

ハイペロンパズルとユニバーサル3体斥力

Y. Yamamoto

Collaborators: T. Furumoto N. Yasutake Th.A. Rijken

2010 PSR J1614-2230 $(1.97 \pm 0.04) M_{\odot}$

Shapiro delay measurement

2013 PSR J0348-0432 $(2.01 \pm 0.04) M_{\odot}$

核力は自然認識における重要な結節点である

Our strategy for neutron stars

Neutron-star EOS derived from Baryon-Baryon interaction model in relation to Earth-based experiments

without ad hoc parameter for stiffness of EOS

on the basis of G-matrix theory

Our story of neutron-star matter starts from some interaction model

We adopt here Nijmegen ESC model

Extended Soft-Core Model (ESC)

•Two-meson exchange processes are treated explicitly

Meson-Baryon coupling constants are taken consistently with Quark-Pair Creation model

ポメロン交換は斥力芯効果に 対する実体論的模型であり 多体斥力効果が自然に導かれる

How to determine coupling constants g_{3P} and g_{4P} ?

Nucleus-Nucleus scattering data with G-matrix folding potential

Y. Yamamoto, T. Furumoto, N. Yasutake and Th. A. Rijken: Phys. Rev. C 88 (2013) 022801(R).

Double folding Potential

$$U(\mathbf{R}) = \int \rho_1(\mathbf{r}_1) \rho_2(\mathbf{r}_2) v_D(\mathbf{s};\rho,E) d\mathbf{r}_1 d\mathbf{r}_2$$
Projectile(1) Target(2)

$$+ \int \rho_1(\mathbf{r}_1,\mathbf{r}_1-\mathbf{s}) \rho_2(\mathbf{r}_2,\mathbf{r}_2+\mathbf{s}) v_{EX}(\mathbf{s};\rho,E) \exp\left[i\frac{\mathbf{K}\cdot\mathbf{s}}{M}\right] d\mathbf{r}_1 d\mathbf{r}_2$$

$$= V_{DFM}(\mathbf{R}) + iW_{DFM}(\mathbf{R})$$
Frozen-density approx. (FDA)

$$\rho = \rho_1 + \rho_2$$
Complex G-matrix interaction (CEG07)

$$v_{D,EX} = v_{D,EX}^{(real)} + i v_{D,EX}^{(imag)}$$

<u>*T. Furumoto,*</u> Y. Sakuragi and Y. Yamamoto, (Phys. Rev. C79 (2009) 011601(R)) <u>*T. Furumoto,*</u> Y. Sakuragi and Y. Yamamoto, (Phys. Rev. C.80 (2009) 044614)

$^{16}O + ^{16}O$ elastic scattering cross section

Frozen-Density Approximation is crucial in our approach !

Two Fermi-spheres separated in momentum space can overlap in coordinate space without disturbance of Pauli principle

repulsive attractive

MPP and TNA parts are determined to reproduce
* ¹⁶O+¹⁶O scattering data (E/A=70 MeV)
* nuclear saturation property

 $V_{TNA}(r;\rho) = V_0 \ \rho \ \exp(-\eta\rho) \ \exp(-(r/2.0)^2) \ (1+P_r)/2$

phenomenological

 V_0 and η are determined so as to reproduce saturation density/energy

Ratio g_{4P}/g_{3P} is not determined in our analysis $--\rightarrow$ three versions MPa/b/c

$$E_{sym}(\rho) = \frac{E}{A}(\rho, \beta = 1) - \frac{E}{A}(\rho, \beta = 0)$$
$$L = 3\rho_0 \left[\frac{\partial E_{sym}(\rho)}{\partial \rho}\right]_{\rho = \rho_0}$$
$$K = 9\rho_0^2 \left[\frac{d^2}{d\rho^2}\frac{E}{A}(\rho, \beta = 0)\right]_{\rho = \rho_0}$$
$$\beta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$$

 $E/A(\rho_0) = -15.8 \text{ (MPa/b)}, -15.5 \text{ (MPc) MeV}$ at $\rho_0 = 0.16 \text{ fm}^{-3}$ $E_{sym}(\rho_0) = 33.1 \text{ MeV}$ $L(\rho_0) = 70.4 \text{ MeV}$ K = 310 MeV for MPa $E_{sym}(\rho_0) = 33.1 \text{ MeV}$ $L(\rho_0) = 69.2 \text{ MeV}$ K = 280 MeV for MPb $E_{sym}(\rho_0) = 32.7 \text{ MeV}$ $L(\rho_0) = 67.1 \text{ MeV}$ K = 260 MeV for MPc

AV8' +UIX : E_{sym} =35.1 MeV L=63.6 MeV (Gandolfi et al.)

