Lambda-N and Sigma-N interactions from 2+1 lattice QCD with almost realistic masses

H. Nemura1,

for HAL QCD Collaboration

S. Aoki2, T. Doi3, F. Etminan4, S. Gongyo5, T. Hatsuda3, Y. Ikeda6, T. Inoue7, T. Iritani8, N. Ishii6, D. Kawai2, T. Miyamoto2, K. Murano6, and K. Sasaki2,

1University of Tsukuba, 2Kyoto University, 3RIKEN, 4University of Birjand,
5University of Tours, 6Osaka University,
7Nihon University, 8Stony Brook University
Outline

- Introduction
 - Brief introduction of HAL QCD method
 - Importance of LN–SN tensor force for hypernuclei
- Effective block algorithm for various baryon-baryon channels,
 [arXiv:1510.00903 (hep-lat)]
- Preliminary results of LN–SN potentials at nearly physical point
 - LN–SN(I=1/2), central and tensor potentials
 - SN(I=3/2), central and tensor potentials
- Summary
Plan of research

QCD

Baryon interaction

Structure and reaction of (hyper)nuclei

Equation of State (EoS) of nuclear matter

Neutron star and supernova

J-PARC, JLab, GSI, MAMI, ...
YN scattering, hypernuclei

$A = 3$
$A = 4$
$A = 5$

$pn \Lambda$
$pnn \Lambda$, $ppn \Lambda$
$ppnn \Lambda$
What is realistic picture of hypernuclei?

\[B(\text{total}) = B(\Lambda^4\text{He}) + B(\Lambda^5\text{He}) \]

A conventional picture:
\[
B(\text{total}) = B(\Lambda^4\text{He}) + B(\Lambda^5\text{He})
\]
\[
= 28 + 3 \text{ MeV.}
\]

A (probably realistic) picture:
\[
B(\text{total}) = (B(\Lambda^4\text{He}) - \Delta E_c) + (B(\Lambda^5\text{He}) + \Delta E_c)
\]
\[
= ?? + ??? \text{ MeV.}
\]
Comparison between $d=p+n$ and core+Y

![Comparison between $d=p+n$ and core+Y](image)

<table>
<thead>
<tr>
<th></th>
<th>T_S (MeV)</th>
<th>T_D (MeV)</th>
<th>V_{NN}(central) (MeV)</th>
<th>V_{NN}(tensor) (MeV)</th>
<th>V_{NN}(LS) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV8</td>
<td>8.57</td>
<td>11.31</td>
<td>−4.46</td>
<td>−16.64</td>
<td>−1.02</td>
</tr>
<tr>
<td>G3RS</td>
<td>10.84</td>
<td>5.64</td>
<td>−7.29</td>
<td>−11.46</td>
<td>0.00</td>
</tr>
<tr>
<td>$\Lambda^5\text{He}$</td>
<td>9.11</td>
<td>3.88+4.68</td>
<td>−0.86</td>
<td>−19.51</td>
<td></td>
</tr>
<tr>
<td>$\Lambda^4\text{H}*$</td>
<td>5.30</td>
<td>2.43+2.02</td>
<td>0.01</td>
<td>−10.67</td>
<td></td>
</tr>
<tr>
<td>$\Lambda^4\text{H}$</td>
<td>7.12</td>
<td>2.94+2.16</td>
<td>−5.05</td>
<td>−9.22</td>
<td></td>
</tr>
</tbody>
</table>

Rearrangement effect of $^5\Lambda$He

\[H = \sum_{i=1}^{A} \left(m_i c^2 + \frac{p_i^2}{2m_i} \right) - T_{CM} + \sum_{i<j}^{A-1} v^{(NN)}_{ij} + \sum_{i=1}^{A-1} v^{(NY)}_{iY} = H_{\text{core}} + H_{\text{Y-core}}, \]

\[H_{\text{core}} = \sum_{i=1}^{A-1} \frac{p_i^2}{2m_N} - \frac{\left(\sum_{i=1}^{A-1} p_i \right)^2}{2(A-1)m_N} + \sum_{i<j}^{A-1} v^{(NN)}_{ij} = T_{\text{core}} + V_{NN}. \]
What is realistic picture of hypernuclei?

