TES型マイクロカロリメータを用いた K中間子原子X線精密分光

公募研究 (A02班): 『K中間子原子X線分光に向けた

マイクロカロリメータのビーム環境下における性能評価』

理研 岡田信二

Collaboration

TES型X線マイクロカロリメータ

宇宙物理

ASTRO-H ...

原子核物理

Strangeness nuclear physics

中性子星内部 (K-N相互作用)

Collaboration

TES型X線マイクロカロリメータ

宇宙物理

ASTRO-H ...

原子核物理

Strangeness nuclear physics

中性子星内部 (K-N相互作用)

公募研究申請後...

海外コラボレーション:NIST (アメリカ国立標準技術研究所)

Collaboration

TES型X線マイクロカロリメータ

宇宙物理 ASTRO-H ...

原子核物理

Strangeness nuclear physics

公募研究申請後...

海外コラボレーション:NIST(アメリカ国立標準技術研究所)

A02:中性子過剰核物質中のストレンジネス

核物質中のK中間子実験

(研究分担者:応田)

中性子星内部のK中間子発生領域の理解 --> K-N 相互作用の理解が重要

Kaon condensation in neutron stars

--> Kaon dynamics in nuclear matter

Strongly attractive!

strongly attractive!

 $\Lambda(1405)$ is considered as a K-p nuclear bound state

leading a prediction of deeplybound kaonic nuclear cluster

2 *r* (fm)

strongly attractive!

many experiments for searching the cluster

still not conclusive

ex) for K-pp clusters

PRL 94, 212303 (2005)

PRL 104,132502 (2010)

strongly attractive!

a possibility of higher density beyond normal nuclear-matter density

Phys. Lett. B587, 167 (2004)

- → the in-medium mass modification effect as a function of matter density?
- → the possibility of the kaon condensation in a neutron star ?

do we study the

How \overline{K} - Nucl. interaction at low energy?

Kaon low-energy scattering experiment is difficult due to the short lifetime (~12 nsec)

Kaon-nucleus bound states

How

do we study the

K - Nucl. interaction at low energy?

K- - Nucl. potential

本公募研究(A02)

Precision x-ray measurement

urch of deeply

Peak search of deeply bound K⁻ cluster

- direct observation -

-> still no conclusive results

Coulomb bound state - Kaonic atom -

Hydrogen

n = 1

electron 1) Initial capture

principal quantum number

n ~ *sqrt(M*/m_e)* ~ 25

(M^* : K-p reduced mass ~ 323 MeV)

Kaonic atom

Kaonic atom

3) Strong interaction

4) nuclear absorption

How we observe the strong interaction?

K-atom x-ray spectroscopy

Z = I (Kaonic hydrogen)

Data & a theory for $Z \ge 2$ K-atom

Shift and width for last orbit

SU(3) Chiral Unitary Model

10

0.0001

Z (nucleus atomic number)

Plot w/error bar ... experimental data

Solid line ... a theoretical calc.

S.Hirenzaki, Y.Okumura, H.Toki, E.Oset, and A.Ramos Phys. Rev. C 61 055205 (2000)

35

Two theoretical approaches

Two theoretical approaches

approach	Phenomenological	Fundamental	
model	Density-dependent optical potential	SU(3) chiral unitary	
	$V = -\frac{2\pi}{\mu} \left(1 + \frac{\mu}{m} \right) \bar{a}\rho(r),$ $a \to a_0 + A_0 [\rho(r)/\rho(0)]^{\alpha},$	$2\mu V_{opt}(r) = -4\pi \eta a_{eff}(\rho) \rho(r),$	
exp. data vs calc. results	Kaonic atoms (a) New York American Strain	2p 3d 2d 4f 2p 2p 3d 2d 4	

Two theoretical approaches

approach	Phenomenological	Fundamental	
model	Density-dependent optical potential	SU(3) chiral unitary	
	$V = -\frac{2\pi}{\mu} \left(1 + \frac{\mu}{m} \right) \bar{a}\rho(r),$ $a \to a_0 + A_0 [\rho(r)/\rho(0)]^{\alpha},$	$2\mu V_{opt}(r) = -4\pi \eta a_{eff}(\rho)\rho(r),$	
potential depth	Open problem!		
	deep	shallow	
	(-V _{Real} = 150 ~ 200 MeV)	(-V _{Real} = 40 ~ 60 MeV)	
	ppn Density [1/fm³]	unlikely	
	predicts deeply bound K ⁻ clusters (high density matter like neutron star)	ppnK 1.5 1.0 (1/fm³) 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	

Experiments vs. Theories

- Kaonic He atom case (for 6 keV x-rays) -

Next-generation K-atom experiment

Next-generation K-atom exp.

1. Crystal spectrometer

pionic atom exp.: D. Gotta (Trento'06)

2. Microcalorimeter

-> small acceptance

Why TES Microcalorimeter?

1. High collection efficiency

- Multi device (Array)
- Large absorber

2. Compact and portable

limited beam time, then need to remove (at J-PARC, DAΦNE etc.)

X-ray microcalorimeter

a thermal detector measuring the energy of an incident x-ray photon as a temperature rise

Temperature rise = E / C (~ 1 mK)

Decay time constant = C / G (~ 100 µs)

Absorber with larger "Z" (to stop the high energy x-rays)

e.g., Absorber: Au (0.3 mm×0.3 mm wide, 300 nm thick)
Thermometer: thin bilayer film of Ti (40nm) and Au(110 nm)

TES microcalorimeter

TES = Transition Edge Sensor

-> using the sharp transition between normal and superconducting state to sense the temperature.

