October 26-27 (2012) 新学術領域「中性子星核物質」 RIKEN, Wako, Japan

ユニタリー領域近傍におけるフェルミ原子ガスの 強結合効果

Strong-coupling effects in the unitary regime of an ultracold Fermi gas

Yoji Ohashi

Department of Physics, Keio University, Japan

Collaborators:

S. Tsuchiya (SUT) R. Watanabe (KEIO) T. Kashimura (KEIO) D. Inotani (KEIO)

Introduction: cold Fermi atom gas as a quantum simulator
current situation in cold Fermi gas physics

Strong-coupling phenomena in the BCS-BEC crossover

• summary

Cold Fermi atom gas system as a useful Quantum Simulator

ultracold Fermi atom gas

Feshbach resonance

"phonon"-<u>mediated</u> pairing mechanism

 superconductivity Phonon, AF spin fluctuations
superfluid ³He Ferromagnetic spin fluctuations

Feshbach resonance: absence of retardation effect

retardation effect: Low-energy thermal Bose excitations cause the pair-breaking effect, which suppresses Tc.

4

Upper limiut of Tc (?) in the Feshbach resonance mechanism

⁴⁰K Fermi gas (A similar result has been also obtained in a ⁶Li gas.)

$$|9/2,-7/2>+|9/2,-9/2>$$

 $T_F = 0.35 \mu K$
 $N = 10^5$

C. A. Regal, et al. PRL 92 (2004) 040403.

 $T_c^{MAX} / T_F \sim 0.2 >> 10^{-4} - 10^{-2} (metal)$

Upper limiut of Tc (?) in the Feshbach resonance mechanism

Bose-Einstein Condensation (BEC)

Phase diagram of Fermi superfluids

Phase diagram of Fermi superfluids

Can the cold Fermi gas system be used as a quantum simulator?

 we can <u>experimentally</u> measure various physical quantities, and
we can <u>theoretically</u> analyze them over the entire interaction strength regime, in a quantitative level.

Current experimental situation: Very good!

Current experimental situation: Very good!

Toward the realization of a Fermi gas quantum simulator, we try to construct a reliable theory to analyze various observable physical quantities in the BCS-BEC crossover region in a unified manner.

Formulation (*broad* Feshbach resonance: ⁴⁰K, ⁶Li)

So far, all the current experiments are using a *broad* Feshbach resonance. In this case, we can ignore details of Feshbach pairing mechanism, and safely consider the BCS-BEC crossover based on the BCS model.

$$H = \sum_{\mathbf{p},\sigma} (\varepsilon_p - \mu) c_{\mathbf{p}\sigma}^{\dagger} c_{\mathbf{p}\sigma} - U \sum_{\mathbf{p},\mathbf{q}} c_{\mathbf{p}+\mathbf{q}\uparrow}^{\dagger} c_{\mathbf{p}'-\mathbf{q}\downarrow}^{\dagger} c_{\mathbf{p}'\downarrow} c_{\mathbf{p}\uparrow}^{\dagger}$$

- uniform gas is assumed.
- σ : two atomic hyperfine states =
- U : pairing interaction associated with the F.R.

$$\Rightarrow U$$

We treat U as a tunable parameter.

14

Effects of a trap is included within the local density approximation (LDA).

Formulation (*broad* Feshbach resonance: ⁴⁰K, ⁶Li)

pole of Γ at $q = \omega = 0$ $\square T_c$

$$1 = U \sum_{\mathbf{p}} \frac{\tanh \frac{\beta}{2} (\varepsilon_p - \mu)}{2(\varepsilon_p - \mu)}$$

 μ is know to remarkably deviate from the Fermi energy in the BCS-BEC crossover.

Formulation (*broad* Feshbach resonance: ⁴⁰K, ⁶Li)

 μ is determined from the equation for the number of Fermi atoms.

$$N = \frac{2}{\beta} \sum_{p,i\omega_n} G(p,i\omega_n) e^{i\delta\omega_n}$$

Single-particle Green's function involves self-energy correction, describing effects of fluctuations in the Cooper channel.

$$G(p, i\omega_n) = \frac{1}{i\omega_n - (\varepsilon_p - \mu) - \Sigma(p, i\omega_n)}$$

By solving the T_c -equation, together with the number equation, we self-consistently determine T_c and μ .

Self-consistent solutions at T_c in the BCS-BEC crossover

Self-consistent solutions at T_c in the BCS-BEC crossover

C. A. Regal, et al. PRL 92 (2004) 040403.

Extension to the superfluid phase below Tc

In the superfluid phase below Tc, we need to treat <u>phase fluctuations</u> and *amplitude fluctuations* of the order parameter Δ in a consistent manner.

Y. Ohashi et al., PRA 75 (2007) 033609 (Gaussian)

Extension to the superfluid phase below Tc

Superfluid density in the BCS-BEC crossover

The origin of the normal fluid density continuously changes from singleparticle excitations to collective excitations in the BCS-BEC crossover.

Single-particle properties above Tc (Δ =0!): "pseudogap"

Tsuchiya, YO et at. PRA 80 (2009) 033613

Fisher et at. RMP **79** (2007) 353

Phase diagram of cold Fermi gas in the BCS-BEC crossover

Watanabe, YO et at. PRA 82 (2010) 043630, 85 (2012) 039908(E)

BCS gap = <u>particle-hole coupling</u> by order parameter Δ

Spectral weight <u>at Tc</u> in the BCS-BEC crossover

Strong pairing fluctuations induces a particlehole coupling, leading to the pseudo-gapped single-particle excitations above Tc.

Observation of pseudogap in a cold ⁴⁰K Fermi gas

"photoemission-type" experimanet (JILA 2008)

Stewart, et al., Nature 454 (2008) 744

Experiment on ⁴⁰K: Stewart, Gaebler, Jin, Nature 454 (2008) 744

Photoemission spectra in the BCS-BEC crossover at T_c

The couventional BCS-BEC crossover theories (Gaussian, T-matrix) unphysically give negative spin susceptibility in the BCS-BEC crossover region.

Preformed singlet-pairs in the crossover region

We have succeeded in solving this serious problem by including higher Fluctuations so as to obtain positive χ in the whole crossover region.

"extended T-matrix (ETMA)

conventional T-matrix approximation (TMA)

spin susceptibility in the crossover region

Theory(ETMA) : Kashimura, YO et al., PRA (2012) in press

experimental data: Ketterle et al., PRL 106 (2011) 010402

Local pressure P (EOS)

Theory: Watanabe, YO, et al., PRA (2012) in press.

Experimental data: S. Nascimbene, et al, NJP 12 (2010), 103026

"Universal thermodynamics"

Summary

We have discussed strong-coupling effects in the BCS-BEC crossover regime of an ultracold Fermi gas.