\[B(\text{total}) = B(4\text{He}) + B(^5\text{He}) \]

A conventional picture:
\[
B(\text{total}) = B(4\text{He}) + B(^5\text{He})
= 28 + 3 \text{ MeV.}
\]

A (probably realistic) picture:
\[
B(\text{total}) = (B(4\text{He}) - \Delta E_c) + (B(^5\text{He}) + \Delta E_c)
= 24 + 7 \text{ MeV.}
\]
Lattice QCD calculation
Multi-hadron on lattice

i) basic procedure:
 asymptotic region
 \[\rightarrow\] phase shift

ii) HAL’s procedure:
 interacting region
 \[\rightarrow\] potential
Formulation

Lattice QCD simulation

\[L = -\frac{1}{4} G_{\mu\nu}^a G^{a\mu\nu} + \bar{q} \gamma^\mu (i \partial_\mu - g t^a A_\mu^a) q - m \bar{q} q \]

\[\langle O(\bar{q}, q, U) \rangle = \int dU d\bar{q} dq e^{-S(\bar{q}, q, U)} O(\bar{q}, q, U) \]
\[= \int dU \det D(U) e^{-S_U(U)} O(D^{-1}(U)) \]
\[= \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} O(D^{-1}(U_i)) \]

\[\langle \langle t \rangle \rangle \]
Formulation

Lattice QCD simulation

\[L = -\frac{1}{4} G_{\mu\nu}^a G^{a\mu\nu} + \bar{q} \gamma^\mu (i \partial_\mu - g t^a A^a_\mu) q - m \bar{q} q \]

\[\langle O(\bar{q}, q, U) \rangle = \int dU \ d\bar{q} \ dq \ e^{-S(\bar{q}, q, U)} O(\bar{q}, q, U) \]
\[= \int dU \ det \ D(U) e^{-S_U(U)} O(D^{-1}(U)) \]
\[= \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} O(D^{-1}(U_i)) \]

\[\langle \langle \langle \text{pn} (t) \text{pn} (t_0) \rangle \rangle \rangle \]
Multi-hadron on lattice
Lattice QCD simulation

\[L = -\frac{1}{4} G_{\mu \nu}^a G^{a \mu \nu} + \bar{q} \gamma^\mu (i \partial_\mu - g t^a A_\mu^a) q - m \bar{q} q \]

\[\langle O(\bar{q}, q, U) \rangle = \int dU d\bar{q} dq e^{-S(\bar{q}, q, U)} O(\bar{q}, q, U) \]
\[= \int dU \det D(U) e^{-S_U(U)} O(D^{-1}(U)) \]
\[= \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} O(D^{-1}(U_i)) \]

\[\langle p\Lambda(\mathbf{t}) p\Lambda(\mathbf{t}_0) \rangle \]
Multi-hadron on lattice
i) basic procedure:

asymptotic region
(or temporal correlation)

\rightarrow scattering energy

\rightarrow phase shift

\[E = \frac{k^2}{2\mu} \]

\[k \cot \delta_0(k) = \frac{2}{\sqrt{\pi L}} Z_{00}(1 ; (kL/(2\pi))^2) = \frac{1}{a_0} + O(k^2) \]

\[Z_{00}(1 ; q^2) = \frac{1}{\sqrt{4\pi}} \sum_{\mathbf{n} \in \mathbb{Z}^3} \frac{1}{(n^2 - q^2)^s} \quad \mathbb{R} s > \frac{3}{2} \]

