

FPGAを用いた high-resolution TDCの開発

Development of high-resolution TDC based on FPGA.

阪大理, 東北大理^A, JAEA^B, KEK^C, Open-It^D

@本多良太郎, 三輪浩司^A, 細見健二^B, 池野正弘^{CD}, 内田智久^{CD}

SNPスクール2017@福島

Outline

- Motivation
- Developed items
 - Hardware
 - Tapped delay line in FPGA
 - Calibration
- Performance evaluation
- Summary

Motivation

3500 Background proton Proton 3000 are rejected by 2nd level trigger 2500 2000 Counts triggered by 1st level 1500 triggered by 2nd level 1000 500 Pion Kaon 0.4 0.8 0.20.6 Mass² [GeV/c²]

- 1st level trigger : Coincidence of detector signals
 - Cherenkov detectors play important role.
- **2nd level trigger** : Trigger based on time-of-flight
 - High-resolution time-of-flight information is necessary.

Motivation

- Fast (100 ns order)
- Simple

FPGA based high-resolution TDC mezzanine card Development of FPGA based HR-TDC is main motivation of this project. FPGA Trigger controller module (Mother module)

Supported by Grant

新学術 (中性子星核物質) 公募研究

「J-PARC二次ビーム高強度化のための汎用トリガーモジュールの開発」

Motivation

Trigger controller module (Mother module)

Supported by Grant 新学術 (中性子星核物質) 公募研究

「J-PARC二次ビーム高強度化のための汎用トリガーモジュールの開発」

Hadron universal logic (HUL) controller module

HUL mezzanine cards

This project is technically supported by Open-It. http://openit.kek.jp/project/HUL/public/hul

- 64ch ECL/LVDS inputs
- Two mezzanine slots
- GbE : SiTCP (VME communication is not supported)
- Powered by J1 or AC adaptor (5V)

Tapped Delay Line (TDL)

D-Flip-Flop captures the snapshot of the pulse running on TDL.

Implementation of TDL into FPGA

FPGA : Field-Programmable Gate Array

Gate level logic coded by users can be implemented.

Implement TDL using carry line in FPGA

Carry line

- **Basic function of Adder**
- Smallest delay element with 5-30 ps delay time
- Close to FF
- Cascadable

1111100000

0000100000

5

: Fine count + Semi coarse count (2bit) + Coarse count (11bit)

32ch HR-Timing unit and DAQ functions were fully implemented into Kintex7 160T.

Delay time (dT) is not constant.

SNPスクール2017@福島

- Use detector signal.
 - Corresponding to that the clock sampling of the detector signal. The detector signal must be random.
- Use clock.
 - The TDC clock is 520 MHz (f_{sample}) and calibration clock is 26.2144 (f_{calib})
 - $N^*(f_{sample}/f_{calib}) = N^*(2^{9*57*13})/(2^{20*52}) = N^*(5^{5*13})/2^{11}$
 - 2048 different clock phases appear

DAQ functions

Performance evaluation

Timing resolution

Timing resolution better than 30 ps (σ) achieved for all the channel !

Input pulse

Double pulse could be measured with 100% efficiency.

In principle, double pulses with quite short interval can be measured .

Measured timing distribution

Input pulse

Measured timing distribution

High-resolution multi-hit TDC was successfully developed.

We overcame HR-TDC problem in our field !

short interval can be measured.

ToDo

Implement both leading and trailing edges measurement.

• At present, 8ch leading/trailing measurement was achieved.

Implement HR-TDC to FPGA on mezzanine card.

- Separate HR-TDC part from the DAQ functions.
- Customization of DAQ functions can be easy.

Future possibility

- Synchronization with master clock
- Implement as free-run type TDC

New mezzanine card for HR-TDC (Same FPGA is mounted)

- Develop the 2nd level trigger system using FPGA based HR-TDC for the *K*⁺ selection in J-PARC experiments.
- Furthermore, FPGA based HR-TDC solve the problem that no good HR-TDC exists in our research field.
- Tapped delay line HR-TDC, which realized by carry line, was implemented into Xilinx Kintex7 160T.
- 32ch HR-TDC unit and DAQ functions were fully implemented.
- The timing resolution better than 30 ps (σ) was achieved for all the channel.
- The double-hit resolution was at least 8 ns.
- We overcame the HR-TDC problem by this development.

Backup

SNPスクール2017@福島

Principle of calibration using clock.

open

LUT Entry dependence of timing resolution

Bit length dependence of timing resolution

At present, lower 8bits are discarded.