December 05, 2015 「高密度核物質に挑む実験の将来一施設・装置の観点から」 at Nishina Center

J-PARCハドロン施設のこれまでと今後

田中 万博

J-**P/JRC** Center, J-PARCセンター素粒子原子核ディビジョン、

KEK: 高エネルギー加速器研究機構、 素粒子原子核研究所、

E-mail: kazuhiro.tanaka@kek.jp

Goals at J-PARC

Magnets for Hadron Experimental Hall

- 12 Epoxy mags.
- 17 **PI** mags.
- 7 MIC mags.
- Semi Remote Handling Sys.

54 Magnets for Hadron Hall

- 4 Epoxy + 27 PI mags. for Ordinary Secondary Beam Areas
- 9 PI mags. with 2 Chimneys
- 14 MIC mags. wiyh 10 Chimneys
- Full Remote Handling with Chimney

Nuclear & Hadron Physics at J-PARC

High Intensity Beam Handling

- Magnets etc. should be radiation/heat resistant.
- Magnets etc. should be replaced easily and quickly.
- High Intensity Handling should be considered as a system.
 - Power/water lines,
 - Vacuum line,
 - Daily operation/maintenance,
 - Radiation shields,

R&D of Radiation Resistant Magnets for J-PARC

- Polyimide Resin + Boron Free Glass Tape
 - Tested up to 10⁹Gy and usable up to 4x10⁸Gy
 - All the J-PARC Accelerator Magnets Employed Polyimide Insulation.

Tensile strength of a cured BT resin reinforced by Boron Free Glass Cloth.

Accelerator Magnets of J-PARC

PI insulation instead of Epoxy

Q-Magnet for RCS

Beam Transport Magnets of J-PARC

Cyanate Ester resin?

CYTESTER®, Mitsubishi Gas Chemical

P.E. Fabian et al., Fusion Engineering and Design 61-62 (2002) pp795

HC-MIC and SC-MIC since 1990

Nominal Current (A)	2000	2500	3000	1000*	2000*
Dimmensions (mm)					
A: Outward Size	20.0	23.8	28.0	18.0	14.0
B: Insulator Size	18.0	21.6	25.0	16.6	12.6
C: Conductor Size	14.6	18.0	20.0	13.2	9.2
D: Hollow Size	7.4	10.0	10.0	-12	
Cross Section (mm ²)					
Conductor	150.9	211.7	293.1	168.4	78.8
Insulator	117.7	153.2	227.4	106.6	79.4
Seath	73.4	95.3	150.6	47.8	36.6

Q440MIC Magnet with HC-MIC

Q440MIC Magnet for J-PARC

Slow Extraction Beam Line (Phase I)

Semi Remote Maintenance at Switch Yard

Cross Section of Switch Yard

Mock Up of Hadron-SY & Neutrino

Automated magnet lifting for 20 ton load

Automated magnet lifting for 20 ton load

Twist lock

Corner fitting

Quick alignment guide

Mechanical support

Remote Handling 3 Metal sealed lever coupler

- Normal operation with 2MPa
- Normal operation temperature : 15~80°C

Remote Handling

Quick connection bellows

Hadron Experimental Hall Remote Maintenance

Hadron Hall Systematization; Chimney as High Power Beam Facility

Chimney for Hadron-Hall Magnets

Radiation Resistant Chimney Magnet

Water Manifold & Electric Connection at Service Space Level

Completely Inorganic

Chimney

MIC Magnet

Hadron⁴Hall Nov. 2008

Chimney magnets near T1

Chimney magnets near T1 (side view)

Service Space; Water/Electric circuits

Water Piping

Inorganic; using steam piping technology

Electric
Circuits
Inorganic;
using Cu B.B.

Bridges for Water & Electric Power; Quick Disconnect System

Water Connector Metal sealed lever coupler

- Normal operation with 2MPa
- Normal operation temperature : 15~80°C

Q.D. Electric Power Connector

Shield Penetrating Bus Duct (Outside)

Shield Penetrating Bus Duct (Inside)

Service Space near T1 Target

Pillow Seal for Vacuum Connection

Our first one (1989) for KEK-PS Effective Dia. = 30cm, Leak rate ~10⁻⁸Pa·m³/s

On non-flat...

On dust....

- Now, Leak rate is ~4x10⁻¹²Pa•m³/s
- Effective Dia. >50cm

Pillow Seal for Vacuum Connection

Special System for T1 Area

The most upstream part of K1.1 K1.8Q1 K1.1D1 K1.8D1 **Drift Space** Collimator T1 Target

Modules

Super Radiation Hard Magnet: K1.1D1

Solid MIC with Indirect Water Cooling

- SC-MIC is sandwiched by cooling tubes.
- Whole coil is impregnated by tin.

Manufacturing SC-MIC Coil for K1.8D1

Vacuum Chamber

Central Vacuum Chamber

T1 Target Area

Target and Hadron Hall Incident

Radioactive Materials Leak Incident

11:55 on May 23, 2013

- An abnormal proton beam was injected to the gold target.
- The target heated up to a extraordinarily high temperature.
- Radioactive material was released from the target.
- The radioactive material was leaked into the HD hall.
 - → Workers were exposed to radiation.
- The radioactive material was released to the outside of the radiation controlled area and to the environment outside of the HD hall.

Abnormal Beam

 At around 11:55 on May 23, the power supply system of a special magnet in the 50 GeV Synchrotron malfunctioned.

→ 2x10¹³ protons were extracted in a very short period of 5 milliseconds, while in normal operation 3x10¹³ protons should have

been slowly extracted over 2 seconds.

Target Temperature (Simulation Results)

Observed Au Target

Au target observed from the downstream: a 1mm in diameter hole was seen at the downstream end.

Traces of sprayed-out melting gold at the Be window at the downstream

These observations well match with our simulation results.

Countermeasures

- Hardware:
 - Strengthen interlocks including the accelerator side
 - Airtight target chamber and gas circulation system
 - Reinforced airtightness of the primary beam line
 - Air exhaust system and monitors at the Hadron Hall
- Software: organization, manuals, etc.

Structure of New Target chamber lation System Water: existing

Since the beam windows are always exposed to a primary beam directly, we designed the windows to keep their soundness even in the case of 5-µs pulse beams.

^{*} $5-\mu s = revolution of Main Ring$

Structure of New Target

Improvements

- > Gold is partially sunk in copper block to avoid instantaneous separation of gold from copper.
- Cooling pipes are located closer to gold for efficient cooling.
- ➤ Width of gold is incleased (6 => 15) for wider beam.
- > 2-headed structure for quick and remote replacement of target.

Result of Thermal Analysis of Target (50kW)

New Chamber Installation

Sept 30, 2014

T1 Target Temperature (41.6kW, 5.52s-cycle)