An example of Luscher’s formula

\[E = \frac{k^2}{2\mu} \]

\[k \cot \delta_0 (k) = \frac{2}{\sqrt{\pi} L} Z_{00} \left(1 ; \left(k L / (2\pi) \right)^2 \right) = \frac{1}{a_0} + O(k^2) \]

\[Z_{00} (1 ; q^2) = \frac{1}{\sqrt{4\pi}} \sum_{n \in \mathbb{Z}^3} \frac{1}{(n^2 - q^2)^s} \]

\[\Re s \geq \frac{3}{2} \]

Multi-hadron on lattice
Lattice QCD simulation

\[L = -\frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} + \bar{q} \gamma^\mu (i \partial_\mu - g t^a A^a_\mu) q - m \bar{q} q \]

\[\langle O(\bar{q}, q, U) \rangle = \int dU \int d\bar{q} dq e^{-S(\bar{q}, q, U)} O(\bar{q}, q) \]

\[= \int dU \det D(U) e^{-S_U(U)} O(D^{-1}(U)) \]

\[F^{(JM)}_{\alpha\beta}(\vec{r}, t - t_0) \]

\[\rightarrow \langle p\Lambda(\vec{r}, t) \rangle \]

Calculate the scattering state
Multi-hadron on lattice

ii) HAL’s procedure: make better use of the lattice output! (wave function) interacting region

\rightarrow potential

NOTE:

\triangleright Potential is not a direct experimental observable.
\triangleright Potential is a useful tool to give (and to reproduce) the physical quantities. (e.g., phase shift)
Multi-hadron on lattice

ii) HAL’s procedure:
make better use of the lattice output! (wave function)

interacting region

→ potential

→ Phase shift

→ Nuclear many-body problems

The potential is obtained at moderately large imaginary time; no single state saturation is required.

\[
R^{(J,M)}_{\alpha\beta}(\vec{r}, t-t_0) = \sum_{\vec{X}} \left\langle 0 \left| B_{1,\alpha}(\vec{X} + \vec{r}, t) B_{2,\beta}(\vec{X}, t) \overline{J}^{(J,M)}_{B_3B_4}(t_0) \right| 0 \right\rangle / \exp\{-m_{B_1} + m_{B_2}\}(t-t_0),
\]

\[
= \sum_n A_n \sum_{\vec{X}} \left\langle 0 \left| B_{1,\alpha}(\vec{X} + \vec{r}, 0) B_{2,\beta}(\vec{X}, 0) \right| E_n \right\rangle e^{-(E_n - m_{B_1} + m_{B_2})(t-t_0)}
+ O(e^{-(E_{th} - m_{B_1} + m_{B_2})(t-t_0)}),
\]

(4)

where \(E_n (|E_n\rangle) \) is the eigen-energy (eigen-state) of the six-quark system and \(A_n = \sum_{\alpha'\beta'} P^{(JM)}_{\alpha'\beta'} \langle E_n | B_{4,\alpha'} B_{3,\alpha'} | 0 \rangle \). At moderately large \(t - t_0 \) where the inelastic contribution above the pion production \(O(e^{-(E_{th} - 2m_N)(t-t_0)}) = O(e^{-m_\pi(t-t_0)}) \) becomes exiguous, we can construct the non-local potential \(U \) through \(\left(\frac{\nabla^2}{2\mu} - \frac{k^2}{2\mu} \right) R(\vec{r}) = \int d^3r' U(\vec{r}, \vec{r}') R(\vec{r}') \). In lattice QCD calculations

\footnote{The potential is obtained from the NBS wave function at moderately large imaginary time; it would be \(t - t_0 \gg 1/m_\pi \sim 1.4 \text{ fm} \) even for the physical pion mass. Furthermore, no single state saturation between the ground state and the first excited states, \(t - t_0 \gg (\Delta E)^{-1} = ((2\pi)^2/(2\mu L^2))^{-1}, \) is required for the present HAL QCD method[20], which becomes \(((2\pi)^2/(2\mu L^2))^{-1} \approx 4.6 \text{ fm} \) if we consider \(L \sim 6 \text{ fm} \) and \(m_N \approx 1 \text{ GeV} \). In Ref. [14], the validity of the velocity expansion of the NN potential has been examined in quenched lattice QCD simulations at \(m_\pi \approx 530 \text{ MeV} \) and \(L \approx 4.4 \text{ fm} \).}
The potential is obtained at moderately large imaginary time; no single state saturation is required.