Medium effect in high density region probed by nucleus-nucleus elastic scattering

T. Furumoto,^{1,*} Y. Sakuragi,² and Y. Yamamoto³

PRC(R) accepted

The paper contains some warnings about the use of others widely accepted folding-like methods like JLM. It is important and timely for the community to start a discussion on this subject.

by the referee

crucial role of the TBF effect up to $k_F = 1.6 \text{ fm}^{-1}$

30 MPa k_F=1.8 **20** · $V_{\text{MPa}}^{}(r)$ k_F=1.6 k_F=1.4 10 k_F=1.2 0-0.0 0.5 1.0 1.5 2.0 2.5 r [fm]

Effective two-body potential derived from MPP

Medium effect including TBF effect <u>in high density region</u>

- needs up to $\underline{k}_{F} = 1.6 - 1.7 \text{ fm}^{-1}$ for heavy-ion elastic scattering

Hyperon-Mixed Neutron-Star Matter

(ESC08c+MPP+TBA) model should be tested in hypernuclei hyperonic sector $-Massive (2M_{\odot})$ neutron stars

Softening of EOS by hyperon mixing

Hyperon puzzle !

An idea is Universal Three-Baryon Repulsion (TBR) by Takatsuka

Modeling of TBR in ESC = Multi-Pomeron exchange Potential

hypernuclei - neutron star

YN interactions based on hypernuclear study Hyperon mixing in neutron-star matter

 $\begin{array}{c} \Lambda \& \Sigma \text{ states based on} \\ \text{ESC08c} + \text{MPP} + \text{TBA} \end{array} \end{array}$

TNA

Y-nucleus folding potential derived from YN G-matrix interaction $G(r; k_F)$

$$\begin{split} U_{Y}(\mathbf{r},\mathbf{r}') &= U_{dr} + U_{ex} \\ U_{dr} &= \delta(\mathbf{r} - \mathbf{r}') \int d\mathbf{r}'' \rho(\mathbf{r}'') V_{dr}(|\mathbf{r} - \mathbf{r}''|; \langle k_F \rangle) \\ U_{ex} &= \rho(\mathbf{r},\mathbf{r}') V_{ex}(|\mathbf{r} - \mathbf{r}'|; \langle k_F \rangle) \\ V_{dr} &= \frac{1}{2(2t_{Y} + 1)(2s_{Y} + 1)} \sum_{TS} (2T + 1)(2S + 1) [G_{TS}^{(+)} + G_{TS}^{(-)}] \\ V_{ex} &= \frac{1}{2(2t_{Y} + 1)(2s_{Y} + 1)} \sum_{TS} (2T + 1)(2S + 1) [G_{TS}^{(+)} - G_{TS}^{(-)}] \\ \\ \overline{\mathsf{Averaged-k_F}} \ \text{Approximation} \\ \langle \rho \rangle &= \langle \phi_{Y}(r) | \rho(r) | \phi_{Y}(r) \rangle \\ \langle k_F \rangle &= (1.5\pi^{2} \langle \rho \rangle)^{1/3} \end{split} \ \begin{array}{c} \text{calculated} \\ \text{self-consistently} \\ \end{split}$$

Mixed density $ho(\mathbf{r}_1,\mathbf{r}_2)=\sum_j arphi_j^*(\mathbf{r}_1)arphi_j(\mathbf{r}_2)$ obtained from SkHF w.f.

ESC08cとNSC97fから導かれるG-matrix interactionの比較 (同じnucleon spectraを用いる)

	${}^{1}S_{0}$	${}^{3}S_{1}$	$^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	D	U_{Λ}	$U_{\sigma\sigma}$	m^*_{Λ}
ESC08c	-13.3	-26.7	2.6	0.2	1.8	-3.2	-1.6	-40.0	1.09	0.73
NSC97f	-14.6	-25.0	2.3	0.4	3.7	-0.8	-1.3	-35.4	1.56	0.67

