公募研究 C01: X線を用いた マグネターの研究

マグネターの自由歳差運動 と磁気変形 Free Precession and Magnetic Deformation of Magnetars

Phys. Rev. Lett. 112, id.171102 (2014)

K. Makishima

Department of Physics & RESCEU,
University of Tokyo
and
MAXI Team, RIKEN

Magnetic Fields of Celestial Bodies

0. What are Magnetars?

- ♦ A subclass of isolated neutron stars. About 30 known in the
 Milky Way and Magellanic Clouds. New discoveries continue.
- ♦ Several are found in Super Nova Remnants: young.
- → Pulse (=rotation) periods in the range 2-11 sec, with large spin-down rates. Assuming spin-down by emitting M2 radiation, these imply dipole mag. files of 10¹⁴⁻¹⁵ G. Exceeding the critical value of 4 × 10¹³ G. Many QED effects expected.
- \Rightarrow Emitting in X-rays, with weak/no radio signals. Not rotation powered; $L_x \gg dE_{rot}/dt$. Not accretion powered, either. Magnetically powered.
- ❖ Sporadic intensity changes on various time scales from msec to years. Sometimes behave like a "machinge-gun", and produce "giant flares" which can even disturb the Earth's ionosphere.

1. Toroidal Magnetic Fields of Magnetars

We expect magnetars to have toroidal field ≫ poloidal field

Theoretically:

- ♦ Collapse and diff. rotation in progenitors wind up MF lines.
- ♦Some MF lines emerge from the surface to form multipoles.

Observationally:

Recently discovered *low-dipole-field* (6×10^{12} G) magnetar, SGR 0418+5729 (Rea +10):

- \Rightarrow Requires much stronger B_t to sustain its burst activity
- \Rightarrow Shows spectral evidence for intense multipole surface fields with > 2 × 10¹⁴ G (Tiengo+13).

How can we measure toroidal MF?

2. Magnetic Deformation of an NS

Poloidal fields cause oblate deformation

Toroidal fields cause prolate deformation

 $\varepsilon \equiv \Delta I/I \sim \text{a few } (B_t/1\text{e}16\text{G})^2 \times 10^{-4}$ (Gualtieri +2011)

3. Free Precession of an Axisymmetric Body

Mom. inertia $I_1 = I_2 > I_3$ (lemon shape), deviating from sphericity by $\varepsilon = (I_1 - I_3)/I_3$

 $\diamondsuit L$: ang. mom. fixed to inertial frame.

 $\Rightarrow x_3$: The body's symmetry axis. It rotates around L at a period $P_1 = 2\pi I_1/L$, with a constant wobbling angle α .

♦ The body also spins around x_3 with a slightly different period, $P_3 = 2\pi I_3/L$.

 $\Leftrightarrow \xi$: the radiation direction. If it breaks the symmetry around x_3 , it rotates w.r.t. the L- x_3 plane with slip period

$$T = (1/P_3 - 1/P_1)^{-1} = P_1/\epsilon$$

 \diamond Then, the observed pulses (with period P_1) suffer phase modulations at T.

Any internal energy dissipation will make α increase with time if $\epsilon > 0$.

4. Two Suzaku Observations of 4U0142+61

vFv Spectra onTwo Occasions

Clear spectral evolution with the characteristic age (Enoto+10)

Peculiar Hard/Soft 2-components, possibly with different emission regions (Enoto+10,11)

The hard c. may result from QED splitting of 511 keV photons (Enoto+10)

Final integration of HXD-S (2003)

16 Well units

20 Anti units

5. Suzaku Periodograms of 4U0142+61

A steady spin-down, indicating $B_d=1.3 \times 10^{14}$ G

6. Detailed Analysis of the 2009 Data

7. Demodulation Search

8. Suzaku Data in 2013 (Aug. 1-2)

9. Demodulation Search in 2013

10. Comparing the 3 Data Sets

- The T=55 ksec pulse-phase mod. is seen only in hard XR.
- \Rightarrow Its amplitude A may be variable.
- → Pulse profiles are stable in soft XR, while variable in hard XR.

The results cannot be explained by the presence of a binary companion; then, it should also be detected in soft XR.

11. Magnetar 1E1547-54: a 2nd Example

2009 Jan. 28-29, observed with *Suzaku* in an outburst

12. Discussion & Conclusion

- ♦ In the magnetar 4U 0142+61, the P=8.69 sec hard X-ray pulses were phase-modulated at a period of $T\sim55$ ksec and with a variable amplitude A. The periodical nature was confirmed.
- \Rightarrow The pulse-phase modulation was absent (A < 0.3 sec) in soft X-rays on any occasion. The soft/hard components are implied to have different emission regions, and/or different beam patterns.
- ♦ These results can be consistently interpreted in terms of "free precession of a slightly non-spherical neutron star" plus "a hard X-ray emission pattern that breaks axial symmetry of the star". The variation in A can be attributed to changes in the latter.
- ♦ The same effect was detected from another magnetar 1E 1547-54.
- ♦ In both objects, the implied asphericity is $\varepsilon \sim 1e-4$, which further suggests deformation by toroidal magnetic fields of $B_t \sim 10^{16}$ G. This provides the first observational estimate of B_t .
- ♦ Further studies form an ideal subject for *ASTRO-H*, which is scheduled for launch in FY2015.