\[R_{\alpha \beta}^{(J,M)}(\vec{r}, t-t_0) = \sum_{\vec{X}} \left\langle 0 \left| B_{1,\alpha}(\vec{X} + \vec{r}, t) B_{2,\beta}(\vec{X}, t) \mathcal{J}_{B_3 B_4}^{(J,M)}(t_0) \right| 0 \right\rangle / \exp\{-m_{B_1} + m_{B_2}(t-t_0)\}, \]

\[= \sum_{\text{n}} A_n \sum_{\vec{X}} \left\langle 0 \left| B_{1,\alpha}(\vec{X} + \vec{r}, 0) B_{2,\beta}(\vec{X}, 0) \left| E_n \right\rangle e^{-(E_n - m_{B_1} - m_{B_2})(t-t_0)} \right. \]

\[+ O(e^{-(E_{\text{th}} - m_{B_1} - m_{B_2})(t-t_0)}), \quad (4) \]

where \(E_n \) (\(|E_n\rangle \)) is the eigen-energy (eigen-state) of the six-quark system and \(A_n = \sum_{\alpha' \beta'} P^{(J,M)}_{\alpha' \beta' \alpha \beta} \langle E_n | B_{4,\beta'} B_{3,\alpha} | 0 \rangle \). At moderately large \(t-t_0 \) where the inelastic contribution above the pion production \(O(e^{-(E_{\text{th}} - 2m_N)(t-t_0)}) = O(e^{-m_{\pi}(t-t_0)}) \) becomes exiguous, we can construct the non-local potential \(U \) through

\[\left(\frac{k^2}{2\mu} \right) R(\vec{r}) = \int d^3 r' U(\vec{r}, \vec{r}') R(\vec{r}'). \]

The potential is obtained from the NBS wave function at moderately large imaginary time; it would be \(t-t_0 \gg 1/m_{\pi} \sim 1.4 \) fm even for the physical pion mass. Furthermore, no single state saturation between the ground state and the first excited states, \(t-t_0 \gg (\Delta E)^{-1} = \left((2\pi)^2/(2\mu L^2) \right)^{-1} \), is required for the present HAL QCD method[20], which becomes \(\left((2\pi)^2/(2\mu L^2) \right)^{-1} \approx 4.6 \) fm if we consider \(L \sim 6 \) fm and \(m_N \approx 1 \) GeV. In Ref. [14], the validity of the velocity expansion of the \(NN \) potential has been examined in quenched lattice QCD simulations at \(m_{\pi} \approx 530 \) MeV and \(L \approx 4.4 \) fm.
The potential is obtained at moderately large imaginary time; no single state saturation is required.

\[R_{\alpha\beta}^{(J,M)}(\vec{r}, t-t_0) = \sum_{\vec{X}} \left\langle 0 \left| B_{1,\alpha}(\vec{X} + \vec{r}, t) B_{2,\beta}(\vec{X}, t) \mathcal{F}^{(J,M)}_{B_3B_4}(t_0) \right| 0 \right\rangle / \exp\{(m_{B_1} + m_{B_2})(t-t_0)\}, \]

\[= \sum_n A_n \sum_{\vec{X}} \left\langle 0 \left| B_{1,\alpha}(\vec{X} + \vec{r}, 0) B_{2,\beta}(\vec{X}, 0) \left| E_n \right| \right\rangle e^{-(E_n - m_{B_1} - m_{B_2})(t-t_0)} \]

