Four-body Faddeev-Yakubovsky equations using two-cluster RGM kernels -- Applications to 4N, 4d' and 4α systems --

Y. Fujiwara

- 1. 導入
- 2. 二体 RGM kernel を用いた三体・四体 Faddeev-Yakubovsky 方程式
- 3. Quark 模型 baryon-baryon interaction fss2
- 4. α 粒子の Faddeev-Yakubovsky 方程式
- 5. fss2 による α 粒子の結合エネルギーと平均二乗半径
- Faddeev redundant components: 4 boson 系 (4d', 4α) への応用
 まとめ

1. 導入

クォーク模型バリオン間相互作用 fss2 による少数バリオン系の包括的理解をめざす

(3 体バリオン系)

- 3 H (*n*+*n*+*p*), ${}^{3}_{\Lambda}$ H (*n*+*p*+\Lambda) の結合エネルギー
- ・ 3核子系の散乱観測量 (nd, pd 弾性散乱, 3体崩壊反応) ... 福川

(3体クラスター系)

 ¹²C (3α), ⁹Be (n+2α), ⁹_ΛBe (Λ+2α), ⁶He (2n+α), ⁶_{ΛΛ}He (2Λ+α) 系の 束縛状態計算 αα, nα, Λα RGM kernel

枠組み: 2 体クラスター RGM kernel を用いた 3 体, 4 体 クラスター Faddeev-Yakubovsky方程式

Renormalized RGM kernel の利用 \rightarrow *G*-行列計算 $\rightarrow \alpha$ でfolding $\rightarrow \Lambda$ - α 有効相互作用を構成

多クラスター Faddeev-Yakubovsky方程式の満たすべき要件

- 1. 変分法 (h.o. basis, SVM, Gauss 展開法, 等) と (同一のinput で) 同じ結果 を与える。
- 現象論的2 体クラスター間ポテンシャルではなく、構成粒子間の2 体力から出発して RGM kernel を作る → Pauli forbidden state u は "クラスター相対運動に対する直交条件"として自然に出る。…2 体RGM kernel を用いた対直交条件型 (堀内型) OCM
- 3. 例えば 2α , 3α , 4α と通して議論できる。Induced 3-body force (3 クラスター にまたがる反対称化の効果) や 2 クラスター間力の off-shell変換の効果 (エネルギー依存性を除去したことによる $1/\sqrt{N}$ の効果, 等)を議論できる。 ... 核力における V_{low-k} や SRG 変換に対するヒントを与える。
- 2体クラスター間にパウリ禁止状態があるときの Faddeev redundant component が適切に処理できて、方程式が実際解けること。3体は簡単だ が、4体以上では自明でない。

Four-cluster Faddeev-Yakubovsky formalism using two-cluster RGM kernels

Removal of the energy dependence by the renormalized RGM Matsumura, Orabi, Suzuki, Fujiwara, Baye, Descouvemont, Theeten 3-cluster semi-microscopic calculations using 2-cluster non-local RGM kernels: Phys. Lett. B659 (2008) 160; Phys. Rev. C76, 054003 (2007)

 $[\varepsilon - H_0 - V_{\text{RGM}}(\varepsilon)] \chi = 0 \quad \text{with } V_{\text{RGM}}(\varepsilon) = V_D + G + \varepsilon K \qquad \varepsilon K \text{ method}$ $\Rightarrow \Lambda[\varepsilon - H_0 - V_{\text{RGM}}] \Lambda \psi = 0 \quad \text{with } V_{\text{RGM}} = V_D + G + W \qquad (\varepsilon = E - E_{\text{int}})$

$$W = \Lambda \left[\frac{1}{\sqrt{N}} \left(H_0 + V_{\rm D} + G\right) \frac{1}{\sqrt{N}} - \left(H_0 + V_{\rm D} + G\right)\right] \Lambda \quad \text{Extra non-local kernel}$$