違いはodd statesにある(高密度では大きな差)
 ESC08cはIsakaの計算で用いられたバージョン

同じ条件の下では ESC08cはNSC98f より優れている 様々なYN相互作用模型(ND/NF, NSC89, NSC97, JA/JB, ···)

自然な同一条件(nucleon spectrum等)で比較すれば多くはリジェクトされる

相互作用模型の違いは中性子星における onset densityに反映される

従来使われたND、NF、NSC89、NSC97eは それぞれにまずい点を有している

		s	p	d	f
exp)	-23.7	-17.6	-10.9	-3.7
MF	°a	-23.8	-17.4	-10.6	-3.8
\mathbf{ES}	\mathbf{C}	-23.7	-16.8	-9.8	-3.0

	$^{13}_{\Lambda}\mathrm{C}$	$^{12}_{\Lambda}\mathrm{B}$
\exp	-11.9	-11.4
MPa	-12.3	-11.6
ESC	-11.1	-10.4

Strong density dependence by (MPP+TBA)
mass-dependence of B∧

YNN3体力効果を検証するためには 精密で系統的なBAの実験値と 対応する理論計算が必要である

RMF model におけるhyperon sectorへのinput

$$U_{\Lambda}^{(N)} = -30 \text{ MeV}$$
 -40.0
 $U_{\Sigma}^{(N)} = +30 \text{ MeV}$ +15.2

$$U_{\Xi}^{(N)} = -18 \text{ MeV} -1.2$$

G-matrix with ESC08c

U_YのみがYN interactionの指標ではない Density dependence,Effective Mass,etc

Quark-Pauli effect in ESC08 models

ESC core = pomeron + ω

Repulsive cores are similar to each other in all channels

Assuming "equal parts" of ESC and QM are similar to each other

Almost Pauli-forbidden states in [51] are taken into account by changing the pomeron strengths for the corresponding channels phenomenologically

 $g_P \longrightarrow factor * g_P$

by Oka-Shimizu-Yazaki

	the isospin, spin basis.
(S, I)	$V = aV_{[51]} + bV_{[33]}$
(0, 1)	$V_{NN} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$
(1,0)	$V_{NN} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$
(0, 1/2)	$V_{\Lambda\Lambda} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$
(1, 1/2)	$V_{\Lambda\Lambda} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$
(0, 1/2)	$V_{\Sigma\Sigma} = \frac{17}{18} V_{[51]} + \frac{1}{18} V_{[33]}$
(1, 1/2)	$V_{\Sigma\Sigma} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$
(0, 3/2)	$V_{\Sigma\Sigma} = \frac{4}{9} V_{[51]} + \frac{5}{9} V_{[33]}$
(1, 3/2)	$V_{\Sigma\Sigma} = \frac{8}{9}V_{[51]} + \frac{1}{9}V_{[33]}$

Table III. $SU(6)_{fs}$ -contents of the various potentials on the isospin, spin basis. =

(S, I)	$V = aV_{[51]} + bV_{[33]}$
(0,0)	$V_{\Lambda\Lambda,\Lambda\Lambda} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$
(0,0)	$V_{\Xi N,\Xi N} = \frac{1}{3}V_{[51]} + \frac{2}{3}V_{[33]}$
(0,0)	$V_{\Sigma\Sigma,\Sigma\Sigma} = \frac{11}{18} V_{[51]} + \frac{7}{18} V_{[33]}$
(0, 1)	$V_{\Xi N,\Xi N} = \frac{7}{9}V_{[51]} + \frac{2}{9}V_{[33]}$
(0,0)	$V_{\Sigma\Lambda,\Sigma\Lambda} = \frac{2}{3}V_{[51]} + \frac{1}{3}V_{[33]}$
(0, 2)	$V_{\Sigma\Sigma,\Sigma\Sigma} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$
(1, 0)	$V_{\Xi N,\Xi N} = \frac{5}{9}V_{[51]} + \frac{4}{9}V_{[33]}$
(1, 1)	$V_{\Xi N,\Xi N} = \frac{17}{27} V_{[51]} + \frac{10}{27} V_{[33]}$
(1, 1)	$V_{\Sigma\Lambda,\Sigma\Lambda} = \frac{2}{3}V_{[51]} + \frac{1}{3}V_{[33]}$
(1, 1)	$V_{\Sigma\Sigma,\Sigma\Sigma} = \frac{16}{27} V_{[51]} + \frac{11}{27} V_{[33]}$

