduce the phase shift, cross-section and pole position in the meson-meson interaction by the meson exchange model.
 - $\pi\pi KK^{bar} \pi\eta \eta\eta$
 - $\delta_0^0; \delta_0^1; \delta_1^0; \delta_1^1; \delta_2^0$
 - $\sigma(600), f_0(980), \rho(770), a_0(980), \phi(1020)$
 - $\pi K \eta K$
 - $\delta_0^{\frac{1}{2}}, \delta_1^{\frac{1}{2}}$

 - $\kappa(700), \kappa(1430), K^*(982)$
- The shown results can prove the suitable effective of meson-exchange model on well-produce the interaction of mesons.
- Exist the $\kappa(700)$; $\sigma(600)$ poles with broad width \rightarrow experiment???

FURTURE PLAN

- Refine our model by reasonable bare mass fitting-parameter for $(\delta_0^0; \delta_0^{\frac{1}{2}}, \delta_1^{\frac{1}{2}})$
- Calculation with the Gaussian F.F
- Solve the dynamical 3 body problems to study the existence and properties of the resonances in the hadronic system.

THANK YOU FOR YOUR ATTENTION