EQUATION OF STATES OF THE NEUTRON-RICH NUCLEAR MATTER AT SUPRA-DENSITY

Department of Physics Kyoto University Tetsuya MURAKAMI

For the B01 collaboration, a part of project "Nuclear Matter in Neutron Stars investigated by Experiments and Astronomical Observations" (Grant-In-Aid for Scientific Research on Innovative Areas)

Equation of State

$$E(\rho,\delta) = E(\rho,0) + E_{sym}(\rho)\delta^{2} + o(\delta^{4})$$

$$\delta = (\rho_{n} - \rho_{p})/\rho$$

$$E(\rho,0) = E(\rho_{0},0) + \frac{K_{0}}{2}\varepsilon^{2} + o(\varepsilon^{3})$$

$$E_{sym}(\rho) = E_{sym}(\rho_{0}) + L\varepsilon + \frac{K_{sym}}{2}\varepsilon^{2} + o(\varepsilon^{3})$$

$$\varepsilon = (\rho - \rho_0)/3\rho_0$$

$$K_0 = 9\rho_0^2 \frac{\partial^2 E(\rho, 0)}{\partial \rho^2} \bigg|_{\rho = \rho_0}$$

$$S_{0} = E_{sym}(\rho_{0})$$

$$L = 3\rho_{0} \frac{\partial E_{sym}(\rho)}{\partial \rho} \bigg|_{\rho = \rho_{0}} = (3/\rho_{0})P_{0}$$

$$K_{sym} = 9\rho_0^2 \frac{\partial^2 E_{sym}(\rho)}{\partial \rho^2} \bigg|_{\rho = \rho_0}$$

$$K_{\tau} \approx K_{sym} - 6L$$

How much we know about symmetric matter

How much we know about asymmetric matter (L and S_0)

PHYSICAL REVIEW C 86, 015803 (2012)

Constraints on the symmetry energy and neutron skins from experiments and theory

M. B. Tsang,¹ J. R. Stone,² F. Camera,³ P. Danielewicz,¹ S. Gandolfi,⁴ K. Hebeler,⁵ C. J. Horowitz,⁶ Jenny Lee,⁷ W. G. Lynch,¹ Z. Kohley,¹ R. Lemmon,⁸ P. Möller,⁴ T. Murakami,⁹ S. Riordan,¹⁰ X. Roca-Maza,³ F. Sammarruca,¹¹ A. W. Steiner,¹² I. Vidaña,¹³ and S. J. Yennello¹⁴

Prediction of Bao-An NPA 708 (2002) 365

Possible Probe π⁺-π⁻ ratio Proton-neutron ratio Light ion ratio (t-³He) Particle flow of pions, protons, neutrons and light ions

Pilot Experiments at HIMAC (19P226)

Multiplicity Array

Beam	²⁸ Si	¹³² Xe	
Energy(AMeV)	400, 600, 800	400	

- Target : In ~ 390 mg/cm²
- Typical Intensity : ~ 10⁷ ppp
- Range Counter : 14 layers (+2) of Sci.
- measured angle (θ_{lab})
- : 30, 45, 60, 75, 90, 120 degree
- solid angle : 10 msr

π^+ Cross Section for Xe+CsI Reactions

CsI ~¹³⁰Xe : <Z>=54 <N>=76 \rightarrow N/Z= 1.41 ^{129,132,136}Xe N/Z=1.39-1.52

Nuclear Symmetry Energy (NuSym) collaboration http://groups.nscl.msu.edu/hira/sep.htm

To map out the symmetry energy over a range of densities

MSU: B. Tsang & W. Lynch, P. Danielewicz, Z. Chajecki, R. Barney, J. Estee Texas A&M University : S. Yennello, A. McIntosh Western Michigan University : Michael Famiano RIKEN, JP: TadaAki Isobe, Atsushi Taketani, Hiroshi Sakurai Kyoto University: Tetsuya Murakami Tohoku University: Akira Ono GSI, Germany: Wolfgang Trautmann , Yvonne Leifels Daresbury Laboratory, UK: Roy Lemmon, University of Liverpool, UK: Marielle Chartier INFN LNS, Italy: Giuseppe Verde, Paulo Russotto, Pagano GANIL, France: Abdou Chbihi CIAE, PU, CAS, China: Yingxun Zhang, Zhuxia Li, Fei Lu, Y.G. Ma, Y. Ye Korea University, Korea: Byungsik Hong

A Time Projection Chamber (TPC) is being built in the US to measure π^+/π^- & light charged particles in RIKEN

Symmetry Energy Project: International collaboration to determine the symmetry energy over a range of densities

EoS Experimental setup

- Hodoscope for heavy residues
- Space is available for ancillary detectors
 - TPC is thin-walled

