修士論文

p-shell Λ ハイパー核のγ線分光

東北大学 大学院 理学研究科
物理学専攻

三浦 勇介

平成13年
概要

ストレンジネスを持つ Λ 粒子や Σ 粒子は陽子や中性子とは全くの別種粒子であり、パウリの排他律の効果を受けない。このためハイパー核の研究では、原子核内部の深い軌道の情報を引き出すことができ、ΛN 間相互作用をより分かりやすいモデルで議論することが可能となる。我々は、核子数が少なく、ハイパー核の構造研究に適した p-shell 原子核について ΛN 間の有効相互作用について研究し、核力についてより深い理解を得ることを目的としている。

近年の技術の発展に伴い、磁気スペクトロメータを用いた高計数率の条件下での散乱実験において、ゲルマニウム検出器を組み合わせて使うことが可能になった。我々はハイパー核実験のために建設されたゲルマニウム検出器 (Hyperball) を用いて、ΛN 間の有効相互作用のうちテンソル力による寄与についての情報を得ることを主な目的とした実験をおこなった。実際に測定したのは、コア核と Λ 粒子のスピンの向きの違いによって生じる、状態の分岐である。この分岐は、数十 keV 程度であると予測されていて、これを観測するためには今のところゲルマニウム検出器を用いる以外に方法はない。

結果として、^{16}O 標的を用いて、^{16}_ΛO および^{15}_ΛN の励起状態から放出される γ 線を観測することに成功した。解析は現在も進行中であり、本論文の結果は preliminary なものであるが、観測したこれらの γ 線は、^{16}_ΛO の M1 遷移 (1^- → 1^- , 1^- → 0^-) および、^{15}_ΛN の M1 遷移 (1/2^+ : T = 1 → 1/2^+ , 1/2^+ : T = 1 → 3/2^+) に対応するものと解釈できる。この解析が正ければ、基底状態のスピン 2 重項の間隔は、^{16}_ΛO で約 30 keV、^{15}_ΛN で約 170 keV となる。p-shell ハイパー核のスピンに依存した相互作用を、スピン-スピン力、スピン-軌道力、およびテンソル力のそれぞれの寄与について調べた Millener の shell model による計算を用いて、これらの 2 重項の間隔から ΛN 間のテンソル力の大きさを導出すると、テンソル力の大きさ T は 0.02 < T < 0.06 MeV (preliminary) であることがわかる。この値は Nijmegen のメソング交換模型を用いた ΛN 間有効相互作用の予想値と同程度である。
目 次

§ 1 序論
 1.1 ハイパー核のγ線分光によるΛN 間相互作用の研究 1
 1.2 ΛN 間相互作用 2
 1.2.1 ΛN 間の有効相互作用 2
 1.2.2 メソン交換模型 3
 1.2.3 スピン-スピン相互作用 4
 1.2.4 スピン-軌道相互作用 5
 1.2.5 テンソル相互作用 7
 1.3 本研究の目的 8
 1.3.1 $^{16}\mathrm{O}$ と $^{15}\mathrm{N}$ 8
 1.3.2 $^{10}\mathrm{B}$ 11

§ 2 Setup
 2.1 実験の概要 13
 2.2 セットアップの概要 16
 2.3 AGS D6 ピームライン 17
 2.3.1 スペクトロメータ 18
 2.3.2 トリガーカウンター 19
 2.3.3 target 24
 2.4 Hyperball 26
 2.4.1 ゲルマニウム検出器 27
 2.4.2 ゲルマニウム検出器の読みだし回路 28
 2.4.3 BGO 検出器 30
 2.5 Trigger system 35
 2.5.1 1st level trigger 35
 2.5.2 2nd level trigger 36
 2.5.3 Test trigger 37
 2.6 データ収集系とゲルマニウム検出器モニターシステム 38
 2.6.1 ゲルマニウム検出器モニターシステム 38
 2.6.2 データ収集系 39

§ 3 データ解析
 3.1 解析の方針 41
 3.2 スペクトロメータの解析 41
 3.2.1 入射粒子の TOF 測定 42
 3.2.2 粒子の軌道再構成 43
 3.2.3 散乱粒子の質量測定 45
 3.2.4 反応点による事象の選別 46
 3.2.5 運動量に対する補正 47
3.2.6 エネルギー損失の補正 49
3.2.7 散乱角による生成したハイパーハ核の状態の選別 50
3.2.8 ハイパー核の束縛エネルギーによる状態の選別 51
3.3 Hyperball の解析 53
 3.3.1 ゲルマニウム検出器の解析 53
 3.3.2 BGO 検出器の解析 56
 3.3.3 エネルギー校正 57
3.4 パックグラウンド .. 59
3.5 ドップラー補正 .. 61

§ 4 結果と考察 .. 62
 4.1 16O の基底状態スピン2重項 62
 4.2 15N の基底状態スピン2重項 67
 4.3 10B の基底状態スピン2重項 71
 4.4 テンソル力の大きさの導出 73

§ 5 まとめ .. 74
図目次

1 Λ粒子とコア核のスピンの向きによる状態の分岐 2
2 擬スカラーメソンの交換による過程 3
3 $^7_\Lambda$Li の γ 線スペクトル (E419) [3] 4
4 $^9_\Lambda$Be の γ 線スペクトル (E930) [5] 5
5 $^7_\Lambda$Li, $^{12}_\Lambda$C, $^{13}_\Lambda$C のレベルスケーム 6
6 $^{16}_\Lambda$O の質量スペクトル [13] 8
7 $^{16}_\Lambda$O($K^-,\pi^-)$反応により生成される状態とその崩壊過程 (K^-,π^-) 反応で生成しやすい$^{16}_\Lambda$O の状態を太線で示した 9
8 (π^+,K^+) 反応による$^{10}_\Lambda$B の質量スペクトル [16] 11
9 $^{10}_\Lambda$B の γ 線スペクトル (BNL) [18] 11
10 $^{10}_\Lambda$B($K^-,\pi^-)$反応により生成される状態とその崩壊過程 (K^-,π^-) 反応で生成しやすい$^{10}_\Lambda$B の状態を太線で示した 12
11 ストレンジネス生成反応における入射粒子と反対運動量の関係 13
12 AGS D6 ビームライン 14
13 スペクトロメータのセットアップ 15
14 入射 K^- 中間子の運動量分布 18
15 散乱粒子スペクトロメータで観測した K^- 中間子の運動量分布 18
16 トリガーカウンター:IT 19
17 IC1 の π^-, K^- に対する ADC 分布とその関連 20
18 トリガーカウンター:IC2 21
19 ファインメッシュ型光電子増倍管 22
20 IC2 の π^-, K^- に対する ADC 分布とその関連 22
21 FC の π^-, K^- に対する ADC 分布とその関連 23
22 トリガーカウンター:FC 24
23 $^{16}_\Lambda$O および$^{10}_\Lambda$B ターゲットの概観 25
24 ID3 での Hit pattern 25
25 ハイパー核 γ 線分光用ゲルマニウム検出器 (Hyperball) の概観 26
26 ゲルマニウム検出器の外形 (ORTEC 製) 27
27 reset 型プリアンプの出力信号 28
28 ゲルマニウム検出器の読みだし回路 ($K\pi$ トリガーの場合) 29
29 ゲルマニウム検出器と BGO 検出器の取り付け配置図 31
30 Beam ON での BGO サプレッションの効果。上段の図で上の線 (赤色) はサプレッションの前、下の線 (青色) はサプレッションの後を表す。下段はサプレッション前後の比を表す 32
31 Beam OFF での BGO サプレッションの効果。上段の図で上の線 (赤色) はサプレッションの前、下の線 (青色) はサプレッションの後を表す。下段はサプレッション前後の比を表す 33

iii
Beam ON(左)とOFF(右)でのBGOサプレッションの効果 (6MeV付近)。上の線(赤色)はサプレッションの前、下の線(青色)はサプレッションの後を表す。 34
2nd level triggerのダイアグラム。 36
60Co線源を埋め込んだプラスチックシンチレーションカウンター。 38
データ収集システム概観。 39
記録されるデータの構造。 40
MT-IT間のTOF(Kπトリガー)。 42
MT-IT間のTOF(ITトリガー)。 42
Kπトリガーの事象に対するχ²分布。 45
Kπトリガーに対する散乱粒子の質量スペクトル。 46
16O標的での反応点分布 (上段:水平方向、中段:垂直方向、下段:進行方向) K⁻中間子の崩壊による事象は除去した。 47
入射側と散乱側のスペクトロメータで測った運動量の差の分布。スペクトロメータの運動量分解能の目安を与える。 48
(K⁻,π⁻)トリガーの事象に対する散乱角分布。 50
16Oの各状態に対する生成散乱断面積の角度依存性的計算値 [27]。 50
16Oの束縛エネルギー。散乱角4°以下、ゲルマニウム検出器のADCが2000 keV以上の事象を選択した。矢印は測定したいγ線を出すする状態の位置を示し、斜線は選択範囲を示す。ここで、-B_Aのゼロ点は補正していない。 52
16Oの束縛エネルギー。散乱角4°以下、ゲルマニウム検出器のADCにヒットがあった全ての事象を選択した。矢印は測定したいγ線を出すする状態の位置を示し、斜線は選択範囲を示す。ここで、-B_Aのゼロ点は補正していない。 52
ゲルマニウム検出器のADC-TDC相関とTDCの時間ゲート曲線。 54
γ線のエネルギー領域每のゲルマニウム検出器のTDCスペクトル。 54
pileupを排除するため、別のヒットがないことを要求する時間範囲。 55
TFAにより増幅されたreset信号。 55
BGO TDCの時間ゲート。 56
16Oの非常高い励起状態の領域を選んだ時のγ線スペクトル。 (n, n')反応などによる通常核からのγ線が多数見える。 59
スペクトロメータにより選択した(K⁻,π⁻)反応に対するB_Aと散乱角の相関。 60
図53に対してゲルマニウム検出器のヒット (2 MeV以上)を要求し、BGO検出器によるサプレッションを行った後のB_Aと散乱角の相関。 60
ドップラー補正。 61
16O標的による測定で得られた16Oからのγ線スペクトル (preliminary)。 63
57 16O の基底状態を 2 つのガウス関数と 1 次関数によって fit した結果（preliminary）。 .. 64
58 16O の基底状態を 1 つのガウス関数 (FWHM = 23.5 keV で固定) と 1 次関数によって fit した結果（preliminary）。 64
59 6500 keV < Ge ADC < 6600 keV の事象に対する 16O の速度分布 .. 66
60 16O 標的による測定で得られた 15N からの γ 線スペクトル（preliminary）。 .. 68
61 15N の γ 線スペクトルのフィッティング（preliminary）。 69
62 15N の substitutional state の領域 (上) と、非常に高い励起エネルギーの領域 (下) で観測された低いエネルギーの γ 線。 70
63 K$^-$ 中間子の崩壊事象によるバックグラウンドの除去 (左:除去前、右:除去後)。 ... 71
64 10B 標的による測定で得られた γ 線スペクトル（preliminary）。 72
表 目 次

1. $^\Lambda_\text{O} \Lambda^\text{16}$、$^\Lambda_\text{N} \Lambda^\text{15}$、$^\Lambda_\text{B} \Lambda^\text{10}$の基底状態 2 重項の間隔に対する ΛN 間有効相互作用の各スピン依存成分と Λ-Σ カップリングの効果の寄与についての予想値。各パラメータの値は、Millener が shell model 計算と実験データをもとに提案したものを用いている [26]。... 10
2. AGS D6 ピームラインの特徴 16
3. 第 2 期 E930 のピーム条件 17
4. ピームライン上流にあるホドスコープ 17
5. ピームライン上にあるトリガーカウンター 24
6. ゲルマニウム検出器 1 台あたりの BGO 検出器 31
7. Subrecord ID の一覧 ... 40
8. 反応点による事象の選別条件 46
9. ターゲットに置けるエネルギー損失の補正量 49
10. 散乱角による事象選別の条件 50
11. ハイパー核の状態を経るための束縛エネルギー ($-B_\Lambda$) の範囲 51
12. γ 線のエネルギーとゲルマニウム検出器の時間ゲート幅 53
13. ゲルマニウム検出器のエネルギー校正に用いた γ 線 57
14. 図 52 のスペクトルで観測された γ 線のエネルギー 58
15. $^\Lambda_\text{O}(1_2^\text{→} 0_1^-)$ と $^\Lambda_\text{O}(1_2^\text{→} 1_1^-)$ に対する fit の結果。幅は 2 つのピークに対して同じ値を与えた (preliminary)。 66
16. 2 つのガウス関数による fit と 1 つのガウス関数による fit の χ^2 の比較 (preliminary)。 66
17. $^\Lambda_\text{N}$ の 2 つのピークのフィッティングの結果 (preliminary)。 ... 69
§1 序論

1.1 ハイパー核のγ線分光によるΛN間相互作用の研究

Λハイパー核は、ストレンジネス $S = -1$、アイソスピン $I=0$ のバリオンであるΛ粒子を含む原子核を指す。陽子、中性子からなる通常の原子核にΛ粒子を加えると、ストレンジネスをもつΛ粒子は核内でパウリ効果を受けないため、様々な軌道に入ることができる。このため、ハイパー核の中でΛ粒子の占めるエネルギー準位を調べることは、原子核内部の深い軌道について情報が得られるという点で原子核の構造研究にとって重要である。また、こうしたΛの束縛状態はΛN間の相互作用を調べのに適している。本来、ΛN間の相互作用の研究は、Λpの散乱実験によって調べるべきだが、Λ粒子の寿命が短いため非常に難しい。このため、Λハイパー核の構造からΛN間相互作用の情報を引き出す研究がさかんに行なわれている。

これまでハイパー核の構造研究は、(K^-,π^-)反応や(π^+,K^+)反応を用いたスペクトロスコピーにより、ハイパー核の励起エネルギースペクトルを測定するという方法でなされてきた。この方法によりこれまでにさまざまなハイパー核の構造が研究されてきたが、到達できるエネルギー分解能は2 MeV(FWHM)程度であった。しかし、ΛN間のスピンに依存した相互作用について直接的な情報を持つハイパー核のスピン2重項の間隔は、数百 keV以下と非常に小さいため、この方法によりΛN間のスピン依存相互作用を解明することはほぼ不可能であった。

一方、ゲルマニウム検出器を用いてハイパー核の励起状態から放出されるγ線を測定する方法では、2 keV(FWHM)程度という非常に高いエネルギー分解を得ることができた。この手法は非常に強力であるが、技術的な理由により最近まで実現しなかった。近年になって、ゲルマニウム検出器によるハイパー核分光システム、Hyperballの登場により、スピン2重項の間隔からΛN間のスピンに依存した相互作用の大きさを実験的に決定できるようになった。
1.2 ΛN 間相互作用

1.2.1 ΛN 間の有効相互作用

Λ ハイバー核における ΛN 間の有効相互作用を考える場合、2 粒子間の相互作用を表すポテンシャルは、スピン依存しない中心力、スピン-スピン結合力、スピン-軌道結合力、テンソル力からなり、

\[V_{AN}(r) = V_0(r) + V_\sigma(r)s_N \cdot s_A + V_A(r)l_{NA} \cdot s_A + V_N(r)l_{NA} \cdot s_N + V_T(r)S_{12} \quad (1) \]

と書くことができる。ここで、\(r \) は 2 粒子間の相対距離、\(l_{NA} \) は相対軌道角運動量、\(S_{12} \) はテンソルオペレータで、

\[S_{12} = \frac{3(s_A \cdot r)(s_N \cdot r)}{r^2} - s_A \cdot s_N \]

である。

このうち、中心力による項 \(V_0(r) \) は、Λ ハイバー核における Λ の束縛エネルギーについての情報から知ることができる。この Λ ハイバー核の束縛エネルギーは、その深さが 30 MeV 程度の Woods-Saxon 型ポテンシャルを用いることによって実験値を再現することができる [1]。残りの項はスピンに依存する。p-shell ハイバー核全体に対してこれらの項の大きさを表す量として、\(\Delta, S_A, S_N, T \) の 4 つのパラメーターを導入する [2]。これらは、前述の 4 つの項、\(V_\sigma, V_A, V_N, V_T \) についての、\(p \) 軌道にある核子と \(s \) 軌道にある Λ 粒子の相対波動関数の動径成分 \(\phi_{AN}(r) \) による期待値として定義される量である。たとえば \(\Delta \) に対しては、

\[\Delta = \int \phi_{AN}^*(r)V_\sigma(r)\phi_{AN}(r)r^2dr \quad (2) \]

となる。

これらの相互作用のパラメーターを決定するために有効な方法は、次のように考えることである。まず、Λ ハイバー核を、Λ 粒子とそれ以外の部分（コア核）に分けて考える。このとき、0 でないスピン \(j \) (\(j \neq 0 \)) をもつコア核の状態は、\(s \) 軌道の Λ 粒子と結合する際に、Λ 粒子のスピンの向きにより、\(j \rightarrow j \pm 1/2 \) のように、2 つに分岐する（図 1）。この 2 状態間の間隔は、\(\Lambda N \) の 2 体間相互作用のうちスピン依存項のみによって決まるが、前述の 4 つの相互作用がどのような比率で関わるかについては核構造によって異なる。