\[+ O(e^{-(E_{th} - m_{B_1} - m_{B_2})(t-t_0)}), \tag{4} \]

where \(E_n \) is the eigen-energy (eigen-state) of the six-quark system and \(A_n = \sum_{\alpha'\beta'} P^{(J,M)}_{\alpha'\beta'} \left\langle E_n \left| B_{4,\alpha'}B_{3,\beta'} \right| 0 \right\rangle \). At moderately large \(t-t_0 \) where the inelastic contribution above the pion production \(O(e^{-(E_{th} - 2m_N)(t-t_0)}) = O(e^{-m_\pi(t-t_0)}) \) becomes negligible, we can construct the non-local potential \(U \) through \(\left(\frac{\nabla^2}{2\mu} - \frac{k^2}{2\mu} \right) R(\vec{r}) = \int d^3 r' U(\vec{r}, \vec{r}') R(\vec{r}') \). In lattice QCD calculations

\[\text{The potential is obtained from the NBS wave function at moderately large imaginary time; it would be } t-t_0 \gg 1/m_\pi \sim 1.4 \text{ fm even for the physical pion mass. Furthermore, no single state saturation between the ground state and the first excited states, } t-t_0 \gg (\Delta E)^{-1} = \left(\frac{(2\pi)^2}{2\mu L^2} \right)^{-1}, \text{ is required for the present HAL QCD method[20], which becomes } \left(\frac{(2\pi)^2}{2\mu L^2} \right)^{-1} \approx 4.6 \text{ fm if we consider } L \sim 6 \text{ fm and } m_N \sim 1 \text{ GeV. In Ref. [14], the validity of the velocity expansion of the NN potential has been examined in quenched lattice QCD simulations at } m_\pi \sim 530 \text{ MeV and } L \sim 4.4 \text{ fm.} \]
An improved recipe for NY potential:

- Take account of not only the spatial correlation but also the temporal correlation in terms of the R-correlator:

\[- \frac{1}{2 \mu} \nabla^2 R(t, \vec{r}) + \int d^3 r' U(\vec{r}, \vec{r}') R(t, \vec{r}') = -\frac{\partial}{\partial t} R(t, \vec{r}) \to \frac{k^2}{2 \mu} R(t, \vec{r})\]

- A general expression of the potential:

\[V_{NY} = V_0(r) + V_{\sigma}(r)(\vec{\sigma}_N \cdot \vec{\sigma}_Y) + V_T(r) S_{12} + V_{LS}(r)(\vec{L} \cdot \vec{S}_+) + V_{ALS}(r)(\vec{L} \cdot \vec{S}_-) + O(\nabla^2) \]
Determination of baryon–baryon potentials at nearly physical point
Effective block algorithm for various baryon–baryon correlators

HN, CPC207,91(2016), arXiv:1510.00903(hep-lat)

Numerical cost (# of iterative operations) in this algorithm:

\[1 + N_c^2 + N_c^2 N_\alpha^2 + N_c^2 N_\alpha^2 + N_c^2 N_\alpha + N_c^2 N_\alpha = 370 \]

In an intermediate step:

\[(N_c^! N_\alpha^B) \times N_u^! N_d^! N_s^! \times 2^{N_\Lambda + N_{\Sigma^-} - B} = 3456 \]

In a naïve approach:

\[(N_c^! N_\alpha^B)^2B \times N_u^! N_d^! N_s^! = 3,981,312 \]
Generalization to the various baryon–baryon channels strangeness $S=0$ to -4 systems