N=1-K

$$V_{\text{RGM}}^{new}(\omega) = [\omega - H_0 - \Lambda(\omega - H_0)\Lambda] + \Lambda V_{\text{RGM}}\Lambda$$

$$\equiv V(\omega) + \upsilon \quad \text{with} \quad \omega \text{ (parameter)} \neq \varepsilon$$

$$T(\varepsilon, \omega) = V_{\text{RGM}}^{new}(\omega) + V_{\text{RGM}}^{new}(\omega)G_0^{(+)}(\varepsilon)T(\varepsilon, \omega)$$

$$T(\varepsilon, \omega) = \tilde{T}(\varepsilon) + (\varepsilon - H_0)|u\rangle \frac{1}{\varepsilon - \omega} \langle u|(\varepsilon - H_0)|u\rangle = 0$$

$$\langle u|[1 + G_0^{(+)}(\varepsilon)\tilde{T}(\varepsilon)] = [1 + \tilde{T}(\varepsilon)G_0^{(+)}(\varepsilon)]|u\rangle = 0$$
2013.7.7 hyper 核物理\sigma RGM T-matrix : **Prog. Theor. Phys. 107 (2002) 745; 993**
(also obtained by Kukulin's method)

4α case

$$\begin{split} & \sum_{i < j} |u_{i,j}\rangle \langle u_{i,j} | \psi_{\lambda} \rangle = \lambda | \psi_{\lambda} \rangle & \text{in } |\psi_{\lambda} \rangle \in [4] \\ & \lambda = 0: 1 \stackrel{\text{orbit}}{\longrightarrow} D \stackrel{\text{orbit}}{\longrightarrow} \mathcal{P} = \sum |\psi_{\lambda}\rangle \langle \psi_{\lambda} | & \text{Projection operator onto the } \\ & (\text{pairwise}) \text{ Pauli-allowed state} \\ & \lambda > 0: 1 \stackrel{\text{orbit}}{\longrightarrow} D \stackrel{\text{orbit}}{\longrightarrow} |\psi_{\lambda}\rangle = (1/\lambda) \sum_{i < j} |u_{i,j}\rangle \langle u_{i,j} | \psi_{\lambda} \rangle \end{split}$$

 $\begin{aligned} \mathscr{P}[E - H_0 - \sum_{i < j} (V_{\text{RGM}})_{i,j}] \mathscr{P}\Psi &= 0 &: \text{4-cluster OCM using } V_{\text{RGM}} \\ & \textcircled{}\\ \psi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) P[(1 + P_{(34)})\psi + \varphi] &: \text{4-cluster Faddeev-Yakubovsky} \\ \varphi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) \tilde{P}[(1 + P_{(34)})\psi + \varphi] &: \text{4-cluster Faddeev-Yakubovsky} \\ \text{equation using RGM T-matrix} \\ \psi &= \text{cluster Faddeev-Yakubovsky} \\ \psi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) \tilde{P}[(1 + P_{(34)})\psi + \varphi] &: \text{4-cluster Faddeev-Yakubovsky} \\ \psi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) \tilde{P}[(1 + P_{(34)})\psi + \varphi] &: \text{4-cluster Faddeev-Yakubovsky} \\ \psi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) \tilde{P}[(1 + P_{(34)})\psi + \varphi] &: \text{4-cluster Faddeev-Yakubovsky} \\ \psi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) \tilde{P}[(1 + P_{(34)})\psi + \varphi] &: \text{4-cluster Faddeev-Yakubovsky} \\ \psi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) \tilde{P}[(1 + P_{(34)})\psi + \varphi] &: \text{4-cluster Faddeev-Yakubovsky} \\ \psi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) \tilde{P}[(1 + P_{(34)})\psi + \varphi] &: \text{4-cluster Faddeev-Yakubovsky} \\ \psi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) \tilde{P}[(1 + P_{(34)})\psi + \varphi] &: \text{4-cluster Faddeev-Yakubovsky} \\ \psi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) \tilde{P}[(1 + P_{(34)})\psi + \varphi] &: \text{4-cluster Faddeev-Yakubovsky} \\ \psi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) \tilde{P}[(1 + P_{(34)})\psi + \varphi] &: \text{4-cluster Faddeev-Yakubovsky} \\ \psi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) \tilde{P}[(1 + P_{(34)})\psi + \varphi] &: \text{4-cluster Faddeev-Yakubovsky} \\ \psi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) \tilde{P}[(1 + P_{(34)})\psi + \varphi] &: \text{4-cluster Faddeev-Yakubovsky} \\ \psi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) \tilde{P}[(E - h_{\overline{0}})\psi + \varphi] &: \text{4-cluster Faddeev-Yakubovsky} \\ \psi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) \tilde{P}[(E - h_{\overline{0}})\psi + \varphi] &: \text{4-cluster Faddeev-Yakubovsky} \\ \psi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) \tilde{P}[(E - h_{\overline{0}})\psi + \varphi] &: \text{4-cluster Faddeev-Yakubovsky} \\ \psi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) \tilde{P}[(E - h_{\overline{0}})\psi + \varphi] &: \text{4-cluster Faddeev-Yakubovsky} \\ \psi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) \tilde{T}(E - h_{\overline{0}})\psi + \varphi \\ \psi &= G_0(E) \tilde{T}(E - h_{\overline{0}}) \tilde{T}(E - h_{\overline{0}}) \psi \\ \psi &= G_0(E) \tilde{T}(E - h_$