図 1: Λ 粒子とコア核のスピンの向きによる状態の分岐
たとえば、スピン-スピン力（Δ）については^7Liの基底状態2重項、Λ粒子のスピンに依存したスピン-軌道力（S_Λ）については^8Beの第一励起状態2重項、テンソル力（T）については^{16}O、^{15}Nの基底状態2重項においてその影響が大きい[2]。これらのハイパー核についてスピン2重項の間隔を測定し、測定したp-shellハイパー核全体に対して適用できるパラメータの組を現象論的な方法で決定する。

この方法によって得られたパラメータが、p-shellハイパー核全体に渡って十分な有効性を保つならば、(1)式のΛN間の有効相互作用ポテンシャルを実験結果から決定できたことになる。

1.2.2 メソン交換模型

核子間の相互作用について議論する際には、メソン交換模型を用いた考え方が有効だった。ΛN間相互作用についても同様に、メソン交換模型によって考えることが可能である。たとえば、ΛN間相互作用の中心力は、NN間の相互作用と比べると2/3程度と小さいことが知られている。これは、NN間において大きい影響力をもつπ中間子の交換による過程が、Λ粒子がアイソスピンを持たないために禁止されるからである。Λハイパー核におけるメソン交換の代表的な過程は、K中間子をやりとりした、一旦Σを経由することで、2つのπ中間子を交換する過程であると考えられるが、これらの相互作用が及ぶ2核子間の距離は1個のπ中間子の場合に比べると小さい。また、一旦Σを経由する過程を考えたときは、3体力についても考慮する必要がある（図2）。こうした擬スカラーメソンの交換は、ΛN間の有効相互作用においてはテンソル力とスピン-スピン力を作り出しているはずである。一方で、スピン-軌道力は、より重いベクトルメソンやスカラーメソンによって媒介される力である。ΛN間ではpメソンの交換が禁止されるため、こちらもNN間とは異なるはずである。

![図2: 擬スカラーメソンの交換による過程](image)
1.2.3 スピン-スピン相互作用

\(AN \) 間のスピン-スピン力に関係する最初の実験は、CERN における \(^4_\Lambda H\) と \(^4_\Lambda He\) の基底状態のスピン-2 重項 \(M1 \) 遷移 (\(1^+ \to 0^+ \)) の測定である [14] [15]。この実験結果によって、\(\Delta \sim 0.5 \text{ MeV} \) という値が得られた [2]。しかし、この 2 状態間の間隔には、\(\Lambda-\Sigma \) カップリングによる 3 体の影響がスピンスピン結合力と同じ程度強く働くと予想されるため [9]、必ずしもスピン-スピン力についての直接的な情報を持つとは言えなかった。また、1.3.2 節で述べるように、この結果はその後 BNL で行なわれた \(^{10}_\Lambda B\) の \(\gamma \) 線分光によるスピン 2 重項 \(M1 \) 遷移 (\(2^- \to 1^- \)) の測定で、100 keV から 900 keV の間に \(^{10}_\Lambda B\) からの \(\gamma \) 線が観測されなかった事とも矛盾する (図 9) [18]。

1998年に KEK において行なわれた、初めての Hyperball による \(\gamma \) 線分光実験 (E419) では、こういった背景から \(^7_\Lambda Li\) の基底状態でのスピン 2 重項 \(M1 \) 遷移 (\(3^+ \to \frac{1}{2}^+ \)) について測定が行なわれた [19]。図 5 に \(^7_\Lambda Li\) のレベル図を示す。\(^7_\Lambda Li\) の基底状態 2 重項は、アイソスピン \(I=0 \) のため、\(I=1/2 \) の \(^4_\Lambda H\) や \(^4_\Lambda He\) と比較すると \(\Lambda-\Sigma \) カップリングの影響が小さいため、スピンスピン結合力についてより直接的な情報を得るのに適している。この測定の結果から、

\[\Delta \sim 0.5 \text{ MeV} \] (3)

という値が導き出されたことにより、\(p \)-shell ハイパー核のスピンスピン結合力については、4 体のハイパー核により得られた値と一致することが確かめられた (図 3)。また、このとき \(^7_\Lambda Li\) について得られた測定結果は BNL の \(^{10}_\Lambda B\) の実験結果と矛盾する。これは、本実験において \(^{10}_\Lambda B\) の測定を行なった動機にもなっている。

![図 3: \(^7_\Lambda Li\) の \(\gamma \) 線スペクトル (E419) [3]](image-url)
1.2.4 スピン-軌道相互作用

メソニン交換模型を用いて ΛN 間相互作用を考えたとき、スピン-軌道力を媒介するのでは、質量が重く到達距離が短い、スカラーメソニンやベクトルメソニンである事は既に述べた。このことは実験事実として知られている、スピン-軌道力が短距離力 ($\lesssim 1$ fm) であることと一致する。スピン-軌道相互作用の及ぶ範囲が狭いということは、この力について考える際に、クォーク模型を用いた方が良い結果を与える可能性を示唆する。ΛN 間のスピン軌道力について調べることにより、この相互作用に関して、メソニン交換模型とクォーク模型のどちらがより良い描像を与えるのかを知ることができる。

これまでに合わせた実験結果から、スピン軌道相互作用の大きさを表すパラメータである S_N および S_A の値を引き出すことができる [11]。

いくつかの実験結果から S_N の値は、

$$S_N \sim -0.47 \text{ MeV} \quad (4)$$

であるという結果が得られる。最も精度の良い測定結果は、前述の E419 実験で測定した $\Lambda Li(\frac{5}{2}^+ \to \frac{1}{2}^+)$ の γ 線を測定エネルギーである。ここで得られた S_N の値は、BNL の E929 実験で得られた $^{13}C(\frac{3}{2}^+ \to \frac{1}{2}^+)$ の γ 線のエネルギー [6] や、KEK の E369 実験で得られた $^{12}C(\frac{1}{2}^+ \leftrightarrow \frac{1}{2}^+)$ の間隔 [7] からも独立に得られた、いずれも ΛLi から計算した値とほぼ一致する。

S_A に関する実験データとしてもっとも直接的な情報を持つものは $^9Be(\frac{1}{2}^+ \leftrightarrow \frac{3}{2}^+)$ と、$^{13}C(\frac{5}{2}^+ \leftrightarrow \frac{3}{2}^+)$ のスピン 2 重項間の間隔である [10]。前者的間隔の測定は 1998年にBNLで、Hyperballを用いて行われた E930 実験 [5] で、$^9Be(\frac{5}{2}^+ \leftrightarrow \frac{1}{2}^+, \frac{3}{2}^+ \leftrightarrow \frac{1}{2}^+)$ の 2 本の γ 線を測定することにより行なわれた。この実験により 9Be のスピン 2 重項の間隔は 31.4 ± 0.6 keV であることがわかった (図 4)。この結果はスピン軌道力 (S_A) についていまだに得られた、最も信頼できる情報である。また、前述の E929 実験では、NaIを用いて、$^{13}C(\frac{1}{2}^- \leftrightarrow \frac{1}{2}^+)$ と $^{13}C(\frac{3}{2}^- \leftrightarrow \frac{1}{2}^+)$ の 2 本の γ 線のエネルギー差から、

![実験データグラフ]

図 4: 9Be の γ 線スペクトル (E930) [5]

5
図 5: 7Li、12C、13C のレベルスキーム

Λ 粒子が p 軌道に入った場合のスピン 2 重項の分岐 (LS splitting) についてその間隔が測定された。Λ 粒子が p 軌道を占めているため、S_A として表すことはできないが、この分岐幅もスピン-軌道力に関する直接的な情報を持っている。これら 2 つの実験結果は、どちらも ΛN 間においてスピン-軌道力が非常に小さいことを示している。

ΛN 間においてスピン-軌道力を考える際には、核子と Λ 粒子のスピンの向きが対称な成分 (SLS, $\propto 1 \cdot (s_A + s_N)$) と、反対称な成分 (ALS, $\propto 1 \cdot (s_A - s_N)$) とに分ける方法が有効である。この ALS の項は、NN 間の相互作用では現れず、YN 間の相互作用を考えるときにのみ導入される。S_A は SLS+ALS($\propto 1 \cdot s_A$) に対応する量であり、Λ や Σ の単一粒子軌道状態のスピン-軌道力による状態の分岐幅も、SLS+ALS ($\propto 1 \cdot s_A$) に比例する。ALS の値は、ΛN 間では SLS と符号が逆、ΣN 間では同じ符号となるため、この LS splitting の幅は、Λ ハイパー核では小さく、Σ ハイパー核では大きくなると予想される。

スピン-軌道力に関してメソニン交換模型とクォーク模型を比較すると、クォーク模型では、メソニン交換模型に比べて大きな反対称成分を与え、対称成分と反対称成分がほぼ完全に相殺するため、スピン-軌道力全体 (LS+ALS) は、非常に小さな値となる [10]。前述の実験結果をより良く再現するのはクォークモデルを用いた計算である。
1.2.5 テンソル相互作用

メソッド交換模型を用いて核子間相互作用について考えると、テンソル力を取り起こすのは擬スカラーメソッドおよびベクトルメソッドの交換による過程であることがわかる。通常核においてはπ中間子の交換がテンソル力の主な原因となるが、先程述べたように、ΛN間では1個のπ中間子を交換する過程が禁止されるため、テンソル力は通常核の場合と比較すると小さくなると予想される。ここでは、K中間子の交換と、2つのπ中間子の交換によってΣを経由する過程（ΛΣカップリング）が重要な影響を与えると考えられる。

Nijmegenグループにより提案されたメソッド交換によるポテンシャル模型[12][28][29]を用いた計算では、0.02 MeV ≲ T ≲ 0.06 MeVと予測されている。

これまでに、テンソル力について直接的な情報を持つ実験結果は得られていない。\(^{14}\text{C}\), \(^{14}\text{N}\), \(^{15}\text{N}\)および\(^{16}\text{O}\)の基底状態のスピン2重項の間隔は、テンソル相互作用に強く依存すると言われている[2]。これらのうち、テンソル力について測定するために最も良いと思われるのは\(^{16}\text{O}\)である。本実験では、\(^{16}\text{O}\)ターゲットに対する\((K^-,\pi^-)\)反応によってこれらの\(\gamma\)線を測定する。
1.3 本研究の目的

KEKのE419実験で、東北大を中心としたグループがゲルマニウム検出器を用いたハイパー核のγ線分光実験に成功して以来、p-shellハイパー核におけるAN間相互作用を知るための実験データは飛躍的に増加した。これまでに述べて来たように、p-shellハイパー核のAN間有効相互作用のスペクトルに依存する項について導入された4つのパラメータ、Δi、SA、SN、Tのうち、T以外のものについてはすでに実験によりその値が求められた。本研究の主な目的は、16Oおよび15Nの基底状態のスピン2重項の間隔を測定することにより、残されたテンソル力の大きさについてのパラメータTを決定することと、10Bの測定も行なうことにより、これまでに決定されたすべてのパラメータがp-shellハイパー核全体に渡って十分な一般性を持つかどうかを確認することである。

1.3.1 16Oと15N

テンソル力について、実験による測定を行うために最も適しているのは16Oの基底状態のスピン2重項の分岐を測る方法であることは既に述べた。本実験でこの間隔を測定することにより、いままで知られていなかったAN間のテンソル力についての情報が得られると期待されている。

これまでは行なわれた16Oの励起状態についての測定は、磁気スペクトロメータを用いたカウンター実験によるものであり、分岐幅が数百keV以下のスピン2重項の間隔についての情報は得られていない。

1978年に、CERNで行われた実験では、715 MeV/cのK−中間子ビームを用いて、16O(K−，π−)16O反応によるハイパー核の質量スペクトルが測定された。この実験では、SPES IIスペクトロメータを用いて3 MeV(FWHM)の分解能を達成し、0°方向の測定で4本のピークを観測することに成功した(図6)[13]。ここで測定されたピークのうち、(a) p3/2n,p3/2Λと(b) p1/2n,p1/2Λの間隔が約6 MeVと、そのコア核15Oのp3/2n ↔ p1/2nの分岐幅とほぼ等しかったこととは、Λの1粒子軌道のLSsplitting(p3/2Λ,p1/2Λ)が小さく、このもととなるAN間のスピンに依存するスピン-軌道力が小さいことを示すものであった。また、KEKで行われたE336実験で測定された、(π+,K+)反応による16Oの

![図6: 16Oの質量スペクトル](image)
図 7: $^{16}\text{O}(\overline{K},\overline{\pi})^{16}\text{O}$ 反応により生成される状態と崩壊過程。$(\overline{K},\overline{\pi})$ 反応で生成しやすい^{16}Oの状態を太線で示した。

質量スペクトルからも、^{16}Oの核構造に関するより詳しい情報が得られている。

$^{16}\text{O}(\overline{K},\overline{\pi})$ 反応によって作られることが予想される状態からの崩壊図を図 7 に示す。今回の実験では、^{16}Oの基底状態のスピン 2 重項の間隔を測定するために、$(1^+_2 \rightarrow 1^+_1)$ および $(1^+_2 \rightarrow 0^+)$ の 2 つの M1 遷移のγ線を測定することを目的とした。そのためには、$(\overline{K},\overline{\pi})$ 反応により生成できる^{16}Oの状態の中から、$\Delta L=1$ となる、Λ粒子が s 軌道を占める状態を選択する必要がある。後に 3.2.7 節 (図44) で詳しく述べるように、これらの状態に対する散乱断面積は散乱角が $\theta \sim 8^\circ$ 付近で最も大きい [27]。

$(1^+_2 \rightarrow 1^+_1)$ および $(1^+_2 \rightarrow 0^+)$ の 2 つの M1 遷移の分岐比は、もともと $(1^+_2 \rightarrow 0^+)$ の方が大きいが、1^+_2 には $p_{3/2} \otimes s_{1/2}$ の状態と、$p_{1/2} \otimes s_{1/2} \Lambda$ の状態が混在している影響で、$(1^+_2 \rightarrow 0^+)$ の分岐比はさらに増加する [2]。これにより、測定した 2 本のγ線のカウント数の比から、それぞれが $(1^+_2 \rightarrow 0^+_1)$ と $(1^+_2 \rightarrow 1^+_1)$ のどちらの遷移に対応するのか判別することができる。

殻模型を用いた Millener の計算 [26] によると、^{16}Oの基底状態の分岐エネルギーは、

$$E(1^-) - E(0^-) = -0.387\Delta + 1.382S_{\Lambda} - 0.005S_{\text{N}} + 7.820T$$ (5)

と、表すことができる。

また、$(\overline{K},\overline{\pi})$ 反応によって^{16}Oを生成する場合、特に生成しやすいのは Λ 粒
子が中性子と同じ軌道に入た、$0^+_1 (p_{1/2}^{-1}p_{1/2}^0) \text{および } 0^+_2 (p_{3/2}^{-1}p_{3/2}^0)$ の状態である。図 7 からもわかるように、この状態は、$^{16}_A \Lambda N \rightarrow ^{15}_A \Lambda N^* \text{+ } p$ の過程によって陽子を放出し、$^{15}_A \Lambda N$ の正バリテイ状態を生成する。

今回の実験では、$^{15}_A \Lambda N (1/2^+; T = 1)$ の状態から基底状態 2 重項へそれぞれ遷移する γ 線も測定した。$^{15}_A \Lambda N$ の基底状態の分岐数もテンソル力の大きな寄与に支配されるので、$^{16}_A O$ をターゲットにした実験で、$^{15}_A \Lambda N$ からの γ 線も同時に測定することにより、テンソル力に関するより多くの情報が得られると期待できる。この場合、$^{15}_A \Lambda N (1/2^+; T = 1)$ は、$^{15}_A \Lambda N (0^+_1; T = 1) \otimes s_A$ という組合せのみによって構成され、他の状態の混合は無視できる。2 つの遷移の分岐比は、$3/2^+$ への遷移の方が大きいことが予想されているが、その比率についての正確な予想は難しい。

$^{15}_A \Lambda N$ の基底状態の分岐幅を$^{16}_A O$ の時と同様に計算すると、

$$E \left(\frac{3}{2}^+ \right) - E \left(\frac{1}{2}^+ \right) = -0.758\Delta + 2.252S_A - 0.048S_N + 9.886T \quad (6)$$

となる。

表 1 は、各ハイパーチ核の基底状態の分岐幅 ΔE に対する、ΛN 間有効相互作用の各成分からの寄与についての Milne による予想値である。ここで $\Lambda-$Σ の項は、もとの計算には含まれていない、3 体間の $\Lambda-$Σ カップリングによる影響を考慮したため生じたものである [26]。