Agreement between US and Japan in 2008

- The U.S. collaborators will be responsible for the design and construction of the TPC and for initial testing of the TPC at MSU.
- RIKEN and the Japanese collaborators will be responsible for
 - Procurement of the SAMURAI dipole
 - Development of the TPC laser calibration system,
 - TPC gas handling system
 - TPC mounting and transportation hardware,
 - Target, the beam tracking
 - TPC electronics and data acquisition
 - Ancillary trigger scintillation array

Covered by B01 Budget

Top plate fabrication

Holes for pad plane readout

Connector prototype

- Top plate: pad plane and wire planes mounted on bottom
- **Ribs:** cross-braces to prevent bowing/flexing

Holes for electronic-card cooling lines

Enclosure fabrication

- Aluminum, plus Lexan windows
- **Skeleton**: Angle bar, welded and polished for sealing.
- Sides & Downstream Walls: framed aluminum sheet, to minimize neutron scattering
- Bottom Plate: Solid, to support voltage step-down
- Upstream Plate: Solid, ready for beamline coupling hole to be machined

SAMURAI TPC Manipulation

Motion Chassis and Hoist Beams work as designed. The TPC Enclosure can be lifted and rotated with relative ease.

Field cage

Made of printed circuit board Thin walls for particles to exit ←6 mm strips Gas tight (separate gas volumes) ٠ ⁴ mm gaps Enclosure FC wall Pad plane : Decreasing anode wires Cathode voltage (9-20kV) Beam direction 1cm Calculations courtesy of F. Lu Cathode (9-20kV) Voltage step down **GARFIELD** calculations (on scaled field cage) show uniform field lines 1cm from the walls

Pad plane

Full pad plane

- Mounted on bottom of lid
- 112 x 108 = 12096 pads
- Each pad: 12mm x 8mm
- Fabrication underway

Pad plane unit cell (192 in full plane)

- Capacitance: 10pf pad-gnd, 5pf adjacent pads
- Cross talk:
 - ~0.2% between adjacent pads
 - <0.1% between non-adjacent pads

Wire planes – mounting (test setup)

- Wires are strung across frame
- Frame is positioned so that wires pass through teeth of comb and rest on circuit board (CB)
- Comb sets pitch, CB sets the height
- After gluing and soldering wires to CB, wires are cut and frame removed

Voltage step down

- Glued to recess in bottom plate
- Consists of 9 concentric copper rings with decreasing voltage from cathode to ground

Bottom plate

VSD prototype: tested fabrication of rings, stability, and sparking
 → Full VSD fabrication underway

Laser Calibration System

Top View

Litron Laser (Class 4) 266nm 15 mJ / pulse (10Hz)

GET Electronics

- 12-bit ADC, 512 samples, 12k channels data taking under DAQ rate of about 1kHz.
- Expected data rate is quite high.
 - 100~300M Byte/sec, 60~180TByte/week.
 - Strong network infrastructure and offline computing facility is necessary for DAQ and online/offline data

		Applet Viewer	TRC	. a guest users
20 Applet		Applet viewer	: TPC	_ U X
Abbier		_		
000	100	200	300	Point(0) = 20.430752
001	101	201	301	Point(1) = 18.000000
002	102	202	302	Point(2) - 16149178
003	103	203	303	10m(2) = 10.149170
004	104	204	304	Point(3) = 14.011660
005	105	205	305	
006	106	206	306	
007	107	207	307	
008	108	208	308	
009	109	209	309	
010	110	210	310	
011	111	211	311	
012	112	212	312	
013	113	213	313	
014	114	214	304	
015	115	215	315	
016	116	206	316	
017	117	217	317	
018	108	218	318	
019	119	219	319	
020	120	220	320	
021	121	221	321	
022	122	222	322	
023	123	223	323	
024	124	224	324	
025	125	225	325	
026	126	226	326	
027	127	227	327	
028	128	228	328	
029	129	229	329	
030	130	230	330	
031	131	231	331	

Planed Experiments

Commission experiments			350 MeV			
Beam	tgt	N/Z(beam)	N/Z(tgt)	N/Z(CN)	N/Z diff	
124Xe	124Sn	1.30	1.48	1.38	-0.18	
124Xe	112Sn	1.30	1.24	1.27	0.06	

Physics exp	periments:	200 MeV	& 300 MeV	/		
Beam	pro	tgt	N/Z(beam)	N/Z(tgt)	N/Z(CN)	N/Z diff
132Sn	RI	124Sn	1.64	1.48	1.56	0.16
132Sn	RI	112Sn	1.64	1.24	1.44	0.40
108Sn	RI	124Sn	1.16	1.48	1.32	-0.32
108Sn	RI	112Sn	1.16	1.24	1.20	-0.08