$$P = P_{(12)}P_{(23)} + P_{(13)}P_{(23)}, \quad \tilde{P} = P_{(13)}P_{(24)}$$

Total wave function
 $\mathscr{P}\Psi = \Psi = (1+P)\{[1+P_{(34)}(1+P)]\psi + (1+\tilde{P})\phi\}$
 $\Rightarrow \forall (u = |\Psi\rangle = 0$

→ $\vee \langle u_{i,j} | T \rangle = 0$ *Cf.* Non [4]-symmetric trivial solutions in the 4 α system are removable. 2013.7.7 hyper 核物理の発展と今後の展望 (Faddeev redundant components)

B₈B₈ interactions by fss2

Y. F., C. Nakamaoto, Y. Suzuki, M. Kohno PRC64 (2001) 054001 PRC65 (2002) 014001

A natural and accurate description of NN, YN, YY interactions in terms of (3q)-(3q) RGM

- Short-range repulsion and LS by quarks
- Medium-attraction and long-rang tensor by S, PS and V meson exchange potentials (fss2) (Cf. FSS without V) Y. F., C. Nakamoto, Y. Suzuki, PRC54 (1996) 2180

Model Hamiltonian

$$H = \sum_{i=1}^{6} (m_i + p_i^2/2m_i)$$

+
$$\sum_{i < j}^{6} (U_{ij}^{\text{Conf}} + U_{ij}^{\text{FB}} + \sum_{\beta} U_{ij}^{\beta})$$

+
$$\sum_{\beta} U_{ij}^{\text{PS}\beta} + \sum_{\beta} U_{ij}^{\text{V}\beta})$$

Barvon Octet (B_8) isospin (udd) (uud) N S=0 S=-1 Σ^{-} Σ^{0} , Λ Σ^{+} Λ , Σ (Y) I=0, 1 I=1/2 Sβ (dss) (uss) I = 1/2Srangeness

 $\langle \phi(3q)\phi(3q)|E-H/A \{\phi(3q)\phi(3q)\chi(r)\}\rangle = 0$ **QMPACK homepage http://qmpack.homelinux.com/~qmpack/php** 2013.7.7 hyper 核物理の発展と今後の展望

Number of parameters: less than 20

4 体同種 Fermion 粒子系の Faddeev-Yakubovsky 方程式

$$\psi = G_{0}tP[(1 - P_{(34)})\psi + \varphi]$$
(3 body case)

$$\varphi = G_{0}t\tilde{P}[(1 - P_{(34)})\psi + \varphi]$$
with $t = V^{RGM} + V^{RGM}G_{0}t$,

$$P = P_{(12)}P_{(23)} + P_{(13)}P_{(23)}, \quad \tilde{P} = P_{(13)}P_{(24)}$$
Total wave function

$$\Psi = (1 + P)\{[1 - P_{(34)}(1 + P)]\psi + (1 + \tilde{P})\varphi\}$$

$$\psi = G_{0}tP\psi$$
Total wave function

$$\Psi = (1 + P)\{[1 - P_{(34)}(1 + P)]\psi + (1 + \tilde{P})\varphi\}$$

$$\psi = (1 + P)\psi$$

$$\psi = (1 +$$

- (3q)-(3q) folded cut-off Coulomb with $R_{cou} = 10$ fm \implies smaller than point Coulomb
- ${}^{1}S_{0}$ charge independence breaking (CIB)

Approximate treatment in the isospin basis:

H. Witala et al. Phys. Rev. C43, 1619 (1991)

Scatt. length	<i>a</i> _s (fm)	F _{BB}	$\stackrel{\text{reduction factor}}{\longleftarrow} \text{ for } {}^{1}S_{\circ}$
рр	-17.80	0.9934	
nn	-18.0	0.9944	
np	-23.76	1	
3 H: $\frac{2F_{nn}+1}{3}f$	25		
3 He: $\frac{2\Gamma_{pp}+1}{3}$	$f_1^s + \frac{2}{3}$ Cou	lomb	for isospin <i>I</i> =1 pairs
3 He : $\frac{F_{pp} + F_{m}}{3}$	$\frac{1}{1} + \frac{1}{1} f_1^S + \frac{1}{3} f_1^S$	Coulomb	

³H, ³He, ⁴He(α)

	Coul (keV)	CIB (keV)	E (MeV)	Eexp (MeV)	diff (MeV)
³ H	-	182	-8.143	-8.482	0.34
³ He	682	208	-7.436	-7.718	0.28
⁴ He	810	538	-26.64	-28.30	1.66

(⁴He calculation is by *n*=6-6-3)

							Benc	hmar	k test	H. K Rev.	(amada et. al., 1 C64, 044001 (2	Phys 2001)
	⁴ He	fss2	1	10-10-5			AV	8'	10-1	<u>0-5</u> ←	- 4 桁精度	
	• sum	E (MeV)	K	E (MeV)	R _c (fr	m)	<i>E</i> (M	leV)	KE (I	MeV)	R _c (fm)	
	max											
	2	-24.73		76.29	1.49	8	-21	.46	83.	10	1.607	
	4	-26.32		85.46	1.44	3	-24	.88	97.	32	1.512	
	6	-27.76		87.64	1.43	3	-25	.53	100	.94	1.493	
	8	-27.92		88.18	1.43	0	-25	.90	102	.38	1.485	
	10	-27.95		88.31	1.42	9	-25	.95	102	.67	1.483	
		Stochas	tio '	Variationa	l Meth	od	-25	.92	102	.35	1.486	
1	$R_{\rm c}^{\rm exp}$ (4He)=1.457(4) fm		deuteron			fss2	AV8	' (S	VM)	AV18		
	Deuteron	properties		$\boldsymbol{\mathcal{E}}_{\mathrm{d}}$ (Me	eV)	2	.2246	2.24	36 2	2.242	2.2246	
	³ H bindi	ng energy		P _d (%)			5.49	5.7	8	5.77	5.76	
	~ 350 keV missing in fss2: almost half of 0.5 – 1 MeV for			rms (fm)		1	.960	1.96	61 1	.961	1.967	
				$Q_{ m d}$ (fn	h2)	(0.270	0.26	<u>59</u>		0.270	
meson exch. models			η		0	.0252	0.02	52		0.0250		
				$\mu_{\rm d}$ (μ	(₀)	().849	0.84	7		0.847	
4	2013.7.7 hyp	per 核物理の発	展と	KE (M	eV)	(1	7.49)	19.8	1	9.881	19.814	

他の計算	との比較
------	------

A. Nogga, H. Kamada, W. Glöckle, and B.R. Barrett, Phys. Rev. C65, 054003 (2002)

model	P _d (%)	³ H (MeV)	³ He (MeV)	⁴ He (MeV)	diff (MeV)
fss2	5.490	-8.143	-7.436	-26.64	1.66
CD-Bonn	4.833	-8.013	-7.288	-26.26	2.04
AV18	5.760	-7.628	-6.917	-24.25	4.02
Nijm I	5.678	-7.741	-7.083	-24.98	3.32
Nijm II	5.652	-7.659	-7.008	-24.56	3.74
Nijm93	5.755	-7.668	-7.014	-24.53	3.77
Exp.		-8.482	-7.718	-28.296	
		0.5 –	1 MeV	3 – 4 MeV	missing in MEI

Ours: - 28.0 MeV + 0.8 MeV (Coulomb) + 0.5 MeV (CIB) = - 26.7 MeV 1.7 MeV missing → almost half of standard MEP's