<table>
<thead>
<tr>
<th>Level pair</th>
<th>$\Delta\Sigma$(keV)</th>
<th>Δ(keV)</th>
<th>S_A(keV)</th>
<th>S_N(keV)</th>
<th>T(keV)</th>
<th>ΔE(keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{15}_A \Lambda O(1^-_1 - 0^-_1)$</td>
<td>-31</td>
<td>-181</td>
<td>-2</td>
<td>0</td>
<td>360</td>
<td>154</td>
</tr>
<tr>
<td>$^{15}_A \Lambda N(3/2^+_1 - 1/2^+_1)$</td>
<td>46</td>
<td>-355</td>
<td>-25</td>
<td>14</td>
<td>454</td>
<td>46</td>
</tr>
<tr>
<td>$^{10}_A \Lambda B(2^- - 1^-_1)$</td>
<td>-15</td>
<td>265</td>
<td>-15</td>
<td>-6</td>
<td>-29</td>
<td>197</td>
</tr>
</tbody>
</table>

表 1: $^{16}_A O, ^{15}_A \Lambda N, ^{10}_A \Lambda B$ の基底状態 2 重項の間隔に対する ΛN 間有効相互作用の各スピン依存成分と $\Lambda-$Σ カップリングの効果の寄与についての予想値。各パラメータの値は、Millener が shell model 計算と実験データをもとに提案したものを用いている [26]。
図8は、KEK 12GeV PSのK6ビームライン（SKS）において、1.06 GeV/cのπ⁺ビームによる10B（π⁺,K⁺）10B反応で測定された10Bの質量スペクトルである[16]。ここで測定された4本のピークは、すべてΛ粒子がs軌道にある状態であり[17]、それぞれのピークに対応するコア核9Bの状態は、基底状態（$\frac{3}{2}^−$, #1）と、3つの励起状態、2.36 MeV（$\frac{5}{2}^−$, #2）、6.97 MeV（$\frac{7}{2}^−$, #3）、および11.7 MeV（$\frac{7}{2}^−$, #4）である。図10に示したように、これらの状態のうち束縛状態はコア核の基底状態に起因するものだけである。それ以外は9Beと陽子に崩壊できるために非束縛状態となる。本実験において測定することを目的としたのは、10Bの基底状態2重項間の$\Delta M = 1$遷移（$2^− \rightarrow 1^−$）である。（$K^−,\pi^−$）反応では、spin-flipを伴わない状態が生成されやすいため、($2^−,1^−$)の2重項のうち、10B（3^+）から$\Delta L = 1, \Delta S = 0$によって生成される$2^−$の状態の方が作られやすい。

このγ線を測定することを目的とした実験は、過去にBNLにおいてMoby Dickスペクトロメータと、ゲルマニウム検出器を用いて行われている[18]。図9は、そのときの結果である。ここで$2^− \rightarrow 1^−$のγ線が測定されなかったことは、スピン-スピン力が$\Delta \lesssim 0.2$ MeVであることを意味する。しかしこれは他の実験結果とは一致しない。本実験では、10Bのγ線を過去の実験よりも高い統計で再測定し、この問題に決着をあたえる事を目指す。

図8: （π⁺,K⁺）反応による10Bの質量スペクトル[16]

図9: 10Bのγ線スペクトル（BNL）[18]
図10: $^{10}\text{B}(K^-,\pi^-)_{\Lambda}^{10}\text{B}$ 反応により生成される状態とその崩壊過程。(K^-,π^-) 反応で生成しやすい^{10}Bの状態を太線で示した。

Millenerの計算では、^{10}Bの基底状態の分岐エネルギーは、

$$E(2^-) - E(1^-) = 0.578\Delta + 1.414S_\Lambda + 0.014S_N - 1.068T$$

である。$\Lambda-\Sigma$間の3体間相互作用を考慮に入れた時の各項の寄与を表1に載せた。ここでは、他の3つと比較して特に大きな寄与を与える相互作用は存在しないため、これまでの測定結果から得られた各パラメータの値により予想される分岐エネルギーと、その実験値を比較して、パラメータの一般性を確認するのに適している。また、この$M1$遷移が観測された場合、その遷移強度を測定することは今後の課題として興味深いテーマとなりうる。
2 Setup

2.1 実験の概要

2001年9月から11月にかけて、米国Brookhaven National Laboratory(BNL)の
Alternating-gradient synchrotron (AGS) D6 beam lineで、第2期のE930実験が
行なわれた。

本実験の目的は、16O(K⁻,π⁻)16O反応、および10B(K⁻,π⁻)10B反応によって生成した
ハイパーチ核(16O, 15N, 10B)の励起状態からのγ線を測定し、得られたデータからΛN間相互作用についての情報を引き出すことである。

この実験を行う上で最も問題になるのは、測定した事象の中からどのようにしてバックグラウンドとなる事象を取り除くかという点である。そのために、(K⁻,π⁻)反応によって生成した16Oや10Bの束縛エネルギーをスペクトロメータによって測定し、ハイパーチ核の特定の励起状態を作った事象を粗く選択する。一方で、様々な情報を用いて可能な限りバックグラウンドとなる事象を取り除き、最終的に残った事象に対してゲルマニウム検出器で測定したγ線のエネルギースペクトルを見ることによって、選んだ励起状態から崩壊して放出されるγ線を特定する。

1998年に行われた第1期の実験では、9Be(K⁻,π⁻)3Be反応によって3Beの3/2⁺→
1/2⁺と5/2⁺→1/2⁺の2本のγ線が測定され、そのエネルギー差から、ΛN間の
相互作用のうち、Λのスピンに依存したスピン軌道結合力(S₃)の大ささが非常に
小さいという結果が得られた[27]。
今回、第 2 期の実験では、\(^{16}\Lambda O\) および \(^{15}\Lambda N\) からの \(\gamma\) 線測定によって、これまでに
知られていないテンソル力について調べることができる。また、\(^{10}\Lambda B\) からの \(\gamma\) 線測定
では、これまでに得られた \(\Lambda N\) 間相互作用の情報が、\(p\)-shell ハイパー核全体に
渡って十分な一般性を持つかどうかを確認できる。

今回の実験に \((K^-,\pi^-)\) 反応を用いたのには、大きく分けて 2 つの理由がある。
ひとつ目はドッブルー効果による影響が小さいことである。生成したハイパー核
が速度を持った状態で \(\gamma\) 線を放出した場合、ドッブルー効果によってゲルマニウ
ム検出器が観測するエネルギーの値は広がってしまう。この実験では、\(\Lambda N\) 間相互
作用のスピンに依存した成分による非常に小さな状態の分岐を測定する必要があ
るので、この影響は致命的となり得る。\((K^-,\pi^-)\) 反応においてドッブルー効果の
影響が小さいのは、\(\Lambda\) 粒子の反跳運動量が小さいためである。\(K^-n \rightarrow \Lambda\pi^-\) の散
乱断面積を大きくするために、\((K^-,\pi^-)\) 反応では通常、入射 \(K^-\) 中間子の運動量
として \(0.7 \sim 0.9\) GeV/c を選ぶが、図 11 から、このとき \(\Lambda\) 粒子の \(0^\circ\) 方向での反跳
運動量はフェルミ運動量 \((\sim 260\) MeV/c) に比べても小さいことがわかる。本実験
においては散乱角の大きな事象を測定対象としているが、それでも \((\pi^+,K^+)\) 反応
と比較すると小さい。このため、生成したハイパー核の持つ運動量は小さくなり、
ドッブルー効果もまた小さくなるのである。

ふたつめは、ゲルマニウム検出器に対するバックグラウンドやダメージの量が
少ないという点である。これは、\((K^-,\pi^-)\) 反応における反応断面積が、\((\pi^+,K^+)\)
反応の場合と比べると約 10 倍も大きいためである。\((K^-,\pi^-)\) 反応では、ビーム強
度が約 10 倍も小さい条件で \((\pi^+,K^+)\) 反応の場合と同程度のデータを得ることができるため、計数率の増加にともなって生じる、ゲルマニウム検出器が被るダメ
ージや、dead time の増加を避けることができるのである。

図 12: AGS D6 ビームライン
(K^-,π^-) 反応では、反跳運動量が小さいために中性子が Λ 粒子に変わるとき、その中性子の軌道をそのままに置換する過程が支配的となる。つまり、^{16}O および ^{10}B の p 軌道に Λ 粒子に入った状態 (substitutional state) が生成されやすいことになる。しかし、散乱角がある程度大きい ($\theta \sim 10^\circ$) 事象に対しては、$\Delta L=1$ の散乱断面積もまた大きい。一方、(π^+,K^+) 反応では反跳が大きいため、ΔL の大きな状態が生成されやすいという特徴がある。また、これらの反応過程では、主に spin-non-flip の状態が生成される。本実験では、$\Delta L=0$ または 1 の反応によって、Λ 粒子が s 軌道あるいは p 軌道を占める状態を作り、そこから放出される γ 線を測定するため、この点でも (K^-,π^-) 反応が適していると言える。

図 13: スペクトロメータのセットアップ
2.2 セットアップの概要

本実験のセットアップを、入射粒子と散乱粒子を分析してハイパー核の励起スペクトルを得るためのスペクトログラフと、生成したハイパー核からの γ 線を測定するための Hyperball の 2 つに分けて説明する。

入射粒子の運動量測定ならびに粒子選別は、D6 ビームラインスペクトログラフによって行なった（図 12）。また、散乱粒子である π⁻ の運動量は 48D48 スペクトログラフによって測定した。入射および散乱粒子についてそれぞれのスペクトログラフによって軌道を測定し、生成したハイパー核の質量を計算することによって、観測したい状態が作られた事象を選別する。過去の実績によると、この散乱粒子スペクトログラフでは、20 MeV/c 程度の運動量分解能が期待できる。このスペクトログラフは角度の acceptance が 0〜16° と、非常に大きいことが特徴で、散乱角の大きい事象と小さい事象を同時に測定できるという利点がある。ここで述べた Hyperball 以外のセットアップは、基本的には以前からこのビームラインで使われていたものであるが、今回の実験に最適化するために、カウンターやドリフトチェンジャーについては種々の変更や改良、新設を行なった。

ハイパー核の励起状態からの γ 線を測定するために、我々は 14 台のゲルマニウム検出器によるハイパー核 γ 線分光システム (Hyperball) を用いた。各ゲルマニウム検出器は、BGO 検出器によってその周囲を囲まれていて、両者の検出器に同時に観測された事象を除くことによりバックグラウンドの量を軽減することができる。本来、ゲルマニウム検出器は信号の読み出しが遅いため、高計数率の条件下での使用には適さない。しかし、Hyperball の回路系は、ビーム強度の高い条件下においても十分に機能するように設計されている [24]。ゲルマニウム検出器の deadtime や分解能については、実験期間を通じて検定してモニターし、その性能に問題が生じていない事を確認した。今回の実験では、ゲルマニウム検出器 1 台あたりの計数率は 20 kHz 程度であり、ビーム条件に制限を加えなければならないような性能の低下は起こらなかった。

<table>
<thead>
<tr>
<th>ビームライン</th>
<th>BNL AGS D6 ビームライン</th>
</tr>
</thead>
<tbody>
<tr>
<td>全長</td>
<td>31.6m</td>
</tr>
<tr>
<td>1 次ビーム</td>
<td>21 GeV/c 陽子ビーム</td>
</tr>
<tr>
<td>1 次ターゲット</td>
<td>Pt (9cm)</td>
</tr>
<tr>
<td>2 次ビーム</td>
<td>930 MeV/c K⁻ 中間子ビーム</td>
</tr>
<tr>
<td>静電セパレータ</td>
<td>Gap 10.2 cm , Length 4.5 m (× 2 台)</td>
</tr>
</tbody>
</table>

表 2: AGS D6 ビームラインの特徴
2.3 AGS D6 ビームライン

1960年から稼働しているAGSは、これまでに3つのノーベル賞を獲得するなど、優れた業績を残してきた加速器である。現在では、主としてRelativistic Heavy Ion Collider（RHIC）にて重イオンを入射するための前段階の加速器として利用されている。しかし、RHICでは一度の入射につき、最大で12時間程度ビームを保持できると言われているため、次の入射までの時間を利用することによって、AGS単独での実験も並行して行うことが可能である。我々が行った第2期のE930実験は、RHICのビームタイムと並行して行われた初めての実験となった。

D6 beam lineは、1991年に完成した。このビームラインの特徴は2台の静電セパレータとマススリットによってK^{-}中間子を選択しているところにあり、世界でも他に類を見ない高純度K^{-}ビームが利用できる。

ビームラインの全体図を図12に示す。このビームラインの特徴は表2の通りである。また、今回の実験期間中の使用条件を、表3にまとめた。ここでは、AGSから引き出された21 GeV/cの陽子を、厚さ9 cmのPt targetに当てることによってK^{-}中間子を作っている。測定したいエネルギー準位のハイバー核を効率良く作るため、K^{-}中間子の運動量は$p_k=930$ MeV/cに設定した。

<table>
<thead>
<tr>
<th>1spill当たりの陽子数（最大値）</th>
<th>23×10^{12} protons/spill</th>
</tr>
</thead>
<tbody>
<tr>
<td>1spill当たりのK^{-}中間子数（最大値）</td>
<td>230×10^{3} K^{-}/spill</td>
</tr>
<tr>
<td>加速器周期とspillの継続時間</td>
<td>周期4.6 sec、継続時間1.5 sec</td>
</tr>
<tr>
<td>入射K^{-}の運動量幅</td>
<td>40 MeV/c</td>
</tr>
<tr>
<td>静電セパレータ電圧</td>
<td>±300 kV</td>
</tr>
</tbody>
</table>

表3: 第2期E930のビーム条件

<table>
<thead>
<tr>
<th>名称</th>
<th>幅 (x) × 高さ (y) × 厚さ (z) (cm)</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP</td>
<td>0.7 × 1.5 × 0.3</td>
<td>72</td>
</tr>
<tr>
<td>MT</td>
<td>3.7 × 1.5 × 0.6</td>
<td>9</td>
</tr>
</tbody>
</table>

表4: ビームライン上流にあるホドスコープ
2.3.1 スペクトロメータ

ビームライン側での粒子選別には先程述べた 2 台の静電セパレータを用いているが、少しでも多くの K^- ビームを利用するという観点から、マススリットの幅は広くとった。この結果、K^- とそれ以外の粒子 (π^-, μ^-, e^-) の比率は 3:1 程度であった。マススリットを広げたときは、カウントレートの増加に伴って検出器への悪影響が懸念されるが、Pt target にあてることのできた陽子数は、最大で 23×10^{12} protons/spill、スピル構造は、flat top が 1.5 sec で、周期が 4.6 sec であり、これは我々の検出器にとって、実験期間全体を通してそれほど深刻な影響を与えるものではなかった。また、我々は、オンライン解析の段階で入射粒子を選別するために、後述の MT-IT 間の Time-Of-Flight(TOF) 測定を行ない、K^- 以外のビーム粒子による事象は完全に除去することができた。

入射 K^- 中間子の運動量は、2 台目のセパレータの上流に設置されたホドスコープ (MP) と、その下流に設置されたダイボールマグネット (D3)、およびターゲットの上流にある 3 台のドリフトチェンバー (ID1,ID2,ID3) によって測定される (図 12)。MP は 72 本のプラスチックシンチレーションカウンターからなり、D3 上流での粒子の通過位置を測定する。一方、D3 の下流では ID1,ID2,ID3 によって粒子の位置と方向を測定している。これらの情報から粒子の軌道を再構成し、得られた入射 K^- 中間子の運動量分布が図 14 である。また、MT は 9 つのセグメントからなるプラスチックカウンターで、その主な目的はターゲット直前にある IT との間に TOF を測定することである。

ターゲットにより散乱された粒子は、48D48 磁石と 5 組のドリフトチェンバー (FD1, FD2, FD3, BD1, BD2) によってその運動量および飛行距離を測定する。また、ターゲット上流のプラスチックカウンターの IT と、最も下流に配置した
プラスチックカウンター BT の間で粒子の飛行時間も測定した。散乱粒子の粒子選別は、これらの情報から質量を計算することにより行った。クーロン多重散乱によりトラッキングの精度が悪くなることを避けるために、今回の実験では FD2 と FD3 の間、および FD3 と BD1 の間にヘリウムバッソを入れている。ターゲットを置かない状態で、入射 K− 中間子に対して 48D48 スペクトロメータによる軌道の再構成を行った結果、得られた運動量分布は図 15 である。
入射側と散乱側の運動量の差を見ることからスペクトロメータの運動量分解能について知ることができる。このことに関しては 3.2.5 節で述べることにする。

2.3.2 トリガーカウンター

本実験に用いたトリガーカウンターのうち、今回新たに製作したカウンター、IT、IC1、IC2、FC、FV についてここで述べる。

IT

図 16 は、本実験で、ターゲットの上流に設置されたトリガーカウンター、IT のシンチレータおよびライトガイドの図面である。このカウンターには、その両側に 1 1/8 インチの光電子増倍管 (HAMAMATSU R1355) が取り付けられている。入射ビームによって作られる各トリガー条件に対して、IT がそのタイミングの基準を与える。

