不安定核の集団運動から探る 状態体方程式のパラメーターL

新学術領域研究会 「実験と観測で解き明かす中性子星の核物質」 第3回研究会

熱川ハイツ・伊豆熱川 2014年9月23-25日

INAKURA Tsunenori (Chiba Univ.)

Equation of State (EoS)

Giant Dipole Resonance (GDR)

- Symmetry energy E_{sym} is the restoring force.
- Many experimental data has been accumulated.

Unclear relation between experimental data and L, E_{sym}

Giant Dipole Resonance (GDR)

- Symmetry energy E_{sym} is the restoring force.
- Many experimental data has been accumulated.

Unclear relation between experimental data and L, E_{sym}

Pygmy Dipole Resonance (PDR)= Pygmy Dipole Strength (PDS)= Low-lying Dipole Strength (LDS)= Low-Energy Dipole (LED)

PDR in stable nuclei: < 1% Cross Section PDR in v-rich nuclei: < several % Cross Section PDR in v-rich nuclei: < several % Cross Section Extract EoS information from PDR and neutron-skin properties!

Observed PDRs

<u>L & skin</u>

Large $L \Leftrightarrow$ Small E_{sym} in low- $\rho \Leftrightarrow$ Thick n-skin \Leftrightarrow Large PDR Small $L \Leftrightarrow$ Large E_{sym} in low- $\rho \Leftrightarrow$ Thin n-skin \Leftrightarrow Small PDR

Roca-Maza+, PRL 106, 252501

Chen+, PRC72, 064309; PRC76, 054316

Carbone+, PRC81, 041301® (2010)

<u>**Cross section**</u>(σ_{abs}) & <u>**Polarizability**</u>(α_D)

Thick n-skin \Leftrightarrow Large restoring force \Leftrightarrow Large eccentricity \Leftrightarrow Large α_D Thin n-skin \Leftrightarrow Small restoring force \Leftrightarrow Small eccentricity \Leftrightarrow Small α_D

New correlation

Based on Droplet Model (with some approximations & assumptions),

$$lpha_D S_0 \sim rac{\pi e^2}{54} A \langle r^2
angle \left(1 + rac{5}{3} rac{L}{S_0} arepsilon_A
ight), \, arepsilon_{208} \sim rac{1}{8}$$

Roca-Maza+, PRC88, 024316 (2013)

L is a key ingredient of EoS

Which is best? Interaction-dependence?

L (EOS)Analysis has been performed ONLY in
flagship nuclei: 68Ni, 132Sn, 208Pb.PDR ↔ n-skin
Established?How about other nuclei?Careful assessment needed!

Linear response calculation with Skyrme in 3D mesh

- Density Functional Theory with Skyrme energy functional
- Fully self-consistent calculation. **PARAMETER FREE!**
- 3D mesh representation
 - suitable for describing unstable nuclei having skin or halo
 - applicable for deformed nuclei
 - deal with continuum states in good approximation
- Linear response calculation
 - compute linear response at fixed complex energy
 - good compatibility with paralleled computer
- No pairing correlation which has small impact on E1 mode.

14 interactions

- ➢ 2 Skyrme which are less used:
- > 2 Skyrme which are recently made:
- \rightarrow 4 Skyrme to cover wide region of L:
- SkM*, SLy4, SGII SkT4, Ska UNEDF0, UNEDF1 SkI2, SkI3, SkI4, SkI5
- > 3 Gogny to check model dependence D1, D1S, D1M

Introduction of *L*-dependence

$$V_{
m Skyrme} \Rightarrow V_{
m Skyrme} - V_L \left[
ho^lpha(r) -
ho_0^lpha
ight] P_\sigma \delta(r)$$

Ono+, PRC68, 051601

Correlations in ¹³²Sn

PDR in n-rich nuclei

although only ⁶⁸Ni, ¹³²Sn, ²⁰⁸Pb are calculated as **flagship nuclei**.

Energy [MeV]

25

PDR in n-rich nuclei

Ebata+, PRC90, 024303

<u>Summary</u>

- $\succ \alpha_{\rm D} S_0$ and skin thickness correlates to *L* with less interaction dependence than cross section σ and $\alpha_{\rm D}$, though not always good enough.
- → Well-developed PDR makes their correlation more conspicuous, and therefore better in constraining *L* from skin or $\alpha_D S_0$.
- Halo nuclei (e.g. 84Ni) are not welcome because their correlations are strongly influenced by loosely bound orbits.