Pauli-forbidden state in $V_{[51]}$ \longrightarrow strengthen pomeron coupling $V_{BB} = V(pom) + w_{BB}[51] * V(PB)$

Table 1: Values of U_{Σ} at normal density and partial wave contributions for ESC08c models (in MeV).

model	T	${}^{1}S_{0}$	${}^{3}S_{1}$	$^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	D	U_{Σ}
$\mathrm{ESC08c}$	1/2	10.9	-21.6	2.4	2.1	-6.0	-1.0	-0.7	
	3/2	-13.5	31.0	-4.7	-1.8	5.9	-1.5	-0.2	+1.2

Pauli-forbidden state in QCM \rightarrow strong repulsion in T=3/2 ${}^{3}S_{1}$ state Σ^{-} in neutron matter $U_{\Sigma^{-}} = +15.2$ MeV

Events of twin Λ hypernuclei in emulsion

Event I (most probable mode) [1]

(A)
$$\Xi^{-} + {}^{12}C \rightarrow^{9}_{\Lambda} \text{Be} + {}^{4}_{\Lambda} \text{H} (B_{\Xi^{-}} = 0.82 \pm 0.17 \text{ MeV}),$$

(B) $\Xi^{-} + {}^{12}C \rightarrow^{9}_{\Lambda} \text{Be} + {}^{4}_{\Lambda} \text{H}^{*} (B_{\Xi^{-}} = -0.23 \pm 0.17 \text{ MeV}),$

E176 events

Event II (three possibilities)
$$[2]$$

$$\begin{array}{ll} (A) & \Xi^{-} + {}^{12}\mathrm{C} \rightarrow^{9}_{\Lambda}\mathrm{Be} + {}^{4}_{\Lambda}\mathrm{H} & (B_{\Xi^{-}} = 3.89 \pm 0.14 \ \mathrm{MeV}) \ , \\ (B) & \Xi^{-} + {}^{12}\mathrm{C} \rightarrow^{9}_{\Lambda}\mathrm{Be}^{*} + {}^{4}_{\Lambda}\mathrm{H} & (B_{\Xi^{-}} = 0.82 \pm 0.14 \ \mathrm{MeV}) \ , \\ (C) & \Xi^{-} + {}^{12}\mathrm{C} \rightarrow^{9}_{\Lambda}\mathrm{Be} + {}^{4}_{\Lambda}\mathrm{H}^{*} & (B_{\Xi^{-}} = 2.84 \pm 0.15 \ \mathrm{MeV}) \ , \\ (D) & \Xi^{-} + {}^{12}\mathrm{C} \rightarrow^{9}_{\Lambda}\mathrm{Be}^{*} + {}^{4}_{\Lambda}\mathrm{H}^{*} & (B_{\Xi^{-}} = -0.19 \pm 0.15 \ \mathrm{MeV}) \ , \end{array}$$

木曽イベント $\Xi^- + {}^{14}N \rightarrow {}^{10}_{\Lambda}Be + {}^{5}_{\Lambda}He$ (A) ${}^{10}_{\Lambda}Be$ in ground state $(B_{\Xi^-} = 3.82 \pm 0.18 \text{MeV})$, (B) ${}^{10}_{\Lambda}Be$ in excitation of 2.68MeV $(B_{\Xi^-} = 1.14 \pm 0.18 \text{MeV})$

G-matrix folding model

			$\mathrm{ESC08c}$	Ehime	exp
	1S	B_{Ξ^-}	3.83	5.10	
		$\Gamma_{\Xi^{-}}$	1.49	0.21	
		$\sqrt{\langle r^2 \rangle}$	3.34	3.18	
7		\bar{k}_F	1.16	1.22	
	2P	B_{Ξ^-}	0.68	0.82	0.82 ± 0.17
		Γ_{Ξ^-}	0.44	0.13	
		$\sqrt{\langle r^2 \rangle}$	7.54	6.92	
		\bar{k}_F	0.84	0.75	

 $\Xi^- + {}^{12}C$

		$\mathrm{ESC08c}$	Ehime	exp
1S	B_{Ξ^-}	4.82	5.45	
	$\Gamma_{\Xi^{-}}$	1.87	0.25	
	$\sqrt{\langle r^2 \rangle}$	3.18	3.18	
	\bar{k}_F	1.19	1.25	
2P	B_{Ξ^-}	1.22	1.17	1.14 ± 0.18
	$\Gamma_{\Xi^{-}}$	0.77	0.17	
	$\sqrt{\langle r^2 \rangle}$	5.66	6.17	
	\bar{k}_F	0.93	0.80	

 $\Xi^- + {}^{14}N$

Table 1: $U_{\Xi}(\rho_0)$ and partial wave contributions for ESC08c calculated with the CON choice. Γ_{Ξ}^c denotes ΞN - $\Lambda\Lambda$ conversion width. all entries are in MeV.