図 16: トリガーカウンター:IT
IC1

IC1 は、以前から使われていたターゲットの上流で K^- 中間子を選ぶためのエアロジェルチェレンコフカウンター (IC) である。今回の実験では、エアロジェル本体を新しいものに交換したが、構造や光電子増倍管についてはこれまで用いられてきたものと同一である [20]。エアロジェルの屈折率は 1.03 であり、$\beta > 0.97$ の粒子に対してチェレンコフ光を発生する。

このチェレンコフカウンターの 4 本の光電子増倍管から得られた信号は、足しあわせて用いる。このときの平均光子数の合計 λ を実際のデータから見積もり、十分速い粒子に対する光子数 k がポワソン分布に従うと仮定すると、その確率分布は

$$P(k) = e^{-\lambda} \frac{\lambda^k}{k!} \quad (8)$$

となり、ADC のベデスタルの事象数と全体の事象数の比が $k=0$ である確率を表す。

ここで、十分速い粒子を母集団に用いるために、入射粒子側の TOF 測定と、散乱粒子側の質量測定によって π^- 中間子が通過した事象を選ぶ。なお、ここではチェレンコフカウンターが入っていないトリガー条件を選ぶ必要があるため、IT のみのトリガーによって取ったデータを使った。この計算の結果から得られた IC1 の平均光子数は

$$\lambda = 3.87$$

であった。

トリガーに用いるための IC1 の閾値は、図 17 の様に設定した。この結果、入射側の TOF 測定と散乱粒子側の質量測定によって K^- 中間子が通った事象を選んだときに、IC1 の信号が閾値を超える確率は 1.12% となった。β の小さい粒子で閾値を超える原因としては、δ 線の影響が考えられる。
IC2

IC2 は、新たに製作し、ターゲットの直前に設置したエアロジェルチェレンコフカウンターであり、図 18 がその設計図である。エアロジェルの屈折率はこちらも 1.03 のものを選んだ。

IC2 には、3 インチのファインメッシュ型光電子増倍管（HAMAMATSU H5543）を 2 本用いている。IC1 同様、2 つの信号は足しあわせて用いられる。ファインメッシュ型光電子増倍管は、ダイノードがメッシュ状になっているため、磁場の強い場所でもその増幅過程における電子の損失が少なく、利得が変化しないという特徴がある（図 19）[21]。ターゲット付近は、開口の広い 48D48 磁石の漏れ磁場の影響があるため、この光電子増倍管を使用した。

図 18: トリガーケウンター: IC2
図 19: ファインメッシュ型光電子増倍管

IC1 の時と同様に平均光子数を見積もりると、IC2 に対しては

$$\lambda = 3.31$$

という値が得られた。

IC2 の閾値は図 20 の様に設定した。このとき、$$K^-$$ 中間子による信号が閾値を越える確率は 2.68% であった。トリガー段階における入射 $$K^-$$ 中間子の選択は、IC1 と IC2 からの信号がどちらも閾値を越えないという条件でなされる。

チェレンコフカウンターが 2 段あることの利点は、$$\beta$$ の大きい粒子で閾値を越えない事象を削減できる点である。一方、$$\delta$$ 線などにより $$\beta$$ の小さい粒子で閾値を越えた事象に対しては取りこぼす割合が増加する。この結果、ビーム中の $$\pi^-$$ 中間子のつま抜けや、前方散乱の事象がトリガーに混入し、トリガーレートを増大させる問題は解決したが、一方でトリガーに入らない入射 $$K^-$$ 中間子の割合が 3.76% であった。

図 20: IC2 の $$\pi^-$$, $$K^-$$ に対する ADC 分布とその閾値
FC

FCはターゲットの下流に位置するエアロジェルチェレンコフカウンターである。このカウンターは、トリガーを作る際に、ターゲットによって散乱した粒子から\(\pi^-\)中間子を選別するのに用いられる。上流側が2段あるのに対して、下流側はスペースの都合によりFCのみである。FCの構造はIC2とほぼ同じであり、ファインメッシュ型の光電子増倍管が用いられている（図22）。これまでと同様にして求めたFCの平均光子数は、

\[\lambda = 3.31 \]

であった。

FCの閾値は図21に示した通りである。入射側のトOF測定と、散乱粒子側の質量測定の両方によって\(\pi^-\)中間子を選んだときに、トリガーに入らない\(\pi^-\)中間子の割合は1.56%であった。

図21: FCの\(\pi^-\), \(K^-\)に対するADC分布とその閾値

FV

FCからの信号が\(K^-\)中間子に対して閾値を越える確率を考えると、\(K^-\)中間子がターゲットと反応せずに引き抜けた事象が\((K^-,\pi^-)\)トリガーに混入し、トリガーレートを増大させてしまう効果は無視できない。こういった事象を取り除く目的で、散乱角が3°以下の事象を除去するためのプラスチックカウンター（FV）をFD1とFD2の間に設置した。本実験では、\(^{16}\text{O}\)の基底状態から見て移行角運動量\(\Delta L=1\)の状態を生成することを最も主要な目的としているが、この状態は散乱角の大きいところで散乱断面積が大きいため、FVは妨げにならない[27]。

このカウンターは散乱角の大きい事象に対しての妨げとなるように光電子増倍管とシンチレータは距離を離し、その間にはライトガイドを使用しなかった。FVの検出効率は、

\[R_{\text{eff}} = 99.5\% \]

である。

また、FVは48D48との距離が非常に近いため、磁場に対する耐性を考慮して、IC2やFCと同様にファインメッシュ型の光電子増倍管を用いた。
2.3.3 target

本実験に用いたターゲットの形状を図23に示す。今回の実験に用いたターゲットの厚さは、16O(\text{H}_2\text{O})$ ターゲットで 20 g/cm2 である。

ターゲットが厚いと、粒子のエネルギー損失が大きくなるため、たとえ補正を行なったとしてもハイバー核の質量スペクトルの分解能は悪化する。スペクトロメータの性能を十分に引き出すことを考えると、ターゲットは薄い方が望ましい。一方で、ハイバー核の生成する事象数はターゲットの厚さに比例して増えるので、より多くのγ線を測定するには厚いターゲットを用いた方が良い。今回用いたターゲットの厚さは、これら両方について考慮した結果から決定したものである。

<table>
<thead>
<tr>
<th>名称</th>
<th>属性</th>
<th>幅 (x) × 高さ (y) × 厚さ (z) (cm)</th>
<th>数量</th>
<th>PMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>エアロジェルシェレンコフ</td>
<td>11.4 × 11.4 × 5.5(1.1 × 5)</td>
<td>1</td>
<td>H1161(×4)</td>
</tr>
<tr>
<td>IC2</td>
<td>エアロジェルシェレンコフ</td>
<td>11.4 × 11.4 × 5.5(1.1 × 5)</td>
<td>1</td>
<td>H5543(×2)</td>
</tr>
<tr>
<td>FC</td>
<td>エアロジェルシェレンコフ</td>
<td>11.4 × 2.0 × 5.5(1.1 × 5)</td>
<td>1</td>
<td>H5543(×2)</td>
</tr>
<tr>
<td>FV</td>
<td>プラスチックシンチレーター</td>
<td>10.0 × 6.0 × 1.0</td>
<td>1</td>
<td>R6504(#)(×1)</td>
</tr>
<tr>
<td>BT</td>
<td>プラスチックシンチレーター</td>
<td>200.0 × 8.5 × 5.0</td>
<td>40</td>
<td>H1949(×2)</td>
</tr>
</tbody>
</table>

表5: ビームライン上にあるトリガーカウンター
ターゲットの幅と高さは、ビームの形状を元に設計した。ビームの形状については
示すために、ターゲットに最も近いドリフトチャンバーである、ID3でのhit pattern
を載せる。図24) これを見ると、ビームの形状は、幅が5 cm、高さが1 cm程度
であることがわかる。

![水ターゲットとボロンターゲットの図]

図23: 16Oおよび10Bターゲットの概観

![ID3でのHit patternの図]

図24: ID3でのHit pattern
2.4 Hyperball

図25は、14台のゲルマニウム検出器と、各ゲルマニウム検出器を取り囲むように配置されたBGO検出器からなるハイパー核用\(\gamma\)線分光装置「Hyperball」の概観である。これらのゲルマニウム検出器は1台あたりの相対検出効率が約60\%で、14台で全立体角の約15\%を覆う。

ゲルマニウム検出器の結晶が、ターゲットを覆う立体角を大きくするという観点からは、検出器はターゲットに近づけた方がよい。しかし、周りにBGO検出器を配置しなければならないことや、1台のゲルマニウム検出器が覆う立体角が大きくなることによる計数率の増加と、ドップラー効果の補正精度の悪化を考えると、あまり近くに配置することはできない。今回の実験では、計数率やドップラー効果の影響があまり大きくなることを考慮し、ゲルマニウム検出器を可能な限りターゲットに近づけた。現在のセットアップでは、BGO検出器はすきまなく設置しているため、これ以上近づけることはできない。そのため、ゲルマニウム検出器のみを、BGO検出器のサブレッションが十分に働く位置を考慮してターゲットに近づけた。

本節では、Hyperballの特徴について、ゲルマニウム検出器と、その読みだし回路、BGO検出器の3つに分けて述べる。
2.4.1 ゲルマニウム検出器

Hyperball に用いられている 14 台のゲルマニウム検出器は、10 台が ORTEC 製、4 台が Eurisys Measures 製である。ORTEC 製ゲルマニウム検出器の形状は、図 26 の様になっている。結晶はいずれも高純度 n 型結晶であり、約 7cm×7cm の同軸型をしている。n 型結晶を用いるのは、放射線損傷に対する耐性を考慮してのことである。放射線損傷が進むと、結晶の有感領域内における正孔捕獲量が増加する。同軸型結晶では、その構造上結晶の外周部分において電子正孔対が作られやすいため、正孔が外周部分に移動する n 型結晶の方が影響を受けにくいのである [24]。

Hyperball に用いられているゲルマニウム検出器には、トランジスタリセット型の前置増幅器が用いられている。これは、前置増幅器のフィードバックコンデンサにおいて energy deposit の積算値が一定値を越えたときに、出力信号をベースラインまで戻す仕組みをもっている（図 27）。高エネルギー中間子ビームを用いた実験では、ビームハローや標的で散乱した粒子がゲルマニウム検出器の結晶をつきぬけて、数十 MeV のエネルギーを与える。こうした事象が高い計数率で存在することが原因となり、通常用いられる、抵抗でフィードバックコンデンサの電荷を放電する前置増幅器では、出力信号が飽和したまま元に戻らないことが予想される。

この問題は、放電に用いる抵抗値を小さくすることによっても回避できるが、分解能が悪化することは避けられない。また、飽和を引き起こす信号が粒子のつき抜けに伴う数十 MeV 以上の大きな信号であるのに対し、実際に測定したい信号は 1 MeV 以下と小さいことも問題となる。これは、大きな信号に対するブリアンプ出力の特性上メインアンプでの pole zero cancellation を完全に行なうことが難し
2.4.2 ゲルマニウム検出器の読みだし回路

ゲルマニウム検出器で測定された信号は、ブリアンプによって增幅された後、エネルギー測定用とタイミング測定用の2種類のメインアンプのそれぞれによって増幅される。前者は、Gated Integrator(GI) 内蔵型の高速 Shaping Amp.(ORTEC 973U Ultra High-rate Amp.,UHA) で、主に ADC への入力信号を作るために用いられる。もっとも良い測定条件と比較してエネルギー分解能が約 20%低下するが、出力信号の幅が 3 μsec と短いことが特徴で、これにより pileup による不感時間を少なくおさえることができる。また、この回路は、内蔵された Fast Amp. と Discriminator によって計数率測定用のロジック出力(CRM)を作る。CRM 出力は、1 MeV の γ 線に対して時間分解能が 20 nsec 程度 (FWHM) であるが、計数率が高くても機能する。CRM 出力の Discriminator の閾値は、ノイズレベルに応じて自動的に決定される。我々は、ゲルマニウム検出器の ADC gate を作る際にこの信号を用いている。

タイミング用のメインアンプは、Timing Filter Amp.(ORTEC 579 Fast-Filter Amp. ,TFA) である。我々は、このアンプと Constant Fraction Discriminator(CFD)を組み合わせてタイミング信号を作り、TDC に入力している。この TFA は、特に速い立ち上がり時間 (5 nsec) を持つ、1 MeV の γ 線に対する時間分解能を 5 nsec(FWHM) 以下にできる。また、UHA の CRM 出力と異なり、CFD において
閾値を設定するため、ノイズレベルと近い波高となる低エネルギーの領域を測定する際に、状況に応じた設定ができるという利点もある。TDC によるタイミングの測定には、この TFA からの信号を用いるが、CRM 信号についても同様に TDC による測定をしている。

ゲルマニウム検出器のブリアンプには reset 出力があり、リセットのタイミングと同期した信号が得られる。このタイミングを TDC で記録することにより、我々はリセット直後の事象をオフライン解析の際に取り除いている。ただし、Eurisys 製のゲルマニウム検出器に対しては、UHA の inhibit 入力に reset 信号を 30 μsec 程度に延ばしたものを入力し、CRM 出力から作られたトリガーに veto をかけることにより、ハードウェア的に取り除く事も行った。

UHA からの Gated Integrator(GI) 出力は、ピークホールド型 ADC(ORTEC 413A) に入力されてデジタル信号へと変換され、データは FERA driver を通じて読み出される。ADC の gate については trigger についての説明の項で詳しく述べる。一方、UHA の CRM、TFA、reset の各信号の時間情報は、FASTBUS TDC(LeCroy 1877S) によって変換される。この TDC は Multihit TDC であり、1 event に対して 32 μsec 以内の範囲において、最大 16 hit まで記録することが可能である。

ゲルマニウム検出器の計数率が高い場合、メインアンプにおいて、出力信号が 0 に戻る前に次の信号が入力された時にバウンド アップが起こる。これを除くために我々は、Multihit TDC を用い、3.3.1 節で述べる方法で事象の選択を行なっている。

図 28: ゲルマニウム検出器の読みだし回路 (Kπ トリガーの場合)
2.4.3 BGO検出器

BGO(Bi$_4$Ge$_3$O$_{12}$)検出器の主な目的は、ゲルマニウム検出器のADCスペクトルから次の3つを取り除くことである。

1. ゲルマニウム検出器内でのコンプトン散乱や電子対生成により、光電ピークとしては観測されなかった事象
2. K^- → π^- π^0 や Λ → $n\pi^0$の崩壊過程で生じる π^0 からの高エネルギーγ線によるバックグラウンド事象
3. π^-,μ^-,e^\pm などの高エネルギー荷電粒子がつき抜けたバックグラウンド事象

1は、ゲルマニウム検出器の結晶の性質に依存するところが大きい。結晶の大型化が困難であること、原子番号と密度が比較的小さいことから、ゲルマニウム検出器の光電ピーク効率は必ずしも十分であるとは言えない。コンプトン散乱による連続スペクトルは、主に低エネルギーのγ線に対して深刻なバックグラウンドとなるが、結晶外へ逃げたγ線を結晶の周囲に置いた検出効率の高いBGO検出器で捕らえ、その事象を取り除くことでその量を軽減することができる。

本実験においては2による影響が最も深刻である。ターゲット領域においてK^-中間子がπ^- π^0に崩壊した事象に対して、散乱側のスペクトロメータがπ^-中間子を検出すると、(K^-,π^-)反応が起こった事象との区別がつかない。また、Λ粒子の弱崩壊過程からもπ^0中間子は放出される。π^0 は2本のγ線に崩壊するが、このγ線はエネルギーが70 MeV以上あるため、すべてのエネルギーがゲルマニウム検出器で観測された場合、ADCで測定される値がオーバーフロー領域以外に来るとはない。このことはゲルマニウム検出器の計数率の増加とともに、resetの回数を頻繁にし、不感時間を長くするという影響はあるものの、測定したADCスペクトルにおいてバックグラウンドを増やす要因にはならないことを意味する。

BGOによるサプレッションが要求されるのは、このγ線が、電子対生成の過程によって消減した場合である。このとき生成した電子は、$\frac{1}{2}(\hbar\omega_0 - 2mc^2)$の運動エネルギーを持ち、制動放射により$\gamma$線を放出することで電磁シャワーを作る。このような過程を通じてゲルマニウム検出器でEnergy depositが生じた場合、ADCスペクトルの全領域に渡ってバックグラウンドが増加する。高エネルギー領域でのγ線の消減は、主に電子対生成によって起こるため、この過程によるバックグラウンドの量は非常に多い。しかし、このような事象では、同時に周囲のBGO検出器にも検出される確率が高いため、BGOにより高い効率でサプレッションできると考えられる。

3は、Λ粒子の崩壊によるπ^-中間子や、偶然同時に計数によるビーム粒子の散乱や崩壊した荷電粒子が原因となる。

荷電粒子がゲルマニウム検出器の結晶内で10 MeV以上のエネルギーを落した場合、ADCがオーバーフローするために、2.5.2節で述べる2nd level triggerでK^πトリガーから除去できる。バックグラウンドとなるのは、粒子がゲルマニウム検
出器の結晶をかすめて通った場合であり、これらの荷電粒子は周りの BGO 検出器でも同時に検出される確率が高いため、サプレッションは有効である。