\[\langle pn\bar{p}n \rangle, \]
\[\langle p\Lambda\bar{p}\Lambda \rangle, \langle p\Sigma^+\bar{n}n \rangle, \langle p\Lambda\Sigma^0\bar{p} \rangle, \]
\[\langle \Sigma^+n\bar{p}\Lambda \rangle, \langle \Sigma^+n\Sigma^+\bar{n} \rangle, \langle \Sigma^+n\Sigma^0\bar{p} \rangle, \]
\[\langle \Sigma^0\bar{p}p\Lambda \rangle, \langle \Sigma^0p\Sigma^+\bar{n} \rangle, \langle \Sigma^0p\Sigma^0\bar{p} \rangle, \]
\[\langle \Lambda\Lambda\Lambda\Lambda \rangle, \langle \Lambda\Lambda\pi\Xi^- \rangle, \langle \Lambda\Lambda\bar{n}\Xi^0 \rangle, \langle \Lambda\Lambda\Sigma^+\Sigma^- \rangle, \langle \Lambda\Lambda\Sigma^0\Xi^0 \rangle, \]
\[\langle p\Xi\Lambda\Lambda \rangle, \langle p\Xi\bar{p}\Xi^- \rangle, \langle p\Xi\bar{n}\Xi^0 \rangle, \langle p\Xi\bar{\Sigma}+\Sigma^- \rangle, \langle p\Xi\Sigma^0\Xi^0 \rangle, \langle p\Xi\Sigma^0\Sigma^0 \rangle, \]
\[\langle n\Xi^0\Lambda\Lambda \rangle, \langle n\Xi^0\bar{p}\Xi^- \rangle, \langle n\Xi^0\bar{n}\Xi^0 \rangle, \langle n\Xi^0\Sigma^+\Sigma^- \rangle, \langle n\Xi^0\Sigma^0\Xi^0 \rangle, \langle n\Xi^0\Sigma^0\Sigma^0 \rangle, \]
\[\langle \Sigma^+\Sigma^-\Lambda\Lambda \rangle, \langle \Sigma^+\Sigma^-\bar{p}\Xi^- \rangle, \langle \Sigma^+\Sigma^-\bar{n}\Xi^0 \rangle, \langle \Sigma^+\Sigma^-\Sigma^+\Sigma^- \rangle, \langle \Sigma^+\Sigma^-\Sigma^0\Xi^0 \rangle, \]
\[\langle \Sigma^0\Sigma^0\Lambda\Lambda \rangle, \langle \Sigma^0\Sigma^0\bar{p}\Xi^- \rangle, \langle \Sigma^0\Sigma^0\bar{n}\Xi^0 \rangle, \langle \Sigma^0\Sigma^0\Sigma^+\Sigma^- \rangle, \langle \Sigma^0\Sigma^0\Sigma^0\Xi^0 \rangle, \]
\[\langle \Sigma^0\Lambda\bar{p}\Xi^- \rangle, \langle \Sigma^0\Lambda\bar{n}\Xi^0 \rangle, \langle \Sigma^0\Lambda\Sigma^+\Sigma^- \rangle, \]
\[\langle \Xi\Lambda\Xi^-\Lambda \rangle, \langle \Xi\Lambda\Sigma^-\Xi^0 \rangle, \langle \Xi\Lambda\Sigma^0\Xi^- \rangle, \]
\[\langle \Sigma^-\Xi^0\Xi^-\Lambda \rangle, \langle \Sigma^-\Xi^0\Sigma^-\Xi^0 \rangle, \langle \Sigma^-\Xi^0\Sigma^0\Xi^- \rangle, \]
\[\langle \Sigma^0\Xi^-\Xi^-\Lambda \rangle, \langle \Sigma^0\Xi^-\Sigma^-\Xi^0 \rangle, \langle \Sigma^0\Xi^-\Sigma^0\Xi^- \rangle, \]
\[\langle \Xi^-\Xi^0\Xi^-\Xi^0 \rangle. \]

Make better use of the computing resources!