T	$^{1}S_{0}$	${}^{3}S_{1}$	$^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	U_{Ξ}	Γ^c_{Ξ}
0	1.4	-8.0	-0.3	1.8	1.4	-2.1		
1	10.7	-11.1	1.1	0.7	-2.6	-0.0	-7.0	4.5

 U_{Ξ} - = -1.2 MeV in neutron matter

Hyperon-mixed Neutron-Star matter with universal TBR (MPP)

EoS of $n+p+\Lambda+\Sigma+e+\mu$ system

ESC08c(YN) + MPP(YNN) + TBA(YNN)

Hyperon-mixed neutron matter

Starting from single particle potentials calculated with the G-matrix theory:

$$U_B(k) = \sum_{B'} U_B^{(B')}(k)$$
 with $B, B' = n, p, \Lambda, \Sigma^-$
 $U_B^{(B')}$ means a single particle potential of B particle in B' matter

$$\begin{split} \varepsilon &= \varepsilon_{mass} + \varepsilon_{kin} + \varepsilon_{pot} \\ &= 2\sum_{B} \int_{0}^{k_{F}^{B}} \frac{d^{3}k}{(2\pi)^{3}} \left[M_{B} - M_{n} + \frac{\hbar^{2}k^{2}}{2M_{B}} + \frac{1}{2}U_{B}(k) \right] \\ &\varepsilon_{mass} = \sum_{B} (M_{B} - M_{n})\rho_{B} \\ &\varepsilon_{kin} = \sum_{B} \frac{3}{5} \frac{\hbar^{2}(k_{F}^{B})^{2}}{2M_{B}} \rho_{B} = \sum_{B} \frac{3}{5} \frac{\hbar^{2}}{2M_{B}} (3\pi^{2})^{2/3} (\rho_{B})^{5/3} \\ &\varepsilon_{pot} = 2\sum_{B} \int_{0}^{k_{F}^{B}} \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{2}U_{B}(k) = \frac{1}{2}\sum_{B} \int_{0}^{k_{F}^{B}} \frac{k^{2}dk}{\pi^{2}} U_{B}(k) \end{split}$$

Chemical potential : $\mu_B = \frac{\partial \varepsilon}{\partial \rho_B}$

 Λ +neutron matter

Chemical potential :
$$\mu_B = \frac{\partial \varepsilon}{\partial \rho_B}$$

Chemical equilibrium conditions:

$$\mu_n = \mu_p + \mu_e$$
$$\mu_e = \mu_\mu$$
$$\mu_{\Sigma^-} = \mu_n + \mu_e$$
$$\mu_\Lambda = \mu_n$$

Baryon-number conservation : $y_n + y_p + y_{\Lambda} + y_{\Sigma^-} = 1$ Charge neutrality : $y_p = y_{\Sigma^-} + y_e + y_{\mu}$ β -stable n+p+ Λ + Σ ⁻ matter

EOS

Conclusion

ESC08c+MPP+TBA model

- * MPP strength determined by analysis for $^{16}O+^{16}O$ scattering
- * TNA adjusted phenomenologically to reproduce $\Gamma(A(x)) = 15.9$ MeV with r = 0.16 fm⁻¹
 - $E/A(\rho_0) = -15.8 \text{ MeV with } \rho_0 = 0.16 \text{ fm}^{-3}$
- * Consistent with hypernuclear data
- * No ad hoc parameter to stiffen EOS BB interactions based on on-Earth experiments

MPa set including 3- and 4-body repulsions leads to massive neutron stars with $2M_\odot$ in spite of significant softening of EOS by hyperon mixing

MPb/c including 3-body repulsion leads to comparable to or slightly smaller values than $2M_{\odot}$

Hyperon Puzzleは解けるか?

B_Aで決まるのは(MPP+TBA) 中性子星のMR relationに実際に効くのはMPP

MPP(hyperon sector)のterrestrial experiment困難? LQCDか?