図 29 は、BGO 検出器とゲルマニウム検出器の相対的な配置図である。ゲルマニウム検出器の方が BGO 検出器よりもターゲットに近い位置にあるのには、2つの理由がある。

1つは、今回サプレッションの主な対象として考えている π^0 による電磁シャワーは前方に広がるため、BGO 検出器はターゲットから見て、ゲルマニウム検出器より遠い側にある方が有効だからであり、もうひとつはゲルマニウム検出器がターゲットを覆う立体角を大きくすることで、検出効率の向上が見込まれるからである。立体角については前章も述べたように、BGO 検出器は設計の都合により、これ以上ターゲットに近づけることはできないため、現状で立体角を大きくするためには、ゲルマニウム検出器のみを近づけなくてはならない。

図 29: ゲルマニウム検出器と BGO 検出器の取り付け配置図

<table>
<thead>
<tr>
<th>比較する項目</th>
<th>中国製</th>
<th>BICRON 社製</th>
</tr>
</thead>
<tbody>
<tr>
<td>結晶体積 (cm3)</td>
<td>182</td>
<td>307</td>
</tr>
<tr>
<td>結晶の大きさ (長さ \times 厚さ) (cm)</td>
<td>15.0×1.9</td>
<td>$24.5 \times 1.8 \sim 2.85$ (taper)</td>
</tr>
<tr>
<td>結晶の数</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>PMT</td>
<td>R1355(× 6)</td>
<td>1”φ (× 12)</td>
</tr>
<tr>
<td>台数</td>
<td>13 台</td>
<td>1 台</td>
</tr>
</tbody>
</table>

表 6: ゲルマニウム検出器1台あたりの BGO 検出器
一方で、陽子対消滅により生じる511 keVのγ線が等方的に発生することや、バックグラウンドとして存在する低エネルギーのコンブトン散乱したγ線に対する遮蔽効果を考えると、BGO検出器がゲルマニウム検出器の結晶を覆う立体角は大きいことが望まれる。図29の配置は、これらについて考慮した上で決定したものである。

Hyperballに用いられているBGO検出器は、中国製のものが13台と、BICRON社製のものが1台ある。両者の違いを表6に載せる。137Csの662 keVのγ線に対するエネルギー分解能(FWHM)は、中国製で30%程度、BICRON社製で23%程度、時間分解能は662 keVのγ線に対し、どちらも約4 nsec(FWHM)程度である[24]。また、サプレッション効率を高めるために、BGO検出器の信号のdiscriminatorの開値は、〜25 mV程度とできる限り低く設定し、single photonが確実に検出できるようにした。

本実験におけるBGOの性能を確かめるために、ゲルマニウム検出器のADCスペクトルに対するBGOによるサプレッションの効果について、ビームが出ている条件と出していない条件での比較を行うことにより調べた。ビームが出ていない条件においては、ゲルマニウム検出器のエネルギー校正に用いた244Cm+13C線源を

図30: Beam ONでのBGOサプレッションの効果。上段の図で上の線(赤色)はサプレッションの前、下の線(青色)はサプレッションの後を表す。下段はサプレッション前後の比を表す。
標的の位置において測定した。この線源については後に述べるが、$^{16}\text{O}(3^- \rightarrow 0^+)$の6128 keVという高いエネルギーのγ線を利用できるという特徴がある。

ビームが出ていた条件の下で、ゲルマニウム検出器のADCスペクトルをサプレッション前後で比較し、得られた結果を図30に示す。上段はBGOサプレッションをかけた場合とかけなかった場合のADCスペクトルであり、下段は両者の比を示している。この比較は、$K\pi$トリガーのかかった事象に対し、ゲルマニウム検出器のTDC(TFA)が反応が起こったのと同じタイミングでヒットした事象を選んだ後に行った。この図から、BGOサプレッションの効果によりバックグラウンドの事象がほぼ全エネルギー領域に渡って1/5程度にまで減少している事と、$^{16}\text{O}(3^- \rightarrow 0^+,6128\text{keV})$および$^{15}\text{O}(3/2^- \rightarrow 1/2^-,6176\text{keV})$の2本のγ線に対応する、6 MeV近傍の光電ピークに相当する位置においてサプレッションの比率が1人に近づいていることが確認できる。つまり、γ線の光電ピークはあまりサプレッションを受けていないことを意味している。ここで測定されたサプレッションの比率は、1998年に行われた実験の際に得られた値とほぼ同程度である。

GEANTによるシミュレーションによると、BGO検出器によるサプレッションにより、π^0の崩壊から生じるバックグラウンドは1/15程度にまで減らすことが

図31: Beam OFFでのBGOサプレッションの効果。上段の図で上の線（赤色）はサプレッションの前、下の線（青色）はサプレッションの後を表す。下段はサプレッション前後の比を表す。
できる[25]。今回の測定結果では、バックグラウンドは1/5程度に減っているが、この差は中性子など、π⁰以外の粒子がビームに起因するバックグラウンドを作っているためと考えられる。

ビームの出ていない条件で同様の測定を行なった結果を、図31に示す。これは、ビームタイム終了後に、UHAのCRMR出力から作ったゲルマニウム検出器のセルフトリガーにより測定した結果である。先程と比較してサプレッションの効果が小さいが、これはビームに起因したバックグラウンド事象がないためである。

図30、図31のADCスペクトルで、γ線のエネルギーが6 MeV付近のエネルギーの高い領域のみを選んで見たものが図32である。図32の左図を見ると、BGOサプレッションによりS/N比が向上し、先程述べた¹⁶Oおよび¹⁵Oの2本のγ線と、そのsingle escape peakが観測できるようになっていることがわかる。

また、ビームが出ていない条件の下では、他にバックグラウンドとなる事象が少ないため、escape peakやコンブト領域に対するサプレッションについて調べるのに都合がよい。図32の右図を見ると、光電ピークがほとんど減少していないものに対し、escape peakは半分程度に減少していることがわかる。これは、結晶で生じる2本の511 keVのγ線が等方的に放出されることと、BGO検出器がゲルマニウム検出器の結晶部分を覆う立体角が50%程度であることを考えると十分納得できる值である。

以上の結果から、本実験においてもBGO検出器が十分に機能したことがわかる。

図32: Beam ON(左)とOFF(右)でのBGOサプレッションの効果(6MeV付近)。上の線(赤色)はサプレッションの前、下の線(青色)はサプレッションの後を表す。
2.5 Trigger system

ここでは、本実験におけるトリガーシステムを、入射および散乱粒子をトリガーカウンターによって判別する「1st level trigger」と、1st level triggerを通った事象をさらにゲルマニウム検出器からの信号により選別する「2nd level trigger」、入射粒子とは無関係に、ゲルマニウム検出器の信号のみから作られる「Test trigger」の3つに分けて説明する。

2.5.1 1st level trigger

1st level triggerを作るトリガーカウンターは、IT、IC1、IC2、FC、FV、BTの6種類ある。入射粒子からK⁻、π⁻中間子を選ぶためのトリガー条件はそれぞれ、

\[K_{\text{beam}} = IT \cdot IC1 \cdot IC2 \]
\[\pi_{\text{beam}} = IT \cdot IC1 \cdot IC2 \]

である。
一方、散乱粒子からK⁻、π⁻中間子を選ぶためのトリガー条件は、

\[K_{\text{scat}} = FC \cdot FV \cdot BT \]
\[\pi_{\text{scat}} = FC \cdot FV \cdot BT \]

である。ここで、BTは40本のシンチレータからの信号に対し、論理和をとる。
これらのうち、\(K_{\text{beam}} \)と\(\pi_{\text{scat}} \)から、\(K\pi \)トリガー

\[K\pi = K_{\text{beam}} \cdot \pi_{\text{scat}} \]

を作る。実験期間中、この\(K\pi \)トリガーのトリガーレートは、700 Hz程度であった。
また、我々は、\(K\pi \)トリガー以外にもテスト用のトリガーとして、IT、\(IT \cdot BT \)、
\(K_{\text{beam}} \)、\(\pi_{\text{beam}} \)など、いくつかのトリガーについてプリスケールした後、\(K\pi \)トリガーと並行してデータ収集している。これらのトリガーは、次に述べる2nd level triggerの対象にはなっていない。
2.5.2 2nd level trigger

本実験では、グルマニウム検出器の ADC については FERA で読みだし、それ以外の信号については FASTBUS を用いて読み出している。2nd level trigger は、1st level trigger において $K\pi$ トリガーと判定された事象の中から、グルマニウム検出器の ADC に有効な値がない場合に FASTBUS のデータをクリアする信号を送るためのものである。2nd level trigger system の概略図を図 33 に示す。実際にクリアする信号を送るのは、次の条件を満たした事象に対してである。

1. 全てのグルマニウム検出器から CRM 信号が出力されなかった事象
2. FERA による読みだし K\pi トリガーから 7 \mu sec 以内に完了した事象

1 は $K\pi$ トリガーに対して ±1 \mu sec の範囲内に、どのグルマニウム検出器からも γ 線が検出されなかったということを意味する。これは、ADC のトリガーを作る段階において $K\pi$ トリガーと全てのグルマニウム検出器からの CRM 出力の論理和 (CRM OR) とのコインシデンスを取ることによって判別される。1 に当てはまった事象に対しては、グルマニウム検出器の ADC に gate が作られない。

2 は、グルマニウム検出器の ADC の値がオーバーフロー領域であった場合に、データ処理にかかる時間が短いことを利用したものである。7 \mu sec 以内に処理が完了した事象については、全てのグルマニウム検出器からの ADC の値が、オーバーフロー領域にあるか否かであるかどちらかであり、その事象についてはグルマニウム検出器の ADC に有効な値がないというえる。CAMAC Crate 内で、最後に読み出されるモジュールの読みだし方が完了した際に出力される信号と、幅を 7 \mu sec に広げた $K\pi$ トリガーのコインシデンスを取り、これに当てはまった事象に対し、FASTBUS をクリアする信号を作ると。

図 33: 2nd level trigger のダイアグラム
2.5.3 Test trigger

Test trigger は、主にゲルマニウム検出器のモニターと、エネルギー校正を目的としたトリガーである。このトリガーにはシンクロトロンの運転サイクル内で、ビームが出ている時間 (spill on) に発生するトリガーと、出ていない時間 (spill off) に発生するトリガーの 2 種類が用意されているため、両者を比較することで、ビームの影響によって、ゲルマニウム検出器の性能に変化がないか調べることができるようになっている。

spill on のトリガーは、ゲルマニウム検出器の ADC を読み出すための FERA システムが要するデータ処理時間が、FASTBUS のデータ処理時間よりも 1 構速い事を利用する。2nd level trigger 後に生き残った事象に対し、FERA の読みだし終了後、FASTBUS のデータ処理が終了するまでの間に Test gate を設け、これと CRM OR とのコインシデンスをとることによって test trigger が作られるため、Kπ などのビームに起因するトリガーによるデータ収集を邪魔しないようになっている。一方、spill off のトリガーは、spill off の間に設けられた Test gate と CRM OR とのコインシデンスで作られる。

Test trigger は、spill on/off とともに、FERA によって処理される、ゲルマニウム検出器の ADC に対してのみ有効である。それ以外の FASTBUS によって処理されるデータは読み出さない。ゲルマニウム検出器の TDC や BGO 検出器のデータは、FASTBUS によって処理されているため、測定することはできない (図 28)。

ビームオン/オフでのゲルマニウム検出器の性能の比較は、メインの DAQ システムとは別途に用意された、ゲルマニウム検出器のモニターシステムによってもなされている。このシステムについては次節で述べることにする。
2.6 データ収集系とゲルマニウム検出器モニターシステム

2.6.1 ゲルマニウム検出器モニターシステム

ゲルマニウム検出器モニターシステムの主な目的は、ビームオンとオフで比較したときのゲルマニウム検出器の相対検出効率を測定することである。このシステムでは、各ゲルマニウム検出器の近くに設置された60Co線源を埋め込んだプラスチックシンチレーションカウンターにより観測したβ線と、ゲルマニウム検出器で観測したγ線の同時計数事象をとることにより、60Co線源のγ線を効率よく測定する。こうして作られたトリガーはビームオン/オフによって計数率が変化しない。このトリガーによって検出した60Co線源からのγ線をビームオン/オフで比較することにより、検出効率のビームオン/ビームオフ比を測定する。このプラスチックシンチレーションカウンターは、ゲルマニウム検出器に対し、図29の位置に取り付けられている。

モニターシステムで行っているのは、主にゲルマニウム検出器のADCスペクトルとTDCスペクトルの測定、およびCAMAC scalerを用いたreset rateとCRM rateの測定である。これにより、相対検出効率だけでなくエネルギー分解能やピークの位置の時間変化についても測定することができる。また、ゲルマニウム検出器内の液体窒素が切れて温度が上昇し始めると、結晶に流れるリークカレントが増加するため、reset rateもそれに応じて増える。このため、モニターシステムを用いてreset rateを継続的に測定することで、液体窒素が切れていないかどうかについてモニターすることができる[24]。

このモニターシステムを本実験のデータ収集中につけに働かせ、相対検出効率などをモニターし続けた。

図34: 60Co線源を埋め込んだプラスチックシンチレーションカウンター
2.6.2 データ収集系

今回の実験で我々のグループで開発したデータ収集システムの概観図を図35に載せた。データはFASTBUS及びFERAの各crateから、イベント毎にVME memory moduleに送られる。このmemory moduleは、大阪大学のグループによって開発されたもので、1台につき4メガバイトのメモリを持ち、読み出したデータにヘッダやフッタを付加する役割を果たす[30]。1 spill分のデータは、一旦全てmemory moduleに蓄えられ、CAMAC scalerのデータとともにspill offの間にLinux PCに転送される。読み出されたデータはDVD RAMに書き込まれる一方、Ethernet経由で、オンライン解析用Linux PCに送られる。このとき記録されるデータの構造は図36の様になっている。ここで1 recordとは、Linux PCが一度に読みだすデータ、すなわち1 spill分のデータである。一つのrecordは、表7にのせたsubrecordにより構成される。これらの一、FASTBUSまたはFERAのsubrecordでは、event recordという単位で各モジュール毎にデータを整理している。

我々は、このようなにして収集されたデータの解析に「IDA(Interactive Data Analyzer)」と呼ばれるプログラムを用いた。このプログラムは、これまでVMS上で用いられていたが、今回の実験に際してLinux上で動作するように移植をおこなった。

モニターシステムのデータ収集系はこれとは全く独立で、別のADCやTDCをもつCAMACからUNIDAQシステムによって別のLinux PCに読み込まれた。

図 35: データ収集システム概観
図 36: 記録されるデータの構造

<table>
<thead>
<tr>
<th>Subrecord ID</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>0110E930</td>
<td>Record Header</td>
</tr>
<tr>
<td>012nE930</td>
<td>FASTBUS crate n data</td>
</tr>
<tr>
<td>013nE930</td>
<td>FERA data n</td>
</tr>
<tr>
<td>0140E930</td>
<td>CAMAC data</td>
</tr>
<tr>
<td>0150E930</td>
<td>Begin run record</td>
</tr>
<tr>
<td>0160E930</td>
<td>Pause run record</td>
</tr>
<tr>
<td>0170E930</td>
<td>Resume run record</td>
</tr>
<tr>
<td>0180E930</td>
<td>End run record</td>
</tr>
<tr>
<td>0181E930</td>
<td>End run scaler record</td>
</tr>
</tbody>
</table>

表 7: Subrecord ID の一覧
§3 データ解析

3.1 解析の方針

ここでは解析の手順を、スペクトロメータについては3.2節、Hyperballについては3.3節と、分けて説明する。また、バックグラウンドとなる事象を作る原因と、その最終的に残る量については3.4節で議論し、3.5節では生成したハイパー核が静止する前にγ線を放出した場合を想定して行なう、ドップラー補正について述べる。

3.2 スペクトロメータの解析

スペクトロメータの解析は、TOFカウント間の時間差測定のデータと、ドリフトチェンバーによる位置測定のデータを用いて行なわれる。ここでは、$K\pi$トリガーとして選ばれた事象から、次のような条件によってイベントの選別を行う。

1. 入射粒子がK^-の中間子であること (3.2.1)
2. 散乱粒子の軌道が正しく再構成できていること (3.2.2)
3. 散乱粒子がπ^-の中間子であること (3.2.3)
4. ターゲット位置において反応が起こっていること (3.2.4)
5. 測定したいγ線を放出するハイパー核の状態が生成されていること (3.2.7,3.2.8)

次節から、これらについて詳細な説明をする。また、3.2.5節と3.2.6節では、ハイパー核の束縛エネルギーを求める際に必要な、運動量スケールの補正とエネルギー損失の補正について述べることにする。
3.2.1 入射粒子の TOF 測定

