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Strong-coupling phenomena in the BCS-BEC crossover 

Strong-coupling effects in the unitary regime of an ultracold Fermi gas



Cold Fermi atom gas system as a useful Quantum SimulatorCold Fermi atom gas system as a useful Quantum Simulator
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Feshbach resonance: absence of retardation effectFeshbach resonance: absence of retardation effect
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Upper limiut of Tc (?) in the Feshbach resonance mechanismUpper limiut of Tc (?) in the Feshbach resonance mechanism
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40K Fermi gas (A similar result has been also obtained in a 6Li gas.)
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Bose-Einstein Condensation (BEC)Bose-Einstein Condensation (BEC)
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Essence of the BCS-BEC crossover phenomenonEssence of the BCS-BEC crossover phenomenon
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Phase diagram of Fermi superfluidsPhase diagram of Fermi superfluids
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Can the cold Fermi gas system be used as a quantum simulator?Can the cold Fermi gas system be used as a quantum simulator?
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To use the cold Fermi gas system as a quantum simulator for various 
strongly correlated systems, such as high-Tc cuprates and neutron star,

(1) we can experimentally measure various physical quantities, and
(2) we can theoretically analyze them over the entire interaction strength

regime, in a quantitative level.



Current experimental situation: Very good! Current experimental situation: Very good! 
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Toward the realization of a Fermi gas quantum simulator, we 
try to construct a reliable theory to analyze various observable
physical quantities in the BCS-BEC crossover region in a unified 
manner.



Formulation (broad Feshbach resonance: 40K, 6Li)Formulation (broad Feshbach resonance: 40K, 6Li)
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σ ：two atomic hyperfine states =↑↓
U : pairing interaction associated with the F.R.

U⇒

uniform gas is assumed. 

Feshbach resonance We treat U as a tunable parameter.

So far, all the current experiments are using a broad Feshbach resonance. In this case, 
we can ignore details of Feshbach pairing mechanism, and safely consider the 
BCS-BEC crossover based on the BCS model.

Effects of a trap is included within the local density approximation (LDA).



Formulation (broad Feshbach resonance: 40K, 6Li)Formulation (broad Feshbach resonance: 40K, 6Li)
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in the BCS-BEC crossover.
µ is know to remarkably deviate from the Fermi energy 
in the BCS-BEC crossover.
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Formulation (broad Feshbach resonance: 40K, 6Li)Formulation (broad Feshbach resonance: 40K, 6Li)
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By solving the Tc-equation, together with the number equation, 
we self-consistently determine Tc and µ .
By solving the Tc-equation, together with the number equation, 
we self-consistently determine Tc and µ .

U−

Single-particle Green’s function involves self-energy correction, describing
effects of fluctuations in the Cooper channel.



Self-consistent solutions at Tc in the BCS-BEC crossoverSelf-consistent solutions at Tc in the BCS-BEC crossover

2012/11/5 17

1( )F sp a −

/c FT T

BCS BEC 1( )F sp a −

/ Fµ ε

BECBCS

0µ <

signature of the formation of two-body 
bound molecues at (and above) Tc.
signature of the formation of two-body 
bound molecues at (and above) Tc.



Self-consistent solutions at Tc in the BCS-BEC crossoverSelf-consistent solutions at Tc in the BCS-BEC crossover

2012/11/5 18

1( )F sp a −

/c FT T

BCS BEC

BCS
BEC

40 :| 9 / 2, 7 / 2 | 9 / 2, 9 / 2K − > + − >

C. A. Regal, et al.  PRL 92 (2004) 040403.



Extension to the superfluid phase below TcExtension to the superfluid phase below Tc
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In the superfluid phase below Tc, we need to treat phase fluctuations and 
amplitude fluctuations of the order parameter ∆ in a consistent manner.

FT
T

1)( −
SF ak

Fε
∆

1)( −
SF akFT

T

F

v
v

φ

Y. Ohashi et al., PRA 75 (2007) 033609 (Gaussian) 

BCS BCS
BEC

BEC

superfluid order parameter Goldstone sound velocity



2012/11/5 20

Extension to the superfluid phase below TcExtension to the superfluid phase below Tc
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Superfluid density in the BCS-BEC crossoverSuperfluid density in the BCS-BEC crossover
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Single-particle properties above Tc (∆=0!): “pseudogap”Single-particle properties above Tc (∆=0!): “pseudogap”
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Phase diagram of cold Fermi gas in the BCS-BEC crossoverPhase diagram of cold Fermi gas in the BCS-BEC crossover
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Spectral weight at Tc in the BCS-BEC crossoverSpectral weight at Tc in the BCS-BEC crossover
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BCS gap = particle-hole coupling by order parameter ∆BCS gap = particle-hole coupling by order parameter ∆
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Spectral weight at Tc in the BCS-BEC crossoverSpectral weight at Tc in the BCS-BEC crossover
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Observation of pseudogap in a cold 40K Fermi gasObservation of pseudogap in a cold 40K Fermi gas
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Photoemission spectrum at TcPhotoemission spectrum at Tc
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Experiment on 40K: Stewart, Gaebler, Jin, Nature 454 (2008) 744

Theory: Tsuchiya, Watanabe, Ohashi, PRA 82 (2010) 033629



Photoemission spectra in the BCS-BEC crossover at TcPhotoemission spectra in the BCS-BEC crossover at Tc
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Preformed singlet-pairs in the crossover regionPreformed singlet-pairs in the crossover region
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The couventional BCS-BEC crossover theories (Gaussian, T-matrix) unphysically
give negative spin susceptibility in the BCS-BEC crossover region.
The couventional BCS-BEC crossover theories (Gaussian, T-matrix) unphysically
give negative spin susceptibility in the BCS-BEC crossover region.



Preformed singlet-pairs in the crossover regionPreformed singlet-pairs in the crossover region

We have succeeded in solving this serious problem by including higher
Fluctuations so as to obtain positive χ in the whole crossover region.
We have succeeded in solving this serious problem by including higher
Fluctuations so as to obtain positive χ in the whole crossover region.

“extended T-matrix (ETMA) conventional T-matrix
approximation (TMA)



spin susceptibility in the crossover regionspin susceptibility in the crossover region
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Local pressure P (EOS)Local pressure P (EOS)

Theory: Watanabe, YO, et al., PRA (2012) in press.

Experimental data: S. Nascimbene, et al,   NJP 12 (2010), 103026
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Summary  Summary  
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We have discussed strong-coupling effects in the BCS-BEC crossover regime of 
an ultracold Fermi gas. 
We have discussed strong-coupling effects in the BCS-BEC crossover regime of 
an ultracold Fermi gas. 
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