--> developed by Stanford / NIST at the beginning

Thermometer sensitivity

$$\alpha \equiv \frac{d \ln R}{d \ln T} \sim 100 - 1000$$

Energy resolution

$$\Delta E_{(FWHM)} = 2\sqrt{2\ln 2} \sqrt{\frac{k_B T^2 C}{\alpha}}$$
~ 2 eV @ 6 keV

(Johnson noise and phonon noise are the most fundamental)

Dynamic range

$$E_{max} \sim CT_C / \alpha$$

Trade-off between dynamic range and energy resolution : ΔE ~ √Emax

NISTTES array system

e.g., soft-X-ray spectroscopy @ BNL

W.B. Doriese, TES Workshop @ ASC (Portland), Oct 8, 2012

NIST's standard TES

- 1 pixel : 350 x 350 µm²
- 160 array : total ~ **20 mm²**
- 2~3 eV (FWHM) @ 6 keV

well established system!

~ 200 eV (FWHM) @ 6 keV ... a typical Silicon detector used in the previous K-atom exp.

J-PARC (Japan)

Japan Proton Accelerator Research Complex = J-PARC

J-PARC (Japan)

a possible Setup existing target system for Liq. Helium 3 & 4 stop Kin a target Kaon beam detectors K⁻ beam

Cross section (front view)

A simple simulation

by H.Tatsuno

w/ GEANT4

K-4He x-rays from Liq. 4He

well separated from "Compton scattered X-rays" and "Fe Ka energy". —

Both have been serious problems in the prev. experiments.

Rough estimation of stat. accuracy

	K-4He Kα events	detector resolution (FWHM)	stat. accuracy of determining the central value of 6 keV
KEK-E570 with SDD	1500 events	190 eV	2 eV = 190 / 2.35 / sqrt(1500)
		2 eV	0.09 eV
TES Microcalorimeter	100 events (~ 4-day beam)	3 eV	0.13 eV = 3 / 2.35 / sqrt(100)
		4 eV	0.17 eV

most fundamental quantity

Charged Kaon mass measurement with TES

Rough estimation

- K-¹²C 5→4 x-ray : 10.2 keV
- 2000 events & ΔE=5eV(FWHM)
 - ightharpoonup ΔE (x-ray energy) $\sim \pm 0.05$ eV
 - → Δm (K-mass) ~ ± 2.5 keV

Kaon mass is essential to determine the stronginteraction shift with 0.1-eV order of magnitude. ($\Delta m = 16 \text{ keV} --> EM \text{ value for K-He L}\alpha = 0.15\text{eV}$) ($\Delta m = 2.5 \text{ keV} --> EM \text{ value for K-He L}\alpha = 0.03\text{eV}$)

Summary of Kaonic atom study

strong-interaction study

the most tightly bound energy levels that are the most perturbed by the strong force

Large n

Kaon mass

the higher orbit having almost no influence on the strong interaction

Rough yield estimation

		Acceptance (including x-ray attenuation)	Number of stopped kaon	Absolute x-ray yield / stopped K	Time	X-ray counts
prev. experiment (KEK-PS E570 2nd cycle)		0.126% /	~300/spill (2sec)	~8%	272 hours	1700 w/o cuts (including trigger condition ~40%)
TES J-PARC (30kW)	He	0.024%	~300?/spill (2sec) duty ~45%	~8%	~ 4 days	130
	С	~0.01% self attenuation	~2000?/spill (2sec) duty ~45%	~17%	~1 weeks	2500

-> reasonable beam time

- 公募研究 (A02) -

"K中間子原子X線分光に向けたマイクロカロリメータの ビーム環境下における性能評価"

Original plan

Single pixel (TMU)

J-PARC test beamline

measuring **fluorescence x-rays** from charged particle hits on pure-metal foils

Modified plan

160 pixel (NIST)

TRIUMF π beamline

measuring **pionic atom x-rays** (e.g., π -C 4-3 : \sim 6.5 keV)

- the first exotic-atom exp. with TES
- good demonstration (for J-PARC proposal)

test for anti-coincidence system with low-intensity pion beam

Line calib. experiment @ NIST

26 Aug. - 6 Sept., 2013

electron gun

Line calib. experiment @ NIST

26 Aug. - 6 Sept., 2013

Thicker Bi absorber

First try of 5-um Bi absorber --> successfully done

X-ray transmission factor for various Bi absorber

Bi	Transmission x-rays			
thickness	for 6 keV	for 10 keV		
2 um	38.4%	77.1%		
5 um	9.1%	52.2%		
10 um	0.8%	27.3%		

~ 5.5 um thick (measured by a profilometer (~ a simplified AFM))

Anti-coincidence system

Previous exp.

Anti-coincidence system

Previous exp.

Summary

Summary

- next-generation K-atom exp. with NIST TES array having great performance of 2~3 eV (FWHM) resolution @ 6keV
- open new door to investigate K-nucleus strong interaction
- has potential to resolve a long-standing "deep" or "shallow" problem of the K-atom optical potential depth
- provide new accurate charged kaon mass value (being also essential to determine the energy shift of K-4He atom)
- future perspective
 - ► 2013 : test experiment without beam (evaluation of basic performance)
 - ► 2014 : test experiment with beam (and preparation of Lol / proposal)

Thanks to

- J-PARC E15/E17 collaborators
- RIKEN: T. Tamagawa, S. Yamada (ASTRO-H)
- NIST(Boulder): D.A. Bennett, W.B. Doriese, G.C. O'Neil,
- J.W. Fowler, K.D. Irwin, D.S. Swetz, D.R. Schmidt, J.N. Ullom
- Tokyo Metropolitan Univ.: Y. Ezoe, Y. Ishizaki, T. Ohashi
- KEK: S. Ishimoto, M. Hazumi
- Univ. of Tokyo : M. Ohno