入射 \(K^- \) 中間子の選択は、チェレンコフカウンターによってトリガーの段階で
なされている。しかし、2.2.2 節で見たように、チェレンコフカウンターの特性上、
この選択は完全なものにはなりえない。より正確に \(K^- \) 中間子を選ぶためには、
MT-IT 間の TOF 測定によって得られる時間差の情報を用いる必要がある。図 37
は、\((K^-,\pi^-) \) トリガーの事象に対して MT-IT 間の TOF を測定した結果である。
横軸の値、\(\Delta TOF \) の単位は nsec で、\(K^- \) 中間子の時間差の中心値が 0 となるよう
に定義されている。

このときの \(K^- \) 中間子に対する時間分解能は、1 nsec 程度 (FWHM) であり、図
37 の境界線に示した通り、我々は

\[-1.5 \text{nsec} < \Delta TOF < 2.0 \text{nsec}\]

の事象に対して、入射粒子が \(K^- \) 中間子であると判断した。

図 37: MT-IT 間の TOF(\(K\pi \) トリガー) 図 38: MT-IT 間の TOF(IT トリガー)
3.2.2 粒子の軌道再構成

入射および散乱粒子の軌道を再構成することにより、運動量、飛行距離、散乱角、および反応点について知ることができる。

入射粒子の軌道再構成は、AGS D6 ビームラインのダイポールマグネット (D3) と、D3 の上流に置かれた 72 本の幅 7 mm のシンチレーションカウンタ (MP)(図 12 参照)、および D3 の下流に位置するドリフトチエンバー (ID1, ID2, ID3) によって行なう。

一方、散乱粒子の軌道は、48D48 スペクトロメータによって再構成する。散乱粒子の軌道計算は、始めに粒子の通った座標を各ドリフトチエンバー (FD1, FD2, FD3, BD1, BD2) につき 1 点決定し、その後、これと測定された磁場マップをもとにルンゲクッタ法を用いて行なう。

ルンゲクッタ法では、まず 5 つのパラメータ (1/p, x, y, cos θx, cos θy) を用意し、粒子の位置における磁場マップの値を用いて運動方程式を解く。その後、少しずつ座標を進めながら、その位置の磁場の値を用い、繰り返し運動方程式を解くことによって軌道を計算する。軌道の再構成が十分良好的精度で行なわれたかを判断するために、

\[\chi^2 = \frac{1}{n-5} \left(\chi^2_x + \chi^2_y \right) \]

\[\chi^2_x = \sum_{i=1}^{5} H_i \left(\frac{x_{i,\text{measured}} - x_{i,\text{fitted}}}{\omega_{xi}} \right)^2 \]

\[\chi^2_y = \sum_{i=1}^{5} H_i \left(\frac{y_{i,\text{measured}} - y_{i,\text{fitted}}}{\omega_{yi}} \right)^2 \]

を計算し、\(\chi^2_y \) が最小となるようにパラメータを変えながら軌道計算を繰り返す。
ここで i は各ドリフトチェンバーを表し、

$$ n = \sum_{i=1}^{5} H_i $$

$$ H_i = \begin{cases}
1 & : i \text{番目のチェンバー上で、粒子が通過した座標を決定できたとき} \\
0 & : i \text{番目のチェンバー上で、粒子が通過した座標を決定できなかったとき}
\end{cases} $$

x_i^{measured} : 粒子が i 番目のチェンバーの中心面を通過した時の x 座標の測定値

y_i^{measured} : 粒子が i 番目のチェンバーの中心面を通過した時の y 座標の測定値

x_i^{fitted} : 再構成した軌道が i 番目のチェンバーの中心面を通過した時の x 座標の計算値

y_i^{fitted} : 再構成した軌道が i 番目のチェンバーの中心面を通過した時の y 座標の計算値

ω_{ix} : i 番目のチェンバーの x 方向の位置分解能

ω_{iy} : i 番目のチェンバーの y 方向の位置分解能

である。

解析の際に、散乱粒子に対して明らかによい渦道が得られていない事象を除外するため、χ^2 の大きな事象はカットする必要がある。図 39 は、最終的な渦道計算の結果として得られた χ^2 の分布である。解析の現段階においては、ドリフトチェンバーの設置位置などにいまだに調整不足な点があるため、十分によい渦道が得られているとはいえないと明らかに収束しない事象のみを除外するよう考慮して、

$$ \chi^2 < 600.0 $$

の事象を選んだ。
図 39: $K\pi$ トリガーの事象に対する χ^2 分布

3.2.3 散乱粒子の質量測定

散乱粒子の中から π^- 中間子を選ぶためには、質量の測定を用いる。これは、散乱側の粒子は様々な経路と運動量をとり得るために、TOF の測定だけでは粒子判別が困難なためである。散乱粒子の質量は、

$$M_{\text{scattered}} = \frac{V}{\beta} \sqrt{1 - \beta^2}$$

(10)

なので、散乱粒子の運動量 p と、速度 β を測定すれば良いことになる。

散乱粒子の軌道を再構成することにより粒子が IT-BT 間を移動した距離 ΔL がわかる。一方で、IT-BT 間の TOF から、移動にかかった時間 ΔT がわかるため、この 2 つの値から β を求めることができる。

このようにして求められた、散乱粒子の質量 ($M_{\text{scattered}}$) が図 40 である。図 37 と同様、$K\pi$ トリガーの事象に対しての結果であり、エアロジェルチェレンコフカウンター FC によって π^- 中間子を選択しているにもかかわらず、K^- 中間子が残っていることがわかる。これは、δ 線などの影響により、FC の光電子増倍管からの信号が K^- 中間子に対して値を越えたためと思われる。また、K^- 中間子の崩壊過程 ($K^- \rightarrow \mu^- \bar{\nu}_\mu$) によって生じる μ^- は、π^- と μ^- の質量差が小さいために ($m_\pi=0.14 \text{ GeV}/c^2$, $m_\mu=0.106 \text{ GeV}/c^2$) 分けることができない。

散乱粒子として $\pi^-(\mu^-)$ 中間子を選ぶための条件は、

$$0.01 \text{ GeV}/c^2 < M_{\text{scattered}} < 0.35 \text{ GeV}/c^2$$

とした。
図 40: $K\pi$ トリガーに対する散乱粒子の質量スペクトル

3.2.4 反応点による事象の選別

ID1、ID2、ID3 から求めた入射粒子の軌跡と、FD1、FD2、FD3、BD1、BD2 から求めた散乱粒子の軌跡から、(K^-,π^-) 反応の起こった反応点を求めることが可能である。

反応点の情報は 3.5 節に述べるように、ゲルマニウム検出器のドップラー補正をする際に重要である。図 41 は16O ターゲットに対する反応点の分布である。16O と10B のそれぞれのターゲットに対して明らかにターゲット領域以外で反応が起こった事象を除くため、反応点 X_{vertex}、Y_{vertex}、Z_{vertex} を表 8 の条件で限定して事象の選択を行なった。

<table>
<thead>
<tr>
<th>ターゲット</th>
<th>X_{vertex}の範囲 (cm)</th>
<th>Y_{vertex}の範囲 (cm)</th>
<th>Z_{vertex}の範囲 (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16O</td>
<td>$-4.0 < X_{\text{vertex}} < 4.0$</td>
<td>$-1.8 < Y_{\text{vertex}} < 2.2$</td>
<td>$-10.0 < Z_{\text{vertex}} < 26.24$</td>
</tr>
<tr>
<td>10B</td>
<td>$-4.44 < X_{\text{vertex}} < 3.56$</td>
<td>$-1.2 < Y_{\text{vertex}} < 0.8$</td>
<td>$-2.5 < Z_{\text{vertex}} < 7.5$</td>
</tr>
</tbody>
</table>

表 8: 反応点による事象の選択条件
図 41: 16O 標的での反応点分布（上段：水平方向、中段：垂直方向、下段：進行方向）
K^- 中間子の崩壊による事象は除去した。

3.2.5 運動量に対する補正

ターゲットを置かない状態で、ビームの K^- 中間子に対して入射側と散乱側のスペクトロメータで軌道の再構成を行い、得られた運動量の差をみることからスペクトロメータ全体としての分解能を知ることができる。現段階の解析結果として図 42 が得られた。これによると、スペクトロメータの運動量分解能は、

$$\text{FWHM} = 11.7 \text{MeV}/c$$

であることがわかる。

図 42 を見ると、運動量の絶対値について入射側のスペクトロメータから得た値と散乱側のスペクトロメータから得た値とで相違がある事がわかる。これは、ドリフトチェンバーの幾何学的配置や磁場分布の不確かさによって生じるものであり、ハイパー核の束縛エネルギーを計算するには、この差をオフセットとして加
えることが必要となる。このオフセットは、入射側に加えた場合と散乱側に加えた場合とでは近似的に同等である [24]。しかし、ここではより誤差が大きいと予想される散乱側スペクトロメータから得られた運動量の絶対値にオフセットとして

\[p_{\text{offset}} = 20.0 \text{ MeV}/c \]

を加えることにした。

図 42: 入射側と散乱側のスペクトロメータで測った運動量の差の分布。スペクトロメータの運動量分解能の目安を与える。
3.2.6 エネルギー損失の補正

2.2.3 節で述べたように、今回の実験で用いたターゲットは厚いため、ターゲット中でのエネルギー損失が大きくなってしまう。今回の解析ではこの量に対して補正を行うため、LEPS プログラム (Low Energy Particle Simulator)[31] によるシミュレーションを用いた。エネルギー損失 $\frac{dE}{dx}$ は、運動量が 930 MeV/c の K^-、π^- 中間子が、厚さ 1 cm のターゲット中で失う量として評価した (表 9)。このエネルギー損失の値から、運動量損失の値を求めるには、

$$\Delta p_{K^-} = \frac{1}{\beta_{K^-}} \cdot \frac{dE}{dx} \cdot \Delta L_{K^-} \quad (11)$$

$$\Delta p_{\pi^-} = \frac{1}{\beta_{\pi^-}} \cdot \frac{dE}{dx} \cdot \Delta L_{\pi^-} \quad (12)$$

を用いた。ここで、β_{K^-} と β_{π^-} は、軌道再構成の結果から得た運動量の値と、K^-、π^- 中間子の質量によって求め、粒子がターゲット中を通った距離 ΔL_{K^-}、ΔL_{π^-} は、軌道の再構成で得られた反応点と運動量の方向ベクトルから求めた。

このようにして得た運動量損失の値を用いて補正することにより、反応点での運動量を求める。

<table>
<thead>
<tr>
<th>ターゲット</th>
<th>K^- 中間子のエネルギー損失</th>
<th>π^- 中間子のエネルギー損失</th>
</tr>
</thead>
<tbody>
<tr>
<td>16O</td>
<td>2.13 MeV/cm</td>
<td>1.94 MeV/cm</td>
</tr>
<tr>
<td>10B</td>
<td>4.62 MeV/cm</td>
<td>4.24 MeV/cm</td>
</tr>
</tbody>
</table>

表 9: ターゲットに置けるエネルギー損失の補正量
3.2.7 散乱角による生成したハイパー核の状態の選別

測定したいγ線を放出する状態を選ぶための1つめの方法は、散乱角による事象の選別である。2.2.2節でも述べたように、(K^-,π^-) 反応によって生成したハイパー核のエネルギー準位のうち、移動運動量 $\Delta L=1$ となるものについては、散乱角が大きい事象の方が散乱断面積が大きい（図44）。そのため、注目したいγ遷移を引き起こす状態を選ぶために、散乱角によって事象の選択を行うことは効果的である。

図43は、(K^-,π^-) 反応での散乱角分布である。ここでは、散乱角の大きい事象はFVによってトリガーの段階で抑制されている。また、この図では反応点によるカットで、ターゲット領域で反応した事象を選択している。

今回の実験で測定することを目的とした状態と、散乱角による事象選別の条件は表10の通りである。

![Scattering Angle(degrees) vs. Counts](image1)

図43: (K^-,π^-) トリガーの事象に対する散乱角分布

![Cross section (μb/str)](image2)

図44: ^{16}O の各状態に対する生成散乱断面積の角度依存性的計算値 [27]

<table>
<thead>
<tr>
<th>選択するハイパー核の状態</th>
<th>散乱角によるカットの条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{16}\Lambda(p^{-1}p\Lambda)$</td>
<td>$0^\circ \leq \theta \leq 8^\circ$</td>
</tr>
<tr>
<td>$^{16}\Lambda(p^{-1}s\Lambda)$</td>
<td>$6^\circ \leq \theta$</td>
</tr>
<tr>
<td>$^{16}\Lambda B(p^{-1}s\Lambda)$</td>
<td>$4^\circ \leq \theta$</td>
</tr>
</tbody>
</table>

表10: 散乱角による事象選別の条件
3.2.8 ハイパー核の束縛エネルギーによる状態の選別

測定したいγ線を放出する状態を選ぶためのもうひとつの方法は、スペクトルメータによって得た情報から、ハイパー核の束縛エネルギー \(B_\Lambda \) を計算することで行なう。束縛エネルギーを計算するには、まず入射粒子と散乱粒子の軌道の再構成で得られる運動量ベクトルに前節までに述べた補正を加えた結果である \(p_{K^-}, p_{\pi^-} \) から、missing massとして、ハイパー核の質量 \(M_{hyp} \) を求める。このハイパー核の質量は

\[
M_{hyp} = \sqrt{(E_{K^-} + M_A - E_{\pi^-})^2 - |p_{K^-} - p_{\pi^-}|^2} \tag{13}
\]

で与えられる。ここで \(E_{K^-}, E_{\pi^-} \) は、それぞれ \(K^-、\pi^- \) 中間子の全エネルギー、\(M_A \) はターゲット原子核の質量である。束縛エネルギーは、\(M_{hyp} \) の値と、\(\Lambda \) 粒子の質量 \(M_A \)、およびハイパー核の \(\Lambda \) 粒子以外の部分からなるコア原子核の質量 \(M_{core} \) を用いて、

\[
-B_\Lambda = M_{hyp} - M_{core} - M_A \tag{14}
\]

と計算される。

測定した束縛エネルギーの絶対値は、ターゲット中でのエネルギー損失等の影響によりシフトし得る。そのため、測定したいγ線を放出する励起状態が生成された事象を選択する際には、散乱角の大小、\(\theta < 4^\circ \)の事象について測定した励起エネルギースペクトルの中で最もカウント数の多い位置を、\((K^-、\pi^-)\)反応によって散乱角の小さい領域に生成しやすいsubstitutional state(\(p_n^{-1}p_A \))の位置とみなし、そこから過去の実験データにより知られている状態間の間隔を用いて他の状態の存在する領域を見積もるという方法をとった。2種類のターゲットについて状態の間隔を見積もるための基準としたのは、\(^{16}\text{O}\)については1.3.1節で述べたCERNの実験[13]と、KEKのE336実験の結果[22]であり、\(^{10}\text{B}\)については、1.3.2節で述べたBNLの実験結果[18]である。

散乱角の小さな事象のみを選んだ時の、\(^{16}\Lambda\text{O} \)と\(^{10}\Lambda\text{B}\)の束縛エネルギーのスペクトルが図45と図46である。ここでは3.3節で述べるガメマニウム検出器に適用するカット条件も用いている。図45、図46には、観測したいγ線を放出する\(^{16}\Lambda\text{O}\)と\(^{10}\Lambda\text{B}\)の励起状態の束縛エネルギー\((-B_\Lambda)\)を示した。斜線はそれぞれの状態を選ぶために選択した範囲であり、表11はその値である。

<table>
<thead>
<tr>
<th>選択するハイパー核の状態</th>
<th>選択した束縛エネルギーの範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{16}\Lambda\text{O}(p^{-1}p_A))</td>
<td>(0.0 \text{ MeV} \leq -B_\Lambda \leq 30.0 \text{ MeV})</td>
</tr>
<tr>
<td>(^{16}\Lambda\text{O}(p^{-1}s_A))</td>
<td>(-12.5 \text{ MeV} \leq -B_\Lambda \leq -7.5 \text{ MeV})</td>
</tr>
<tr>
<td>(^{10}\Lambda\text{B}(p^{-1}s_A))</td>
<td>(-29.0 \text{ MeV} \leq -B_\Lambda \leq -9.0 \text{ MeV})</td>
</tr>
</tbody>
</table>

表11: ハイパー核の状態を選ぶための束縛エネルギー\((-B_\Lambda)\)の範囲
図 45: 16O の束縛エネルギー。散乱角 4°以下、ゲルマニウム検出器の ADC が 2000 keV 以上の事象を選択した。矢印は測定したいγ線を放射する状態の位置を示し、斜線は選択範囲を示す。ここでは $-B_A$ のゼロ点は補正していない。

図 46: 10B の束縛エネルギー。散乱角 4°以下、ゲルマニウム検出器の ADC にヒットがあった全ての事象を選択した。矢印は測定したいγ線を放射する状態の位置を示し、斜線は選択範囲を示す。ここでは $-B_A$ のゼロ点は補正していない。
3.3 Hyperballの解析

