η photo-production on the deuteron at LNS, Tohoku - <u>T. Ishikawa¹</u>, T. Fujibayashi², H. Fukasawa¹, R. Hashimoto¹, T. Iwata³, H. Kanda², J. Kasagi¹, H. Kato³, T. Kinoshita¹, M. Itoh⁴, K. Maeda², M. Matsuzawa², - T. Michigami³, F. Miyahara¹, K. Mochizuki¹, K. Murakami³, T. Nakabayashi¹, K. Nawa¹, T. Nomura³, K. Okamura¹, H. Okamura⁵, H. Okuyama³, Y. Onodera¹, Y. Saito¹, - T. Sasaki³, H. Shimizu¹, T. Shishido³, S. Suzuki¹, K. Suzuki¹, Y. Tajima³, T. Takahashi⁶, S. Takita³, H. Ueno³, H.Y. Yoshida³, S. Yamaguchi³, and H. Yamazaki¹ - ¹ Laboratory of Nuclear Science, Tohoku University, Sendai 982-0826, Japan - 2 Department of Physics, Yamagata University, Yamagata 990-8560, Japan - ³ Department of Physics, Tohoku University, Sendai 980-8578, Japan - ⁴ Cyclotoron and Radioisotope Center, Tohoku University, Sendai 980-8578, Japan ⁵ Research Center for Nuclear Physics, Osaka University, Ibaraki 567-0047, Japan - ⁶ High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan $Contact\ e ext{-}mail:\ ishikawa@lns.tohoku.ac.jp$ Nucleon resonances in the second and third resonance regions have been experimentally studied via η photo-production on the proton at various facilities¹. Recently, a narrow peak at $W \simeq 1.68~{\rm GeV}$ in the quasi-free $\gamma n \to \eta n$ reaction has been reported by the GRAAL and CB-ELSA collaborations². Since no signal has been observed in the $\gamma p \to \eta p$ reaction in the same energy region, the corresponding resonance would be attributed to a member of the anti-decuplet penta-quark baryons with hidden strangeness. The U-spin conservation allows the resonance to be produced only on the neutron. The cross sections on the deuteron at $E_{\gamma} \leq 1150$ MeV have been measured by using an electromagnetic calorimeter SCISSORS II at Laboratory of Nuclear Science (LNS), Tohoku University. The events of η photo-production are identified in the $\gamma\gamma$ invariant mass distribution. The yields are obtained by subtracting continuum backgrounds originated mainly from multi- π^0 events. The $\gamma d \to \eta pn$ events are selected in the emitted η momentum distributions. The differential and total cross sections for the $\gamma d \to \eta pn$ reaction are obtained as a function of the incident γ energy with an acceptance correction. The total cross section on the deuteron shows a bump around $E_{\gamma}=1020$ MeV, while no bump is observed in the same energy region in that on the proton. In this talk, the inclusive total cross section for the $\gamma d \to \eta pn$ reaction is presented, and the bump around $E_{\gamma} = 1020$ MeV is discussed. - 1. B. Krusche *et al.*, Phys. Rev. Lett. 74, 3736 (1995); F. Renard *et al.* (GRAAL Collaboration), Phys. Lett. B 528, 215 (2002); M. Duggaer *et al.* (CLAS Collaboration), Phys. Rev. Lett. 89, 222002 (2002); V. Crede *et al.* (CB-ELSA Collaboration), Phys. Rev. Lett. 94, 012004 (2005). - 2. V. Kuznetsov et~al., Phys. Lett. B 647, 23 (2007). I. Jaegle et~al. (CB-ELSA/TAPS collaboration), Phys. Rev. Lett. 100, 252002 (2008).