X線バースター観測による 原子核飽和パラメータの制限

祖谷元(国立天文台)

NS - EOS

- physics in NS crust
- low-mass NS

observations of NSs

- candidates of low-mass NSs have been also discovered in binary system (Lattimer & Prakash 2011)
- radiation radius of X-ray source (Rutledge+ 2002) e.g.) R_{∞} = 14.3 \pm 2.1km : CXOU 132619.7-472910.8 in omega Cen
- M & R from thermal spectra from quiescent low-mass Xray binaries (Guillot+ 2013; Lattimer & Steiner 2013)

EOS near the saturation point

 Bulk energy per nucleon near the saturation point of symmetric nuclear matter at zero temperature;

stable nuclei

MR relations

• NS models are constructed with various sets of $K_{\rm O}$ & L

MR relations

- NS models are constructed with various sets of K_{Ω} & L
- We can find the specific combination of K_{O} & L describing

the low-mass NSs,

$$\eta = (K_0 L^2)^{1/3}$$

 K_0 (MeV)

180

EOS

OI-EOS

L (MeV)

31.0

 η (MeV)

55.7

how to determine R

- Unlike M, R is generally much more difficult to determine
- Thermal emission from NS surface must be one of the good chances to obtain the information associated with R.
 - thermonuclear X-ray bursts at NS surfaces
 - photospheric radius expansion
 - quiescent low-mass X-ray binaries

how to determine R

- Unlike M, R is generally much more difficult to determine
- Thermal emission from NS surface must be one of the good chances to obtain the information associated with R.
 - thermonuclear X-ray bursts at NS surfaces
 - photospheric radius expansion
 - quiescent low-mass X-ray binaries

how to determine (M, R) 1

- Assuming that Eddington limit reaches at the stellar surface...
- Eddington luminosity

$$L_{\rm Edd} = \frac{4\pi GMc}{\kappa_e} (1+z) = 4\pi R^2 \sigma_{\rm SB} T_{\rm Edd}^4 \qquad 1+z = (1-2GM/Rc^2)^{-1/2}$$

 $\kappa_{\rm e} = 0.2(1+X)\,{\rm cm}^2\,{\rm g}^{-1}$ electron Thomson scattering opacity

X: hydrogen mass function

$$F_{\text{Edd}} = \frac{L_{\text{Edd},\infty}}{4\pi D^2} = \frac{GMc}{\kappa_{\text{e}} D^2} \frac{1}{1+z} \qquad L_{\infty} = \frac{L}{(1+z)^2}$$

observed Eddington flux

- X depends on an atmosphere model
 - pure hydrogen: X = 1
 - pure helium: X = O
 - solar H/He + Z=0.3 Z_{\odot} : X = 0.74, where Z_{\odot} = 0.0134

how to determine (M, R) 1

Suleimanov idea

• in order to minimize the theoretical uncertainties, the whole cooling track is adopt to determine the values of $F_{\rm Edd}$ & A

X-ray burster 4U 1724-307

- in the globular cluster Terzan 2
 - solar H/He + subsolar metal abundance $Z = 0.3Z_{\odot}$ (Ortolani et al. 97)
- Distance
 - $D = (5.3 7.7) \pm 0.6$ kpc (Kuchinski et al. 95, Ortolani et al. 97)
- data observed by Rossi X-ray Timing Explorer (RXTE)

allowed region in MR relation

constraint on (L, K_0)

summary

- we have found a nice combination of nuclear saturation parameters, $\eta = (K_{\rm O} L^2)^{1/3}$, to describe low-mass neutron stars
- using the mass-radius relation obtained from the observations in X-ray burster 4U 1724-307 by Suleimanov et al. (2011),
 - we show a possibility to make a constraint on the nuclear saturation parameters
 - consistent with the constraints obtained from the QPO frequencies observed from the giant flares in soft-gamma repeaters