Hyperballの解析の内容は、ゲルマニウム検出器のADCによって得られたデータから、バックグラウンド事象を取り除くことと、エネルギー校正を行い、各ゲルマニウム検出器からのデータを足しあわせることである。ここでは、まず最初にゲルマニウム検出器による測定に伴って生じる不正確なデータを取り除くために用いた手段について3.3.1節で述べる。その後、3.3.2節で、BGO検出器によるサプレッションに用いた事象選別の条件について説明し、最後に、3.3.3節で各ゲルマニウム検出器のADCスペクトルのエネルギー校正について述べる。

3.3.1 ゲルマニウム検出器の解析

TDCによるカット

ゲルマニウム検出器のADCゲートを作るには、CRM信号と$K\pi$トリガーのコインシデンスをとる。このコインシデンスの幅は1μsec程度あるため、オフライン解析でTDCによる時間ゲートを設定して偶然同時計数によるバックグラウンドを減らす必要がある。ゲルマニウム検出器の時間分解能は、検出されたγ線のエネルギーに依存するので、時間ゲートの幅はADCとTDCの相関を見て設定した（図47）。ゲルマニウム検出器に用いたTDCは最大16hitまで記録できるマルチヒットTDCであるため、判定条件は「設定された領域内に少なくとも1hit以上あること」となる。

ここでTDCの時間ゲートを決めるために用いた関数形は、

$$TDC = a_1 e^{-a_2(ADC)} + a_3(ADC) + a_4(ADC)^2$$ (15)

である。

時間ゲートの幅は、各ゲルマニウム検出器に対して、別々に設定されているが、γ線のエネルギーと時間ゲート幅の関係は、典型的な値として表12のようになっている。ここで、選んだγ線のエネルギー領域は注目したハイパー核からのγ線が検出されると予想される領域に対応する。

<table>
<thead>
<tr>
<th>γ線のエネルギー</th>
<th>時間ゲートの幅</th>
<th>偶然同時計数事象の割合</th>
</tr>
</thead>
<tbody>
<tr>
<td>0〜500 keV</td>
<td>560〜160 nsec</td>
<td>≃ 11.9 %</td>
</tr>
<tr>
<td>1500〜3000 keV</td>
<td>110〜90 nsec</td>
<td>5.9 %</td>
</tr>
<tr>
<td>5000〜7000 keV</td>
<td>≃ 75 nsec</td>
<td>6.4 %</td>
</tr>
</tbody>
</table>

表12: γ線のエネルギーとゲルマニウム検出器の時間ゲート幅
図 47: ゲルマニウム検出器の ADC-TDC 相関と TDC の時間ゲート曲線

図 48: γ線のエネルギー領域毎のゲルマニウム検出器の TDC スペクトル
パイルアップの除去

2.3.2 節でも述べたように、ゲルマニウム検出器の ADC に用いた Ultra High-rate Amp. の信号の長さは 3 μsec 程度あるため、計数率が高い場合に pileup によって ADC の値が狂い、バックグラウンドの量が増加する。これを取除くには、Multihit TDC を用いて時間測定を行なっている Timing Filter Amp. の信号を用いて、同一のゲルマニウム検出器に対し、その信号の前後 3 μsec 以内にもう一つの信号があった場合にそれを排除すればよい。ただし、プリアンプの特性によって、TFA の信号は、1つの信号に対し、その後 0.5～1.5 μsec に渡ってサテライト信号を伴う場合があるため、これについては排除しないようにしなければならない。以上のことを踏まえて、pileup を取除くための領域を、図 49 の様に設定した。この条件によって排除される事象の割合は、TDC の時間ゲートに hit があった事象に対し、5 ～ 10% 程度である。

図 49: pileup を排除するため、別のヒットがないことを要求する時間範囲

Reset 直後のイベントの除去

Hyperball に用いられているゲルマニウム検出器は、トランジスタリセット型のプリアンプを採用している。2.3.1 節で既に述べたように、このプリアンプの使用は高エネルギー高計数率の条件下での実験には不可欠であるが、リセッテ後の 10～20 μsec の不感時間は避けることができない。この間に測定されたデータは正確な値を持たないため、これを排除する必要がある [19]。リセット後の TFA の出力信号をオシロスコープでみると、図 50 のように、reset 後の数十 μsec に渡ってベースラインが変動している。この信号をもとにして、各ゲルマニウム検出器毎に除去する幅を設定した。TDC の時間ゲートに信号があった事象に対し、この条件によって除かれた事象の割合は 2％程度である。

図 50: TFA により増幅された reset 信号

55
3.3.2 BGO 検出器の解析

BGO 検出器によるサプレッションの目的とその効果については、2.3.3 節で述べた。ここではBGO 検出器にhit があったかどうかを判定するための、TDC の時間ゲートについて述べる。

BGO 検出器の時間ゲートの幅は、図 51 のように、200 nsec に設定した。これは、BGO 検出器がゲルマニュウム検出器と同時にヒットした事象をほぼ全て含むように設定した幅である。

時間ゲートが広いため、測定すべき事象に対して BGO 検出器が偶然同時計数による信号を検出した場合、ゲルマニュウム検出器の光電ピークに現れる事象を減らしてしまう。200 nsec の時間ゲート内の BGO ヒットが含む偶然同時計数の割合を見積もるには、その数が時間に依存しないとみなし、TDC スペクトルのピークから十分離れた領域で、解析に用いた時間ゲートと同じ時間幅に入った事象の数を測定し、比較すれば良い。ただし、BGO 検出器では、1 光子の事象でも TDC で測定できるように閾値を低く設定しているため、1 つの事象に対して、Multihit TDC に複数のhit がある場合が多い。こういった場合を考慮して、時間ゲート内に 2hit 以上あった場合、2 番目以降の信号については数えないで比較する。この様にして求めたバックグラウンドの割合は 25.0±0.3 % 程度である。

図 51: BGO TDC の時間ゲート
3.3.3 エネルギー校正

14台のゲルマニウム検出器により検出された信号は、エネルギーの校正を行なうことによって足し合わせて用いることができるようになる。各ゲルマニウム検出器のエネルギー校正には、^{60}Co、^{152}Eu、$^{244}\text{Cm}+^{13}\text{C}$の3種類の線源と、天然に存在するバックグラウンドを用いた。エネルギー校正に用いたγ線のエネルギーの一覧を表13に挙げる。

本来$^{244}\text{Cm}+^{13}\text{C}$は、中性子線源として用いられる。この線源は、$^{244}\text{Cm}$がα崩壊し、その後$^{13}\text{C}+\alpha\rightarrow^{16}\text{O}^*+n$という過程によって中性子を放出する。我々が用いたのは、このとき作られる^{16}Oの励起状態が放出するγ線である。

エネルギー校正曲線は、これらのγ線のエネルギーと測定値をもとに、3次関数によって決定した。エネルギーの校正がうまくいっていることを確認するためには、$(K^-,,\pi^-)$反応によって生じたγ線のうち、そのエネルギーが既知のものを用いて評価すれば良い。ここでは、^{16}Oから直接放出されたものではない、(n,n')反応によるγ線を見る。これは、^{16}Oの励起エネルギーの非常に高い領域（$B_A<−65\text{ MeV}$）を選択することにより測定できる。実験期間全体に渡って、全てのゲルマニウム検出器で測定したデータを足し合わせた結果として、図52のようなスペクトルが得られ、表14に示すように、多数ののγ線を同定することができた。

エネルギー校正の精度を悪化させる要因としては、気温の変化などの影響で、アンプのゲインが時間変化する問題や、ビーム強度の変化でピークシフトが発生する問題がある。これらの問題に対しては、2.6節で述べたゲルマニウム検出器モニターシステムによって実験期間を通じてゲイン変動を測定した。図52で測定された結果から、エネルギーの系統誤差は$\pm 1\text{ keV}$程度であることがわかる。

<table>
<thead>
<tr>
<th>線源</th>
<th>γ線のエネルギー (keV) [32]</th>
</tr>
</thead>
<tbody>
<tr>
<td>e^+e^-</td>
<td>511.0</td>
</tr>
<tr>
<td>^{152}Eu</td>
<td>964.08</td>
</tr>
<tr>
<td>^{44}Ti</td>
<td>1157.03</td>
</tr>
<tr>
<td>^{60}Co</td>
<td>1173.24</td>
</tr>
<tr>
<td>^{60}Co</td>
<td>1322.50</td>
</tr>
<tr>
<td>^{152}Eu</td>
<td>1408.01</td>
</tr>
<tr>
<td>^{152}Eu</td>
<td>1528.10</td>
</tr>
<tr>
<td>^{208}Ti</td>
<td>2614.0</td>
</tr>
<tr>
<td>$^{244}\text{Cm}+^{13}\text{C}$</td>
<td>5107.9</td>
</tr>
<tr>
<td>$^{244}\text{Cm}+^{13}\text{C}$</td>
<td>5618.9</td>
</tr>
<tr>
<td>$^{244}\text{Cm}+^{13}\text{C}$</td>
<td>6128.63</td>
</tr>
</tbody>
</table>

表13: ゲルマニウム検出器のエネルギー校正に用いたγ線
<table>
<thead>
<tr>
<th>エネルギー測定値 (keV)</th>
<th>線源</th>
<th>γ 線のエネルギー (keV)</th>
<th>コメント</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>Bi X-ray(Kα)</td>
<td>511.0</td>
<td>High energy tail</td>
</tr>
<tr>
<td>88</td>
<td>Bi X-ray(Kβ etc.)</td>
<td>511.0</td>
<td>High energy tail</td>
</tr>
<tr>
<td>511</td>
<td>e⁺e⁻</td>
<td>511.0</td>
<td></td>
</tr>
<tr>
<td>596</td>
<td>⁷⁴Ge</td>
<td>608.35</td>
<td></td>
</tr>
<tr>
<td>609</td>
<td>⁷⁴Ge</td>
<td>630</td>
<td></td>
</tr>
<tr>
<td>629</td>
<td>¹⁰B</td>
<td>718.35</td>
<td></td>
</tr>
<tr>
<td>717</td>
<td>⁷²Ge</td>
<td>834.01</td>
<td></td>
</tr>
<tr>
<td>834</td>
<td>²⁷Al,⁵⁶Fe</td>
<td>843.7, 846.8</td>
<td></td>
</tr>
<tr>
<td>846</td>
<td>²⁰⁹Bi,⁷²Ge</td>
<td>894.28, 894.26</td>
<td></td>
</tr>
<tr>
<td>895</td>
<td>²⁷Al</td>
<td>1014.4</td>
<td></td>
</tr>
<tr>
<td>1013</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>1020</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>1039</td>
<td>⁷⁰Ge</td>
<td>1204</td>
<td></td>
</tr>
<tr>
<td>1202</td>
<td>⁷⁴Ge</td>
<td>1238.3</td>
<td></td>
</tr>
<tr>
<td>1238</td>
<td>⁵⁶Fe</td>
<td>1333.2</td>
<td></td>
</tr>
<tr>
<td>1333</td>
<td>⁶⁰Co</td>
<td>1368.6</td>
<td></td>
</tr>
<tr>
<td>1368</td>
<td>²⁴Mg</td>
<td>1483</td>
<td></td>
</tr>
<tr>
<td>1409</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>1435</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>1482</td>
<td>⁷⁴Ge?</td>
<td>1608.5</td>
<td></td>
</tr>
<tr>
<td>1608</td>
<td>²⁰⁹Bi</td>
<td>1630</td>
<td></td>
</tr>
<tr>
<td>1635</td>
<td>¹⁴N</td>
<td>1808.6, 1810.8</td>
<td>broad</td>
</tr>
<tr>
<td>1808</td>
<td>²⁶Mg, ⁵⁶Fe</td>
<td>2211.0</td>
<td></td>
</tr>
<tr>
<td>2212</td>
<td>²⁷Al</td>
<td>2313</td>
<td></td>
</tr>
<tr>
<td>2312</td>
<td>¹⁴N</td>
<td>3004</td>
<td></td>
</tr>
<tr>
<td>2599</td>
<td>⁵⁶Fe, ²⁰⁹Bi?</td>
<td>3004</td>
<td></td>
</tr>
<tr>
<td>2682</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3002</td>
<td>²⁷Al?</td>
<td>3674</td>
<td></td>
</tr>
<tr>
<td>3472</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3658</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3681</td>
<td>¹⁴N</td>
<td>3854</td>
<td></td>
</tr>
<tr>
<td>3854</td>
<td>¹³C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4399</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5236</td>
<td>¹⁵O</td>
<td>5239.9</td>
<td></td>
</tr>
<tr>
<td>5269</td>
<td>¹⁵N</td>
<td>5269.161</td>
<td></td>
</tr>
<tr>
<td>6128</td>
<td>¹⁶O</td>
<td>6128.63</td>
<td></td>
</tr>
<tr>
<td>6183</td>
<td>¹⁸O</td>
<td>6176.3</td>
<td>broad</td>
</tr>
</tbody>
</table>

表 14: 図 52 のスペクトルで観測された γ 線のエネルギー

58
3.4 バックグラウンド

$(K^-\pi^-)$ 反応との同時計数で、ガルマンイウム検出器による測定を行う場合、K^-中間子の崩壊事象により生じるバックグラウンドが問題になる。

K^-中間子が、ターゲットの領域で

- $K^-\rightarrow \mu^-\bar{\nu}_\mu$
- $K^-\rightarrow \pi^-\pi^0$

の過程により崩壊した場合、散乱側のスペクトロメータによりπ^-やμ^-が検出されることがある。π^-とμ^-は質量が近いため、これらの崩壊事象を区別することはできず、スペクトロメータの解析では、どちらも$(K^-\pi^-)$反応が起こった事象とみなしてしまう。図53は、スペクトロメータの解析で$(K^-\pi^-)$反応を選んだ後で^{16}Oターゲットを仮定して計算した、^{16}Oの束縛エネルギーと散乱角の相関である。これをみると、$(K^-\pi^-)$反応として選別された事象の中に、上記の2つの崩壊過程による事象が混ざっていることがはっきりとわかる。

3.2.8節で見たように、ガルマンイウム検出器によるγ線スペクトルは、ハイバー核の束縛エネルギーによって適切な領域を選ぶと、これにあてはまった事象に対して作るため、選択した領域に含まれるK^-中間子の崩壊による事象は、測定したγ線スペクトル中に含まれるバックグラウンドの量を増やす。

2.3.3節でも述べたように$K^-\rightarrow \pi^-\pi^0$の過程では$\pi^0$中間子が崩壊する過程で大量の$\gamma$線を放出する。バックグラウンドとなるのは、オモガルマニウム検出器がこれらのγ線を検出したときである。既に述べたように、これらの検出器には、BGO検出器を用いてサブレッションを行うことによってかなりの数を削減できる。

一方、$K^-\rightarrow \mu^-\bar{\nu}_\mu$の過程からは、ガルマンイウム検出器で検出できる粒子は放出されないので、ここで問題となるのは、偶然同時計数によるバックグラウンドで
ある。
図 54 は、図 53 に対してゲルマニウム検出器および BGO 検出器を用いて事象の選択をしたものである。ゲルマニウム検出器の ADC では、偶然同時計数の少ない 2 MeV 以上の領域に hit があった事象を選んでいる。これを見ると、K^- 中間子の崩壊による事象がほとんどなくなっていることが分かる。

図 53: スペクトロメータにより選択した (K^-, π^-) 反応に対する B_Λ と散乱角の相関

図 54: 図 53 に対してゲルマニウム検出器のヒット (2 MeV 以上) を要求し、BGO 検出器によるサプレッションを行った後の B_Λ と散乱角の相関
3.5 ドップラー補正

生成したハイパー核が、静止する前にγ線を放出した場合、ドップラー効果によってエネルギーの測定値にずれが生じる。ハイパー核が標的に中で減速するより十分に速くγ線が放出される場合には、ドップラー効果はスペクトロメータにより測定したK⁻、π⁻の運動量ベクトルと、反応点の情報、および各ゲルマニウム検出器の位置座標からイベント毎に補正することができる。ドップラー補正後のγ線のエネルギーは、

\[E_{\gamma}^{\text{corrected}} = E_{\gamma}^{\text{measured}} \cdot (1 - \beta \cos \theta) \]

と表すことができる。

ここで\(\beta \)は、生成したハイパー核の速度で、\(\gamma = 1 / \sqrt{1 - \beta^2} \)、\(\theta \)はハイパー核の進行方向とγ線が放出された方向のなす角度である。\(\gamma \)線が放出された方向は、そのγ線を検出したゲルマニウム検出器の結晶の中心の座標と、スペクトロメータの解析で得られる反応点の座標を結ぶことで得られる（図55）。また、\(\gamma \)線は質量が0であるため、補正すべき割合は放出されたγ線のエネルギーにはならない。

ドップラー補正は、生成したハイパー核の速度ベクトルを用いて行っているため、\(^{16}_\Lambda \text{O}(^{10}_\Lambda \text{B}) \)起因ではないγ線に対しては正しい補正の結果が得られず、かえってピークの幅が広がることになる。また、生成したハイパー核の状態がγ線を放出するまでの寿命が長い場合、ハイパー核の速度が減速、あるいは静止してからγ線を放出することになるために、γ線のエネルギーは広がらないので、ドップラー補正は不要である。