HN, CPC 207, 91(2016) [arXiv:1510.00903[hep-lat]],
(See also arXiv:1604.08346)
Almost physical point lattice QCD calculation using $N_f=2+1$ clover fermion + Iwasaki gauge action

- APE-Stout smearing ($\rho=0.1$, $n_{\text{stout}}=6$)
- Non-perturbatively $O(a)$ improved Wilson Clover action at $\beta=1.82$ on $96^3 \times 96$ lattice
- $1/a = 2.3$ GeV ($a = 0.085$ fm)
- Volume: $96^4 \rightarrow (8\text{fm})^4$
- $m_\pi = 145 \text{MeV}$, $m_K = 525 \text{MeV}$
- DDHMC(ud) and UVPHMC(s) with preconditioning

- NBS wf is measured using wall quark source with Coulomb gauge fixing, spatial PBD and temporal DBC; #stat=207 configs x 4 rotation x Nsrc
 (Nsrc=4 → 20 → 52 → 96 (2015FY+))
LN-SN potentials at nearly physical point

The methodology for coupled-channel V is based on:
Ishii, et al., JPS meeting, March (2016).

#stat: (this/scheduled in FY2015+) < 0.05 (=>$0.2) \rightarrow 0.54

$$\Lambda N - \Sigma N \ (I=1/2)$$

\begin{align*}
V_c(^1 S_0) & \quad V_c(^3 S_1 - ^3 D_1) \quad V_T(^3 S_1 - ^3 D_1) \\
\Sigma N \ (I=3/2) & \\
V_c(^1 S_0) & \quad V_c(^3 S_1 - ^3 D_1) \quad V_T(^3 S_1 - ^3 D_1)
\end{align*}$$
LN-SN potentials at nearly physical point

The methodology for coupled-channel V is based on:
- Ishii, et al., JPS meeting, March (2016).

#stat: (this/scheduled in FY2015+) $< 0.05 \Rightarrow 0.2 \quad 0.54$

\[
\Lambda N - \sum N \quad (I = 1/2)
\]
\[
\begin{align*}
V_C (^1S_0) & & V_C (^3S_1 - ^3D_1) & & V_T (^3S_1 - ^3D_1) \\
\sum N \quad (I = 3/2)
\end{align*}
\]
\[
\begin{align*}
V_C (^1S_0) & & V_C (^3S_1 - ^3D_1) & & V_T (^3S_1 - ^3D_1)
\end{align*}
\]
Effective mass plot of the single baryon’s correlation function.

Potentials obtained at $t-t_0 = 5$ to 12 will be shown.
The eigenvalues of the normalization kernel in eq. (3.3) for $S=-1$ two-baryon (BB) system

<table>
<thead>
<tr>
<th>I</th>
<th>J</th>
<th>BB</th>
<th>Eigenvalues (uncoupled)</th>
<th>Eigenvalues (coupled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$N\Lambda$</td>
<td>1</td>
<td>0 $\frac{10}{9}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$N\Sigma$</td>
<td>$\frac{1}{5}$</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>$N\Lambda$</td>
<td>1</td>
<td>$\frac{8}{9}$ $\frac{10}{9}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$N\Sigma$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$\frac{3}{2}$</td>
<td>0</td>
<td>$N\Sigma$</td>
<td>$\frac{10}{9}$</td>
<td></td>
</tr>
<tr>
<td>$\frac{3}{2}$</td>
<td>1</td>
<td>$N\Sigma$</td>
<td>$\frac{7}{9}$</td>
<td></td>
</tr>
</tbody>
</table>

Oka, Shimizu and Yazaki (1987)
Very preliminary result of LN potential at the physical point

\[
\left(\frac{\nabla^2}{2\mu} - \frac{\partial}{\partial t} \right) R(\vec{r}, t) = \int d^3r' U(\vec{r}, \vec{r}') R(\vec{r}', t) + O(k^4) = V_{LO}(\vec{r}) R(\vec{r}, t) + \cdots \tag{8}
\]
Very preliminary result of LN potential at the physical point