Faddeev redundant components

1) Y-type 座標における 3体部分系の redundant component : $(1+P)|uf\rangle=0$ 2) 2体 - 2体の H-type 座標における core exchange type \mathcal{O} redundant component : $(1+\widetilde{P})|\widetilde{uu}\rangle = 0$ 3) genuine 4体系の redundant component: $\lambda | uF \rangle = P[(1+P_{(34)})uF + uG] + | uf \rangle \langle uf | (1+P_{(34)})uF + uG \rangle$ $\lambda | uG \rangle = \tilde{P}[(1 + P_{(34)})uF + uG] + | \widetilde{uu} \rangle \langle \widetilde{uu} | (1 + P_{(34)})uF + uG \rangle$ \Rightarrow we can prove with $\lambda = -1$ $\langle uf | uF \rangle = 0$, $\langle uf | (1+P_{(34)})uF + uG \rangle = 0$ $\langle \widetilde{uu} | uG \rangle = 0$, $\langle \widetilde{uu} | (1 + P_{(34)})uF + uG \rangle = 0$ and $\Psi^{\lambda} = (1+P)\{[1-P_{(34)}(1+P)]uF + (1+\tilde{P})uG\} = 0$ trivial solution

4) modified Faddeev-Yakubovsky equation :

$$\begin{split} \psi &= G_0 \tilde{t} P[(1+P_{(34)})\psi + \varphi] - |uf\rangle \langle uf | (1+P_{(34)})\psi + \varphi \rangle \\ &- |uF\rangle \langle (1+P_{(34)})uF + uG | (1+P_{(34)})\psi + \varphi \rangle \\ \varphi &= G_0 \tilde{t} \tilde{P}[(1+P_{(34)})\psi + \varphi] - |\tilde{uu}\rangle \langle \tilde{uu} | (1+P_{(34)})\psi + \varphi \rangle \\ &- |uG\rangle \langle (1+P_{(34)})uF + uG | (1+P_{(34)})\psi + \varphi \rangle \\ \text{we can prove} \quad \langle u | \Psi \rangle = 0 \text{ and} \\ \langle uf | \psi \rangle = 0 \text{ , } \langle uf | (1+P_{(34)})\psi + \varphi \rangle = 0 \\ \langle \tilde{uu} | \varphi \rangle = 0 \text{ , } \langle \tilde{uu} | (1+P_{(34)})\psi + \varphi \rangle = 0 \end{split}$$

for identical 4-boson systems

4d' energy and rms radius

Faddeev-Yakubovsky (6-6-3 mesh)

• su	$E_{4d'}$	KE	Rc	rms
m	(MeV)	(MeV)	(fm)	(fm)
max				
0	-0.100	5.160	14.79	14.90
2	-0.099	5.033	14.79	14.89
4	-0.768	23.67	5.362	5.645
6	-6.872	81.98	1.891	2.589
8	-7.012	83.53	1.875	2.577
10	-7.088	83.41	1.879	2.580
12	-7.089	83.41	1.879	2.580

- ^{sum}_{max} = 6 で大きく変化する:
 [(20)(20)](02)(20):(00) のため
- h.o. basis : convergence is very slow
- E_{3d} = -0.417 MeV (N_{tot} =60) : small

• E_{2d} = 0.05 MeV (N_{tot} =100) v_0 = -(151 ~ 152) MeV \mathfrak{C} bound

2013.7.7 hyper 核物理の発展と今後の展望

 $v = v_0 e^{-\kappa r^2} (1+P_r)/2$ (pure Serber) $v = 0.12 \text{ fm}^{-2}, \ \kappa = 0.46 \text{ fm}^{-2}, \ v_0 = -153 \text{ MeV}$ h.o. variation (total quanta N_{tot})

N _{tot} max	<i>E</i> _{4<i>d</i>} , (MeV)	c ₍₀₀₎	KE (MeV)	R c (fm)	rms (fm)
6	0.416	1	52.25	2.339	2.932
8	-1.604	0.941	63.44	2.130	2.768
10	-4.485	0.914	67.55	2.116	2.758
12	-5.481	0.879	74.14	2.002	2.671
14	-6.181	0.857	77.34	1.980	2.655
16	-6.466	0.842	80.08	1.938	2.623
18	-6.628	0.836	81.10	1.935	2.621
20	-6.689	0.832	81.85	1.923	2.612
22	-6.726	0.829	81.50	1.948	2.631
•	:	•	:	•	•

4α energy and rms radius

Faddeev-Yakubovsky (4-4-2)

