

進学術領域「実験と観測で解き明かす中性子星の核物質」 第3回研究会 @ 熱川

J-PARC E40 実験の準備状況 The preparation status of J-PARC E40

2014.09.25

R. Honda (Tohoku Univ.) for the E40 collaboration.

Contents

- Introduction
 - Physics motivation
 - Experimental method
- Preparation status
 - Cylindrical fiber tracker
 - BGO calorimeter
 - MPPC readout electronics
- Summary

Introduction – Overview -

The J-PARC E40 experiment :

Measurement of the differential cross sections of

- Σ⁺p elastic scattering,
- Σ -p elastic scattering,
- $\Sigma^-p \to \Lambda N$ inelastic scattering.

with the high statistics (10⁴ events for each channel.)

The results will be an quite important input data for the two-body interaction model in the flavor SU(3).

Introduction – Overview -

The J-PARC E40 experiment :

Measurement of the differential cross sections of

- Σ⁺p elastic scattering,
- Σ -p elastic scattering,
- $\Sigma^-p \to \Lambda N$ inelastic scattering.

with the high statistics (10⁴ events for each channel.)

The results will be an quite important input data for the two-body interaction model in the flavor SU(3).

Introduction – Overview -

The J-PARC E40 experiment :

Measurement of the differential cross sections of

- Σ⁺p elastic scattering,
- Σ -p elastic scattering,
- $\Sigma^-p \to \Lambda N$ inelastic scattering.

with the high statistics (10⁴ events for each channel.)

The results will be an quite important input data for the two-body interaction model in the flavor SU(3).

Introduction - Physics motivation -

Baryon octet with spin $\frac{1}{2}$ in the SU_f(3) symmetry.

The understanding of Nucleon-Nucleon (*NN*) interaction

Baryon-Baryon (BB) interaction

- → Nucleon-Nucleon (NN)
- → Hyperon-Nucleon (YN)
- → Hyperon-Hyperon (YY)

Precise cross section data on *YN* scatterings are awaited to constrain parameters of two-body interaction models in SU_f(3).

Introduction - Physics motivation -

Baryon octet with spin $\frac{1}{2}$ in the SU_f(3) symmetry.

The understanding of Nucleon-Nucleon (*NN*) interaction

A lot of experimental data on NN scatterings.

Baryon-Baryon (BB) interaction

- → Nucleon-Nucleon (NN)
- → Hyperon-Nucleon (YN)
- → Hyperon-Hyperon (YY)

Lack of experimental data on YN scatterings.

Precise cross section data on *YN* scatterings are awaited to constrain parameters of two-body interaction models in SU₄(3).

Introduction – Physics motivation -

For the investigation of the inner part of the neutron star.

Σ⁺p channel

Probe the origin of the repulsive core.

The quite strong repulsive force due to the Pauli blocking in the quark level.

$\Sigma^-p \to \Lambda N$ conversion channel

Information on the Λ – Σ coupled channel.

 Σ mixing in the Λ N interaction in neutron stars.

Expected statistic errors

~20 days beam time for Σ^{-} and Σ^{+} each

(Σ⁻p → Λn is by-product of Σ⁻p elastic scattering)

Expected statistic errors

~20 days beam time for Σ^{-} and Σ^{+} each

(Σ-p → Λn is by-product of Σ-p elastic scattering)

Introduction – Proton detection system -

Preparation status

Preparation status

Actual design of the proton detection system.

3. Multi-MPPC readout electronics (VME-EASIROC)

Preparation status

·CFT

- 8 layers configuration
- $r = 49 \sim 84 \text{ mm}$
- ~5000 fibers

BGO calorimeter

• 24 crystals (25 x 30 x 400 mm³)

•VME-EASIROC

- 64 channels/board
- ADC/MHTDC

Preparation status (CFT)

CFT consists of the straight layer (Φ layer) and the spiral layer (uv layer) using Kuraray SCSF-78MJ with diameter of 0.75 mm.

Straight layer

400 mm

Spiral layer

CFT consists of the straight layer (Φ layer) and the spiral layer (uv layer) using Kuraray SCSF-78MJ with diameter of 0.75 mm.

CFT consists of the straight layer (Φ layer) and the spiral layer (uv layer) using Kuraray SCSF-78MJ with diameter of 0.75 mm.

Spiral layer

CFT consists of the straight layer (Φ layer) and the spiral layer (uv layer) using Kuraray SCSF-78MJ with diameter of 0.75 mm.

CFT consists of the straight layer (Φ layer) and the spiral layer (uv layer) using Kuraray SCSF-78MJ with diameter of 0.75 mm.

