実験と観測で解き明かす中性子星の核物質 C01班

新しいSi CMOSハイブリッド検出器と 電子飛跡のDeep Learningによる再構成

斉藤新也(立教大学,宇宙科学研究所(~2014年)) 高橋忠幸,渡辺伸,池田博一,米田浩基(宇宙科学研究所)

Si-CMOS 検出器

開発の経緯

2013年以降、宇宙科学研究所を中心に、浜松ホトニクスと共同で 開発を進めてきた。

	サイズ	変換効率	電極構造	結果
2014	128 x 128 (2.6mm x 2.6mm)	2µV/e	共通電極	電子の飛跡取得に成功
2015	640 x 512 (1.3cm x 1cm)	1µV/e	共通電極	OK

開発の経緯

2013年以降、宇宙科学研究所を中心に、浜松ホトニクスと共同で 開発を進めてきた。

従来の飛跡解析(主にガス検出器によるX線偏光測定):

飛跡の重心等の情報から解析的に始点を割り出し、始点近傍を直線フィット。

問題点:

始点が判別困難な複雑な軌跡には適用できず。

(Si-CMOSの場合、ガスに比べて飛跡が短くなる + 飛跡の二次元情報のみ)

新たな手法として、 Deep Learning を用いた飛跡解析アルゴリズムを構築

Deep Learning を用いた飛跡解析

Step1. ニューラルネットワークの学習

Step2. 学習済みニューラルネットワークによる推定

トレーニングデータと異なるデータセットを入力とし、汎化能力を検証。

単純な飛跡の場合

- ・電子の反応位置・初速ベクトルともに正しく推定している。
- ・始点(interaction point)と終点(Bragg ピーク)を間違えることは殆ど無い。

複雑な飛跡の場合

人が見ても反応位置・初速ベクトルの判断が困難で、かつ従来の飛跡解析アルゴリズム(e.g. moment analysis)が機能しないケースでも、ある程度正しく推定できている。

中性子星新学術 C01班

正しく推定できないケース

パラメータの推定精度

- ・ 始点の位置を1ピクセル(20µm)以下の精度で推定できている。
 → 始点と Bragg ピークを間違えることはほとんどない。
- 散乱方向の推定精度は~30°程度。

まとめ

- 電子追跡型コンプトンカメラのための、Si-CMOS センサを開発している。電子の飛跡・タイ ミング・エネルギーの同時取得に成功し、コンプトンカメラとして動作させる準備が整った。
- コンプトン再構成の鍵を握る Si-CMOS センサ中の電子の散乱方向を決定するために、deep learning による飛跡の解析手法を構築した。Geant4 ベースで性能を検証し、複雑な飛跡の場 合でも再構成できることを示した。
- 今後は、電子追跡型コンプトンカメラのプロトタイプを製作。および、実験データに基づく飛 跡再構成を検討する(シミュレーション&実測)。