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Magnetic Fields of Celestial Bodies
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0. What are Magnetars?

<> A subclass of isolated neutron stars. About 30 known in the
Milky Way and Magellanic Clouds. New discoveries continue.

< Several are found in Super Nova Remnants: young.

<> Pulse (=rotation) periods in the range 2-11 sec, with large spin-
down rates. Assuming spin-down by emitting M2 radiation, these
imply dipole mag. files of 10'+1> G. Exceeding the critical value
of 4 X 101° G. Many QED effects expected.

< Emitting in X-rays, with weak/no radio signals. Not rotation
powered; L > - dE, /df . Not accretion powered, either.

rot

Magnetically powered.

<> Sporadic intensity changes on various time scales from msec to
years. Sometimes behave like a “machinge-gun”, and produce
“g1ant flares” which can even disturb the Earth’s ionosphere.

2014/9/23 HFEMfEEEE@E)I 2



1. Toroidal Magnetic Fields of Magnetars

We expect magnetars to have toroidal field > poloidal field

Theoretically:

<>Collapse and diff. rotation in Observationally:
progenitors wind up MF lines. Recently discovered low-dipole-

<Some MF lines emerge from field (6 X 10> G) magnetar,
the surface to form multipoles. SGR 0418+5729 (Rea +10):

<Requires much stronger B,
to sustain its burst activity

<>Shows spectral evidence for

intense multipole surface fields
with > 2 X 10'* G (Tiengo+13).
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How can we measure toroidal MF?
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Poloidal fields
cause oblate
deformation

Jj X B force

Toroidal fields
cause prolate
deformation

Toroidal

e=Al/l ~ a few (B,/1e16G)> X 104
(Gualtier1 +2011)
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3. Free Precession of an Axisymmetric Body

toroidal field

NS
prolate body

Mom. inertia /,=/, > I; (lemon shape),
deviating from sphericity by e= (/,-15)/1;

<L : ang. mom. fixed to inertial frame.

<x;: The body’s symmetry axis. It rotates
around L at a period P, = 2xnl/,/L, with a
constant wobbling angle a.

< The body also spins around x; with a
slightly different period, P; = 2n/,/L.

<>& : the radiation direction. If it breaks
the symmetry around Xx;, it rotates w.r.t.

the L-x, plane with slip period
T=(1/P4-1/P,)'=P, /¢

<>Then, the observed pulses (with period
P,) suffer phase modulations at 7.

Any internal energy dissipation will make o increase with time 1f €>0.
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4. Two Suzaku Observations of 4U0142+61

Clear spectral evolution with the

VvFv Spectra onTwo Occasions paracteristic age (Enoto+10)

o1 | 2007 (Enoto+11) |
s | 2009 & 1 F
el aled ,
Energy (keV) - 4U 0142+61 (70 kyr)
001 HH— el
' 1 10 100
Peculiar Hard/Soft 2-components, Energy (keV)

possibly with different emission The hard c. may result from

regions (Enoto+10,11) QED splitting of 511 keV
photons (Enoto+10)
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Final integration of HXD-S (2003)

16 Well units
PMT 36¢ch
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S. Suzaku Periodograms of 4U0142+61

A steady spin-down, indicating B,=1.3 X 10'* G
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(Enoto+11)
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6. Detalled Analy31s of the 2009 Data

* (a)XIS ___________ . 2909 Assuming that arrival times of the
5 5 HXD photons from 4U 0142+61
are periodically modulated by
At = A sin 2nt/O -¢),
we corrected them by —Ar .

Chisquare

((15 40 keV pulse proﬁles))
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7. Demodulation Search

‘ At = A sin 2nt/O -p) \

‘ ~ |Scanning over
s1gniiicance e |~ |4.¢0,andQ
i % |spaces, we
s, < g | determined the
< M <+ 7 | condition that
~Si= Sw maximizes the
= hard XR pulse
=— =  — |significance.
R A=0.7%0.3
. Sec
- ' p=70° =30
A | . L Phys. Rev. Lett.
: al phase ¢ [PIppenog &, 1 Grpsdrkees
0 180 360 30 40 50 60 70 ksec (2014)
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8. Suzaku Data 1n 2013 (Aug. 1-2)

0.12

= @(@é@%ﬂowg@g ) i In the same way as in 2009,
A 300 |- Soft (XIS 1— At= A4 Sin (ZTEt/Q _(p)
7 F 10 keV). was assumed, and each photon
o F 2p07 arrival time was corrected by —Ar .
5 ook {15-40 keV pulse profiles)
50 | 013 prrr 711 T T
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9. Demodulation Search 1n 2013

At = A4 sin (27tt/T—gﬂ) 2 |, A=1.2%+04
T S
Y il
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10. Comparing the 3 Data Sets | X507,

S 2.0 < The T=55 ksec |

@ T=55+10 pulse-phase mod. ¢t

015 1s seen only 1n i

T 5S40 kev hard XR.

& 1.0 < Its amplitude 4

;ﬂa may be variable.

- 0.5 XIS <~ Pulse profiles are —=———rremcs

§ W 1-10 stable in soft XR, 2009 FXD
0.0 while variable in | 1“] L [k

2007 2009 XV 2013 hard XR. A

The results cannot be explained by the
presence of a binary companion; then,
it should also be detected in soft XR.
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11. Magnetar 1E1547-54: a 2" Example

22(n2)
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‘ 2009 J an. 2 28 29, observed w1th Suzaku 1n an outburst
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2% with the XIS as well.
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12. Discussion & Conclusion

< In the magnetar 4U 0142+61, the P=8.69 sec hard X-ray
pulses were phase-modulated at a period of 7~55 ksec and
with a variable amplitude 4. The periodical nature was confirmed.

<> The pulse-phase modulation was absent (4<0.3 sec) in soft X-rays
on any occasion. The soft/hard components are implied to have
different emission regions, and/or different beam patterns.

< These results can be consistently interpreted in terms of “free
precession of a slightly non-spherical neutron star” plus “a hard
X-ray emission pattern that breaks axial symmetry of the star”.
The variation in 4 can be attributed to changes in the latter.

<> The same effect was detected from another magnetar 1E 1547-54.

< In both objects, the implied asphericity is e~1e-4, which further
suggests deformation by toroidal magnetic fields of B~10'° G.
This provides the first observational estimate of B..

<> Further studies form an ideal subject for ASTRO-H, which is
scheduled for launch in FY2015.
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