The position dependence of the light yield for β ray with several reflection materials.

Summary of CFT

- 2/8 layers were constructed.
 - One straight layer
 - One spiral layer
- The light yield and its uniformity is best when using aluminized mylar as a reflector.
- We are preparing the setup for the test beam in Tohoku.

Preparation status (BGO calorimeter)

Preparation status – BGO calorimeter -

All the BGO crystals were already wrapped by single aluminized mylar.

Preparation status - BGO calorimeter -

The position dependence of the light yield for γ ray (661 keV) with several wrapping materials.

Preparation status – BGO calorimeter -

The crystal dependence of the energy resolution for γ ray (661 keV) with aluminized mylar.

In addition, the energy resolution for proton @ 80 MeV was 1 %. (Satisfy the requirement.)

Preparation status – BGO calorimeter -

Summary of BGO calorimeter

- All the crystals were wrapped with aluminized mylar.
- The energy resolution was
 - 8% @ 661 keV γ ray
 - 1% @ 80 MeV proton
- No crystal dependence of the resolution.

Preparation status (VME-EASIROC)

Preparation status – VME-EASIROC -

The electronics dedicated for the multi-MPPC readout using EASIROC.

EASIROC

EASIROC electronics series

EASIROC evaluation board (Developed by Open-It, Tohoku)

An ASIC dedicated to read multi-MPPC Front-end analog part of the board.

- 32 ch input/chip
- Double gain
- AMP
- Shaper
- Discriminator
- Slow control

NIM-EASIROC (Developed by Open-It, Osaka)

VME-EASIROC (Developed by Open-It, Tohoku)

Preparation status – VME-EASIROC -

Specification

- 64 ch input/board
- ADC
 - Pulse height hold type
 - (Fast clear)
- MHTDC in FPGA
 - LSB = 1 ns
 - leading/trailing
 - Time window = 1 us
 - (Fast clear)
- DAQ
 - 100 Mbps SiTCP
 - Total dead time = 20 us
 - All DAQ signals and event tag are distributed from J0

Preparation status – VME-EASIROC -

Demonstration

Analog signal of MPPC (Held at the peak position)

ADC distribution of MPPC for LED light

MHTDC was also already implemented and worded well.

Preparation status – BGO calorimeter -

Summary of VME-EASIROC

- 64 ch input Multi-MPPC readout electronics with EASIROC
- ADC/MHTDC on board
- Netword interface (100 Mbps TCP)
- Total dead time is 20 us.

CFT

- The test experiment in Tohoku using layers already constructed is planned for the performance evaluation.
- We will construct other layers of CFT in this fiscal year.

BGO calorimeter

The waveform readout is under the development.

VME-EASIROC

- Mass production in this fiscal year.
- Implement fast clear.

Summary

- The J-PARC E40 experiment aims to measure the differential cross sections of Σp elastic and Σp → ΛN inelastic scatterings.
 - Probe the repulsive force between Σ^- n channel in the neutron star through the Σ^+ p scattering.
- The proton detection system comprised of CFT, BGO calorimeter, and VME-EASIROC is an essential detector system in E40 to identify the Σ p scattering.
- For CFT, 2/8 layers (a straight layer and a spiral layer) were constructed.
 - The position dependence of the light yield was the most uniform when putting a aluminized mylar as a reflector.
- The 24 BGO crystals were wrapped by single aluminized mylar.
 - Its energy resolution were 1% for 80 MeV proton and 8% for 661 keV γ ray.
- VME-EASIROC was developed and its firmware including MHTDC was implemented.

Backup

Baryon-Baryon interaction in the flavor SU(3) symmetry.

Baryon octet with spin ½ in the SU_f(3) symmetry.

The interaction between baryon octet is labeled by irreducible representations.

$$(11) \otimes (11) = (22) \oplus (11)_s \oplus (00) \oplus (03) \oplus (30) \oplus (11)_a.$$
 flavor symmetric flavor anti-symmetric

NN, Λ N, and Σ N potential using irreducible representation.

BB(t)	flavor symmetric	flavor anti-symmetric
NN(t=0)	-	(03)
NN(t=1)	(22)	-
$\Lambda N(t=1/2)$	$\frac{1}{\sqrt{10}}((11)_s + 3(22))$	$\frac{1}{\sqrt{2}}(-(11)_a + (03))$
$\Sigma N(t=1/2)$	$\frac{\frac{1}{\sqrt{10}}((11)_s + 3(22))}{\frac{1}{\sqrt{10}}(3(11)_s - (22))}$	$\frac{\frac{1}{\sqrt{2}}(-(11)_a + (03))}{\frac{1}{\sqrt{2}}((11)_a + (03))}$
$\Sigma N(t=3/2)$	(22)	(30)

Repulsive force originated from the Pauli principle in the quark level.

