HypTPC for high-rate beams

佐甲博之(原子力機構) 新学術領域「中性子星核物質」 第2回検出器ワークショップ 2017/3/4, 東工大

Outline

- HypTPCの設計
 - The TPC vs HypTPC
- High rateへの対応
- Field cageの帯電対策
- HypTPC,TPCの応用

TPC

- The best three-dimensional imaging tracker
 - Pad position (x,z) and drift time (y)
 - Easy for 3-d pattern recognition
 - dE/dx can be measured with large number of layers
 - Big detector possible
- Disadvantage: high-rate capability
 - Limited primarily by electron drift time
 - e.g. Drift length(L)=50cm, Drift velocity(v)=5cm/μs
 - $t = 10 \mu s (10^5 Hz)$
 - If the rate is higher, events overlap
 - Field distortion due to positive ions

- Drift volume : uniform E
- End cap chamber for signal amplification
- B parallel to E
 - Smaller diffusion size → higher resolution

The PEP-4 TPC

- Gating grid
- Amplification with anode wires
 - lon backflow100%

HypTPC design

PEP-4/LEPS like TPC

- Large acceptance
 - Target "inside" drift volume
- Good position and decay vertex resolution
 - B//E
 - Solenoid: poor momentum resolution in the forward direction
 - → Vertical B field (good resolution in the forward direction)

J-PARC E42 setup

- 1.8 GeV/c K⁻ beam at 10⁶ / spill on a diamond target
- (K⁻,K⁺) tagged by KURAMA Spectrometer
- Search for $H \rightarrow \Lambda \Lambda \rightarrow \pi^-\pi^-pp$, $H \rightarrow \Lambda \pi^-p \rightarrow \pi^-\pi^-pp$ in HypTPC (Hyperon-TPC)

 $\Lambda\Lambda$ invariant mass resolution =1.5 MeV/c²

11000 ΛΛ events and 1440 H-dibaryons in 33-day experiment

E45 setup

Measure $(\pi, 2\pi)$ in HypTPC

 $\pi^{+}p \rightarrow \pi^{0}\pi^{+}p, \ \pi^{+}\pi^{+}n$

 π^{+-} beam at 10⁶ / spill on liquid-H target (p=0.73 - 2.0 GeV/c)

E45: 30M events in 15 days Enhance statistics of world's data by factor of 130

Readout pads

Pad size

2.4 x 9 mm² (inner layer)

2.4 x 13 mm² (outer layer)

32 pad rows (rings)

No. of pads = 5768

Position resolution <300μm (L>10cm)

 $\Delta p/p = 1-3\% (\pi,p)$

GEM (Gas Electron Multiplier)

- •4 GEM (250mmx250mm) sheets
- •3-GEM layers

 50μ m + 50μ m + 100μ m thick

Gain ~ 10⁴

Segmented electrodes

- to reduce spark rate / electrode
- to minimize acceptance loss when an electrode is broken due to discharge

Mask GEM for >10⁶ Hz beam

Reduce GEM HV in the beam trajectory region to make beam trajectories invisible "Mask region" is adjustable (5mm pitch).

Each electrode can be applied HV independently.

HypTPC

Field cage

GEMs

Readout pads

Ion backflow

TPC prototype test

NIMA763(2014)65-81

- Beam test at RCNP
 - Proton beam at 400 MeV
 - Beam rate up to 10⁶ Hz /cm²

Hit position distortion<0.1mm with GG

at gate operation

Efficiency vs beam rate

Proton

Position resolution (B=0)

 σ_x =0.40mm (4mm pad)

TPC hit distortions

GATE open Beam rate = $9x10^3$ /cm²

Particle identification with TPC

 π/K : p<=0.5 GeV/c

 π/p : p<=1.1 GeV/c

Courtesy of S.H. Hwang

Modification of the strip pattern (field cage and target holder) **Original** Remove Insulator 2 (ALICE-TPC Like solution) The place where positive lons can be attached ALICE-TPC field strips skirt electrode

Ion drift outside the field cage Most serious problem

All the positive ions hit the field cage wall

Equipotential lines

Gas vessel wall (actual a metal plate) Field strip wall (printed circuit on polyimide)

Drift lines of positive ions along a beam particle

Field strip wall

Inside the HypTPC

First Beam Test with HypTPC at ELPH

 A 460-MeV/c positron beam was exposed to HypTPC on November 7-9, 2016 at ELPH, Tohoku University.

Preliminary ELPH Test Results

 $\, \bigcirc \,$ A positron beam track is clearly reconstructed.

Physics possibilities with HypTPC

- $\Lambda(1405)$: $\pi^-p \rightarrow K^0\Lambda(1405)$ $\Lambda(1405) \rightarrow \Lambda \gamma$ (KN compositeness, T. Sekihara, *PR*C89 (2014) 025202)
- Λ*, Σ* studies in K⁻p reactions with PWA
 K⁻p→K⁰n,πΣ,πΛ,ηΛ,ππΛ,πΚη,...
- K-pp: $\pi^+d \rightarrow K^+K$ -pp K-pp $\rightarrow \Lambda p, \Sigma^0 p, \Lambda \pi^0 p, \Sigma^0 \pi^0 p$
- \(\mu\) excited states:

```
\mathsf{K}^-\mathsf{p} \to \mathsf{K}^+\Xi^{-*}, \ \Xi^{-*} \to \Lambda \mathsf{K}^-, \ \Sigma^0\mathsf{K}^-, \ \Sigma^-\mathsf{K}^0, \ \Xi^-\pi^0, \ \Xi^0\pi^-, \ \Xi^-\gamma
\mathsf{K}^-\mathsf{p} \to \mathsf{K}^0\Xi^{0*}, \ \Xi^{0*} \to \Lambda \mathsf{K}^0, \ \Sigma^0\mathsf{K}^0, \ \Sigma^+\mathsf{K}^-, \ \Xi^-\pi^+
```

E-C atom (E42) :K⁻C→K⁺E⁻X, E⁻ capture in C
 X-ray detection in TPC? (Ar gas)

Application of TPCs

- High multiplicity events in HI collisions
 - RHIC-STAR, LHC-ALICE(50kHz,continuous readout)
- TPCs with various gas
 - X-ray detection (X-ray polarization) (DME, C₂H₆O)
 - e from photoelectron effect
 - γ detection (Ar)
 - Compton camera (e from Compton scattering)
 - neutron detection (³He)
- Liquid Argon TPC
 - Neutrino, dark matter search (good dE/dx resolution)
- Liquid Xe TPC
 - High resolution gamma detection

Summary

- TPC is an excellent detector for 3-d imaging
- However, TPC has a disadvantage for high particle rate
- A large acceptance TPC for E42 (H-dibaryon search) and E45 (baryon resonance study) experiments at J-PARC for high rate beams has been developed
 - Target inside drift volume with a target holder
 - GEMs and gating grid to suppress field distortion
- Applications of HypTPC to other hadron physics possible with various targets (and gas?)