• su	$E_{4\alpha}$	KE	R _a	rms
m	(MeV)	(MeV)	(fm)	(fm)
max				
0	-4.21	15.51	3.67	3.95
2	-4.16	15.20	3.69	3.96
4	-6.53	20.71	3.27	3.57
6	-7.28	23.10	3.07	3.40
8	-11.56	43.08	2.71	3.07
10	-15.82	66.39	2.19	2.62
12	-39.06	142.33	1.57	2.13
1/	20.15	1/1 00	1 57	2 13

- largely overbound $(rms)_{exp} = 2.710 \pm 0.015$ fm
- ・ ^{sum}max=12 で大きく変化する [(40)(40)](04)(40):(00) のため
- bを大きくとって rms radius を大きく しても overbinding は不変

2013.7.7 hyper 核物理の発展と今後の展望

Cf. S. Oryu, H. Kamada, H. Sekine, T. Nishino, and H. Sekiguchi, Nucl. Phys. A534 (1991)221

Volkov No.2 *m*=0.605, *b*=1.36 fm h.o. variation (red: with Coulomb)

E _{4α} (MeV)	с ₍₀₀₎	KE (MeV)	<i>R</i> _α (fm)	rms (fm)
-34.14	1	184.98	1.38	2.00
-19.99	1	184.98	1.38	2.00
-37.04	0.964	160.34	1.48	2.07
-23.47	0.958	158.60	1.49	2.07
-38.27	0.935	150.87	1.53	2.10
-24.90	0.924	148.05	1.54	2.11
-38.76	0.917	145.95	1.55	2.12
-25.50	0.901	142.43	1.57	2.13
-38.96	0.907	143.39	1.57	2.13
-25.77	0.888	139.37	1.59	2.15
	$E_{4\alpha}$ (MeV) -34.14 -19.99 -37.04 -23.47 -23.47 -38.27 -24.90 -38.76 -25.50 -38.96 -38.96	E _{4α} (MeV) C(00) -34.14 1 -19.99 1 -37.04 0.964 -23.47 0.958 -38.27 0.9355 -24.90 0.924 -38.76 0.917 -25.50 0.901 -38.96 0.907	$E_{4\alpha}$ (MeV) $C_{(00)}$ KE (MeV)-34.141184.98-19.991184.98-37.040.964160.34-23.470.958158.60-38.270.9355150.87-24.900.924148.05-38.760.917145.955-25.500.901142.43-38.960.907143.39-25.770.888139.37	E4a (MeV)C(00)KE (MeV)Ra (fm)-34.141184.981.38-19.991184.981.38-37.040.964160.341.48-23.470.958158.601.49-38.270.935150.871.53-24.900.924148.051.54-38.760.901142.431.57-38.960.907143.391.57-25.770.888139.371.59

 $\frac{E_{2\alpha}}{E_{3\alpha}} = -1.105 \ (0.252) \text{ MeV}$ $\frac{E_{3\alpha}}{E_{3\alpha}} = -7.391 \ (-2.307) \text{ for } N_{\text{tot}} = 60$

まとめ

クオーク模型バリオン間相互作用 fss2 の NN 部分を用いて, α 粒子の結合 エネルギーと平均二乗半径を、二体クラスター RGM kernel を用いた四体 Faddeev-Yakubovsky方程式を解くことにより検討した。結果は、クーロンな しで - 28.0 MeV, 平均二乗半径は 1.43 fm と多少小さい。 クーロンカと核力の荷電独立性の破れを考慮すると $E_{\alpha} = -26.64$ MeV ~ -28.0 + 0.8 + 0.5 vs. $E_{\alpha}^{exp} = -28.296$ MeV charge rms radius = 1.439 fm vs. exp : 1.457 ± 0.004 fm 不足分 -1.66 MeV は, 標準的な中間子交換ポテンシャルのそれのほぼ半 分で, 3 核子系での結果と consistent である。

二体クラスター RGM kernel に Pauli 禁止状態が存在する 4d' や 4α系に ついても四体クラスターFaddeev-Yakubovsky方程式の有効性が示された。

これからの課題

- ⁴_AH, ⁴_AHe の計算 (進行中)
- $4_{\Lambda\Lambda}$ He ... ΛN - ΣN coupling $\ge \Lambda \Lambda$ - ΞN - $\Sigma \Sigma$ coupling が同時に現れる