\[
\left(\frac{\nabla^2}{2\mu} - \frac{\partial}{\partial t} \right) R(\vec{r}, t) = \int d^3 r' U(\vec{r}, \vec{r}') R(\vec{r}, t) + O(k^4) = V_{LO}(\vec{r}) R(\vec{r}, t) + \cdot(8)
\]

\[
V_C \left(\frac{1}{S_0} \right)
\]
Very preliminary result of LN potential at the physical point

\[
\left(\frac{\nabla^2}{2\mu} - \frac{\partial}{\partial t} \right) R(\vec{r}, t) = \int d^3r' U(\vec{r}, \vec{r}') R(\vec{r}', t) + O(k^4) = V_{LO}(\vec{r}) R(\vec{r}, t) + \cdot \cdot \cdot (8)
\]
Very preliminary result of LN potential at the physical point

\[
\left(\frac{\nabla^2}{2\mu} - \frac{\partial}{\partial t}\right) R(\vec{r}, t) = \int d^3r' U(\vec{r}, \vec{r}') R(\vec{r}', t) + O(k^4) = V_{LO}(\vec{r}) R(\vec{r}, t) + \cdot(8)\]

\[
\sum N - N
\]

\[
\Lambda N
\]

\[
\Lambda N
\]
Very preliminary result of LN potential at the physical point

\[
V_T(^{3}S_{1} - ^{3}D_{1}) = \left(\nabla^2 - \frac{\partial}{\partial t} \right) R(\vec{r}, t) = \int d^3r' U(\vec{r}, \vec{r}') R(\vec{r}, t) + O(k^4) = V_{LO}(\vec{r}) R(\vec{r}, t) + \cdot(8)
\]
Very preliminary result of LN potential at the physical point

\[
\left(\frac{\nabla^2}{2\mu} - \frac{\partial}{\partial t} \right) R(\vec{r}, t) = \int d^3r' U(\vec{r}, \vec{r}') R(\vec{r}', t) + O(k^4) = V_{LO}(\vec{r}) R(\vec{r}, t) + \cdots \tag{8}
\]
Very preliminary result of LN potential at the physical point

\[
\left(\frac{\nabla^2}{2\mu} - \frac{\partial}{\partial t} \right) R(\vec{r}, t) = \int d^3r' U(\vec{r}, \vec{r}') R(\vec{r}', t) + O(k^4) = V_{LO}(\vec{r}) R(\vec{r}, t) + \cdot (8)
\]

\[\Sigma N(I = 3/2)\]

\[V_C(^3 S_1 \rightarrow ^3 D_1)\]

\[V_C(^1 S_0) \quad V_T(^3 S_1 \rightarrow ^3 D_1)\]
Very preliminary result of LN potential at the physical point

\[
\left(\frac{\nabla^2}{2\mu} - \frac{\partial}{\partial t} \right) R(\vec{r}, t) = \int d^3 r' U(\vec{r}, \vec{r}') R(\vec{r}', t) + O(k^4) = V_{LO}(\vec{r}) R(\vec{r}, t) + \cdot (8)
\]

\[
\sum N(I = 3/2)
\]

\[
V_c (\begin{pmatrix} 3 S_1 \\ 3 D_1 \end{pmatrix})
\]

\[
V_c (\begin{pmatrix} 1 S_0 \end{pmatrix})
\]

\[
V_T (\begin{pmatrix} 3 S_1 \\ 3 D_1 \end{pmatrix})
\]
Summary

(I-1) Preliminary results of LN-SN potentials at nearly physical point. (Lambda-N, Sigma-N: central, tensor)
Statistics approaching to 0.54 (=present/scheduled)
Signals in spin-triplet are relatively going well smoothly.
We will have to increase still more statistics, particularly for spin-singlet channels
Several interesting features seem to be obtained with more high statistics.

(I-2) Effective hadron block algorithm for the various baron-baryon interaction
Paper published/available:

Future work:
(II-1) Physical quantities including the binding energies of few-body problem of light hypernuclei with the lattice YN potentials