[M. Oka, et al., PTPS 137(2000)1.]

Introduction -Baryon-baryon interaction in SU(3)-

Baryon octet

V(r) [MeV]

V(r) [MeV]

-500

-1000

-1500

0.4

0.6

8.0

r [fm]

1.0

1.2

1.4

6 independent flavor basis interaction in SU(3) limit

$$8 \otimes 8 = 27 \oplus 10^* \oplus 10 \oplus 8_s \oplus 8_a \oplus 1$$

Lattice QCD, T. Inoue et al. arXiv:1007:3559 [hep-lat]

J-PARC E40 -Physics motivation of E40-

 $\Sigma N (I = 3/2)$

 $\Sigma^+ \mathbf{p}$

Spin Singlet (${}^{1}S_{0}$)

27 (same as NN (I = 1))

Spin Triplet (${}^{3}S_{1}$)

10 (almost Pauli forbidden)

In SU(3) limit.

Thanks to SU(3) symmetry, behavior of ${}^{1}S_{0}$ for $\Sigma^{+}p$ is similar to NN interaction.

Storngly repulsive with quark picture.

J-PARC E40 -Physics motivation of E40-

The method to obtain phase shift without phase-shift analysis.

- → Extract contribution from S-wave
- \rightarrow ¹S₀ state can be ignored

$$\frac{d\sigma}{d\Omega} = \frac{1}{k^2} \left| \sum_{l=0}^{\infty} (2l+1) e^{i\delta_l} \sin^2(\delta_l) P_l(\cos(\theta)) \right|^2$$

$$P_l(0) = 0, \text{ for } l = 1,3,...$$

→ S-wave is extracted

$$\frac{d \sigma}{d \Omega}(90^{\circ}) = \frac{1}{4} \frac{1}{k^{2}} \sin^{2}(\delta_{1S0}) + \frac{3}{4} \frac{1}{k^{2}} \sin^{2}(\delta_{3S1}) + (higher wave, etc...)$$

$$^{1}S_{o} \text{ channel}$$

$$^{3}S_{1} \text{ channel}$$

\rightarrow ¹S₀ is negligibly small

$$\frac{d \sigma}{d \Omega} (90^{\circ}) \approx \frac{3}{4} \frac{1}{k^{2}} \sin^{2}(\delta_{3S1}) + (higher wave, etc...)$$

$$^{3}S_{1} \text{ channel}$$

Sensitive to ³S₁ channel

J-PARC E40 -Role of proton detection system-

Particle ID

Measurements

- ∆E (energy deposit in a fiber)
- Scattering angle (by tracking)
- Kinetic energy

Requirements

Tracker part

Energy resolution: 20 % @ 1 MeV

Angle resolution : $\sigma = 1$ degree

Calorimeter part

Energy resolution : 4 % @ 70 MeV

Expected results

Extract δ_{3S1} from cross section for various momentum range

$$\frac{3}{4} \frac{1}{k^2} \sin^2 \delta_{3S1} = \frac{d \sigma}{d \Omega} (90^\circ) - (\textit{higher wave, etc...})$$

$$\boxed{\text{Model dependent}}$$

$$\frac{9}{20} \frac{40}{20} = \frac{d \sigma}{d \Omega} (90^\circ) - (\textit{higher wave, etc...})$$

$$\boxed{\text{Model dependent}}$$

$$\frac{3}{4} \frac{1}{k^2} \sin^2 \delta_{3S1} = \frac{d \sigma}{d \Omega} (90^\circ) - (\textit{higher wave, etc...})$$

$$\boxed{\text{Model dependent}}$$

$$\frac{3}{4} \frac{1}{k^2} \sin^2 \delta_{3S1} = \frac{d \sigma}{d \Omega} (90^\circ) - (\textit{higher wave, etc...})$$

$$\boxed{\text{Model dependent}}$$

$$\frac{3}{4} \frac{1}{k^2} \sin^2 \delta_{3S1} = \frac{d \sigma}{d \Omega} (90^\circ) - (\textit{higher wave, etc...})$$

$$\boxed{\text{Model dependent}}$$

Momentum (MeV/c)

Possible to obtain δ_{3S1} with 20 % accuracy including uncertainty of models