今回の実験の主要な目的である\(^{16}_\Lambda \text{O} \)のM1遷移（\(1^-_2 \rightarrow 0^- \), \(1^-_2 \rightarrow 1^-_1 \))は十分に速く、\(1^-_2 \)状態の寿命が反跳を受けた\(^{16}_\Lambda \text{O} \)の減速時間（数psec）に比べて十分に短いと予想されるため、ドップラー補正は有効なはずである。
§ 4 結果と考察

4.1 16\(^{16}\)O の基底状態スピン 2 重項

図56は、今回の実験によって得られた\(\gamma\)線スペクトルである。ここで、事象の選別は、3章で述べた方法により行なった。上段と中段の図では、観測したい\(\gamma\)線を放出する\(p^{\text{1}}_{3/2}\)の状態を選ぶために、\(16\)\(^{16}\)O の励起エネルギースペクトルから束縛エネルギーが、

\[-12.5 \text{ MeV} < -B_{\Lambda} < 7.5 \text{ MeV} \quad (17)\]

の事象を選んだ。これは、3.2.8節でも述べたように\(16\)\(^{16}\)O の substitutional state の位置を基準にして励起状態（1\(^{1}\)）の位置を見積もることによって設定した範囲である。また、3.2.7節で述べたように\(p^{\text{1}}_{3/2}\)の状態は\(L=1\)の反応により生成されるので、散乱角が大きい事象を選んだ方が効率が高い。ここでは

\[\theta > 6\degree \quad (18)\]

の事象を選んでいる。

上段はドップラー補正を行なう前のスペクトルであり、中段は補正後のものである。ここで \(E_{\gamma} \sim 6600 \text{ keV}\) の位置にあるピークのみがドップラー補正により幅が細くなっていることが確認できる。

ドップラー補正で細くなるのは\(16\)\(^{16}\)O が放出した\(\gamma\)線のみである。この\(\gamma\)線が 6 MeV 付近に観測されたという事実と合わせると、測定したピークは\(16\)\(^{16}\)O の励起状態（1\(^{1}\)）からの\(\gamma\)線であることがいえる。

観測されたピークがハイバー核から放出されたものであるか判定するもう一つの方法は、束縛エネルギーの異なる領域から観測されたスペクトルとの比較を行ううことである。下段のスペクトルでは測定した\(16\)\(^{16}\)O の束縛エネルギーが、

\[-B_{\Lambda} > 65.0 \text{ MeV} \quad (19)\]

という、非常に高い励起エネルギーに対応する事象を選択している。この領域には、ビーム粒子が\(\Lambda\)粒子の準自由生成を起こして標的核の核子をたき出す事象や、ビーム粒子が標的やビームライン周辺にある物質と反応し、崩壊した核から出て来た陽子や中性子が（n,n') 反応や (p,p') 反応などを引き起こして通常核の励起状態を作る事象が多数含まれている。よってこの領域を選択した場合、ビームに起因したバックグラウンドとなる\(\gamma\)線が多く観測されることになる。ここでは 6128 keV に観測した\(\gamma\)線が\(16\)O(n,n') によるものであることと、6176 keV に観測した\(\gamma\)線が\(15\)O(n,n') によるものであることが同定できる。一方で、上の 2 つのスペクトルで確認できる 6600 keV 付近のピークは明らかに存在しない。

以上のことから、6600 keV 付近のピークは\(16\)\(^{16}\)O の\(1^{2}\)状態か放出されたものであると言うことができる。
図 56: ^{16}O 標的による測定で得られた ^{16}O からの γ 線スペクトル (preliminary)。
図 57: ^{16}Oの基底状態 2 重項を 2 つのガウス関数と 1 次関数によって fit した結果 (preliminary)。

図 58: ^{16}Oの基底状態 2 重項を 1 つのガウス関数 (FWHM = 23.5 keV で固定) と 1 次関数によって fit した結果 (preliminary)。

次に、観測された^{16}Oからのγ線に対する評価を行ない、基底状態のスピン 2 重項、1_{1}^{+}と 0_{1}^{+}の間隔を調べる必要がある。間隔について議論するには、まずドッパラー補正の精度を検証し、補正後のピークの幅を見積もりなければならない。ドッパラー補正の精度は、主にガルマニウム検出器の結晶の大きさと反応点の位置分解能によって決まる。実際に測定されるピークの形は、ガウス関数にドッパラー効果の影響が加わった形状をしており、解析では、後者を補正しているものの、最終的に得られるピークの形はガウス関数にはならない [19]。ドッパラーシフトの影響を考慮した関数は、シミュレーションにより予想できる。しかし、現段階で解析はそこまで進んでおらず、この問題は今後の課題として残されている。

ここでは、非常に大雑把ではあるが、生成したハイパー核の進む方向に対して垂直な方向でγ線が観測された場合のドッパラー補正の精度を見積もってみる。

まず、γ線の放出される方向と測定装置の方向がなす角 θ の持つ系統誤差を見積もる。測定した反応点の z 方向の位置分解能を 3 cm(FWHM)程度 (図 41 から予想される値) とし、ガルマニウム検出器の結晶の直径が 7 cm、ガルマニウム検出器
と標的の距離が 10 cm 程度であることを考えると、\(\theta \) は最大で \(\pm 25^\circ \) 程度の系統誤差をもつことがわかる。ハイパー核の進む方向に対して垂直な方向で \(\gamma \) 線が観測されたと仮定すれば、\(\theta \approx 90 \pm 25^\circ \) である。実際にはゲルマニウム検出器の配置上の理由から、\(\gamma \) 線の放出方向は 90°を中心にした分布になるはずである。よって、

\[|\Delta \cos \theta| = |\sin \theta \Delta \theta| \lesssim \Delta \theta \]

次にハイパー核の速度 \(\beta \) を見積もる。図 56 で、\(^{16}\text{O} \) からの \(\gamma \) 線のピークに対応する事象を選択し、スペクトロメータから得られる \(\beta \) を計算してみた結果、図 59 が得られた。このうち、\(\beta \) の大きい成分は \(\gamma \) 線ピークに含まれるバックグラウンド事象に対応するものと考えて、\(\beta \approx 0.012 \pm 0.002 \) と見積もった。

ここで、式 (16) に対する誤差を考えると、

\[
dE(\beta(\cos \theta), \cos \theta) = \sqrt{(\frac{\partial E}{\partial \beta})^2 (d\beta)^2 + \left(\frac{\partial E}{\partial \beta} \frac{\partial \beta}{\partial (\cos \theta)} + \frac{\partial E}{\partial (\cos \theta)} \right)^2 (d(\cos \theta))^2}
\]

\[
\sim |E \beta \gamma \Delta (\cos \theta)| \lesssim E \beta \gamma \Delta \theta
\]

といえる。これにより、ドップラー補正後のピークの幅は 30 keV 程度と見積もることができる。

図 57 は、ドップラー補正後のスペクトルにおいて \(^{16}\text{O} \) からの \(\gamma \) 線と同定したピークを 2 つのガウス関数と直線で fit したものである。ここで 2 本の \(\gamma \) 線に対するピークの幅は等しいと考えた。fitting により得られた位置と幅は、表 15 である。ここで得られた幅 23.5 ± 5.0 keV は、先程の見積もりと比べてほぼ一致している。

これにより、2 つのピーク位置の差として

\[
\Delta E(1^- \rightarrow 0^-) = 26.5 \pm 4.3 \text{ keV} \quad (20)
\]

というもの値が得られた。
図 59: $6500 \text{ keV} < \text{Ge ADC} < 6600 \text{ keV}$ の事象に対する ^{16}O の速度分布

このピークが 2 つのピークからなることに対する有有意性を確かめる目的で、エネルギー分解能が 23.5 keV の 1 つのガウス関数と直線により fit を行ない（図 58）、2 つのガウス関数で行なった fit との間で χ^2 を比較した（表 16）。この結果をもとに χ^2 検定を行なうと、1 つのガウス関数での fit は有意水準 10% で棄却できる。ただし、ここではピーク幅を 23.5 keV と固定しており、ピーク幅がより広い場合には有意性が下がる可能性がある。

1.3.1 節でも述べたように、理論による計算では $1^-_2 \rightarrow 1^-_1$ と $1^-_2 \rightarrow 0^-$ の遷移確率の比は後者の方が高い。ここで行なった fitting が正しいとすると、今回の結果から 1^-_1 の状態が 0^- の状態よりも大きいエネルギー準位を占めていることになる。

<table>
<thead>
<tr>
<th>No</th>
<th>assignment</th>
<th>peak position</th>
<th>FWHM</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>$1^-_2 \rightarrow 1^-_1$</td>
<td>6538.2 ± 7.8 keV</td>
<td>23.5 ± 5.0 keV</td>
</tr>
<tr>
<td>#2</td>
<td>$1^-_2 \rightarrow 0^-$</td>
<td>6564.8 ± 8.9 keV</td>
<td>23.5 ± 5.0 keV</td>
</tr>
</tbody>
</table>

表 15: $^{16}\text{O}(1^-_2 \rightarrow 0^-_1)$ と $^{16}\text{O}(1^-_2 \rightarrow 1^-_1)$ に対する fit の結果。幅は 2 つのピークに対して同じ値を与えた (preliminary)。

<table>
<thead>
<tr>
<th>fit した関数</th>
<th>χ^2/自由度</th>
<th>fitting の自由度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 つのガウス関数と直線</td>
<td>1.24</td>
<td>52</td>
</tr>
<tr>
<td>2 つのガウス関数と直線</td>
<td>0.82</td>
<td>49</td>
</tr>
</tbody>
</table>

表 16: 2 つのガウス関数による fit と 1 つのガウス関数による fit の χ^2 の比較 (preliminary)。
4.2 $^{15}_A N$ の基底状態スピン2重項

$^{15}_A N$ は、$^{16}_A O$ の substitutional state が陽子を放出して崩壊することにより生成する。$^{15}_A N$ からの γ 線を測定するために、$^{16}_A O$ の励起エネルギースペクトルから、束縛エネルギーが

$$0.0 \text{ MeV} < -B_A < 30.0 \text{ MeV} \quad (21)$$

の領域を選ぶ。また、$\Delta L = 0$ の substitutional state は、図 44 に示すように、散乱角の小さいところで生成しやすいので、散乱角

$$\theta < 8^\circ \quad (22)$$

の事象を選択した。

γ 線のスペクトルを図 60 に示す。前節と同様、上段と中段は、ドップラー補正をおこなう前と後で、選択した束縛エネルギーの領域での γ 線スペクトルを比較したものである。下段は非常に高い励起エネルギーに対応する事象を選んだ場合の γ 線スペクトルである。substitutional state を選択した上の 2 つの図では、非常に高い励起エネルギー領域において強く観測されている $^{14}_N (0^+; T = 1 \rightarrow 1^+)$ の 2313 keV の γ 線が減少し、非常に高い励起エネルギー領域でほとんど観測されていない 2250 keV 付近と 2440 keV 付近にピクが現れているのがわかる。よって、この 2 つのピークは $^{15}_A N$ から放出された γ 線である可能性が高い。

ドップラー補正の結果と比較することで観測したピークを評価してみる。$^{15}_A N$ の生成過程では $^{16}_A O$ から陽子を放出するために、γ 線を放出する $^{15}_A N$ の進行方向がスペクトルメータにより測定した $^{16}_A O$ の進行方向と異なってしまう。このため、ドップラー補正は完全には働かない。しかし、($K^-\pi^-$) 反応による事象は、陽子のエネルギーが小さいため、陽子放出による速度方向のずれはそれほど多くはなく、部分的にドップラー補正の効果がある。図 60 で上段の図と中段の図を比較すると、先程挙げた 2 つのピークのほかに、1600 keV 付近にもピークを見ることができる。これら 3 つのピークはドップラー補正によって幅は広がっているが、他の事象と比較すると補正後の方がピークを認識しやすくなっているため、いずれも $^{15}_A N$ からの γ 線であると同定できる。

これら 3 つのピークがそれぞれどの遷移に対応するかについては注意が必要である。ここでは、$^{15}_A N (1/2^+; T = 1)$ から放出される 2 本の γ 線に対して遷移確率を計算した結果では 1/2$^+$、$T = 1 \rightarrow 1/2^+$ と 1/2$^+$、$T = 1 \rightarrow 3/2^+$ の比率は後者の方が高いことから、図 60 に示したように 1600 keV 付近に観測された γ 線が $^{15}_A N (1/2^- \rightarrow 1/2^+; T = 1)$、2250 keV 付近に観測された γ 線が $^{15}_A N (1/2^+; T = 1 \rightarrow 3/2^+)$、2440 keV 付近に観測された γ 線が $^{15}_A N (1/2^+; T = 1 \rightarrow 1/2^+)$ の状態間の遷移であると考えするのが最も単純な同定であろう。

しかし、$^{15}_A N (1/2^+; T = 1 \rightarrow 3/2^+$, 1/2$^+$, $T = 1 \rightarrow 1/2^+$) の γ 遷移はどちらも同じ状態からの遷移であるため、ドップラー効果による広がりも同じはずである。図 60 で、2250 keV 付近に観測されたピークと 2440 keV 付近に観測されたピークを比較すると、前者の方が幅が狭い。また、基底状態 2 重項への分岐比について
も9:1になるという予想もあり、$^{15}_{\Lambda}N(1/2^+; T = 1 \rightarrow 1/2^+_1)$ は観測できない可能性もある。これらの問題については、現段階ではっきりとしたことは言えない。

図60: ^{16}O 標的による測定で得られた$^{15}_{\Lambda}N$からのγ線スペクトル (preliminary)。
図 61: $^{15}_\Lambda N$ の γ 線スペクトルのフィッティング (preliminary)。

<table>
<thead>
<tr>
<th>No</th>
<th>tentative assignment</th>
<th>peak position</th>
<th>FWHM</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>$1/2^+; T = 1 \rightarrow 3/2^+$</td>
<td>2268.5 ± 1.12 keV</td>
<td>26.8 ± 2.8 keV</td>
</tr>
<tr>
<td>#2</td>
<td>$1/2^+; T = 1 \rightarrow 1/2^+$</td>
<td>2440.0 ± 1.56 keV</td>
<td>19.4 ± 3.6 keV</td>
</tr>
</tbody>
</table>

表 17: $^{15}_\Lambda N$ の 2 つのピークのフィッティングの結果 (preliminary)。

$^{16}_\Lambda O$ の γ 線ピークに対して行なったのと同様に、$^{15}_\Lambda N$ の 2 つの γ 線ピークに対しても 2 つのガウス関数と 1 次関数の和による fitting を試みた。そこで、ドップラー補正後のスペクトルに対して $^{14}_\Lambda N(2313$ keV) の γ 線は補正により広がるため、バックグラウンドと区別できないものと仮定した。

fitting により得られたピーク位置とエネルギー分解能を、表 17 に載せる。ここで、2 つのピークが表 17 のように同定できると仮定すれば、

$$\Delta E(3/2^+ \rightarrow 1/2^+) = 171.5 \pm 1.9$$ keV (preliminary) (23)

が得られる。

$M1$ 遷移の場合、状態間の間隔が 100 keV を切ると、$M1$ 遷移の寿命が、ハイバー核の崩壊寿命よりも長くなるため、γ 線を放出しにくくなる。したがって、$^{16}_\Lambda O$ の場合は基底状態のスピン 2 重項間の遷移を直接観測することは不可能であった。しかし、$^{15}_\Lambda N$ の場合は間隔が広いため、スピン 2 重項間の遷移を直接測定することができるはずである。この遷移が観測されると予想したエネルギー領域の γ 線スペクトルを図 61 に示した。上段は、$^{15}_\Lambda N$ の substitutional state を選んだときのスペクトルである。この領域では、生成した状態が γ 線を放出するまでの寿命が長いため、ハイバー核は静止してから γ を放出する。この場合、ドップラー効果の影響は考える必要がないので、ドップラー補正はしていない。また、下段は非常に高い励起エネルギー領域のヒストグラムである。これらからは $^{15}_\Lambda N$ の基底状態 2 重項間を直接遷移する γ 線は確認できなかった。しかし、エネルギーの低い領域では偶然同時計数によるバックグラウンドが増えることや、エネルギー
図 62: $^{15}_N$ の substitutional state の領域 (上) と、非常に高い励起エネルギーの領域 (下) で観測された低いエネルギーのγ線。

校正に用いた点が少ないため、その線形性に問題があるなど、今後より注意深い解析が必要となる部分が多い。そのため、今回の段階ではっきりとした結論を出すことはできない。
4.3 $^{10}_{\Lambda}B$の基底状態スピン2重項

目的としている$^{10}_{\Lambda}B$のスピン2重項間の$M1$遷移は数百keV以下のエネルギーをもつと予想されている。$^{10}_{\Lambda}N$の基底状態2重項間の遷移を調べた際に述べたと同様に、この領域では、実験室の近くを通る、放射化した冷却水の^{15}Oの$s^+\beta^+$崩壊や、ビーム起因の電子対生成で生じる511keVのγ線が作る偶然同時計数によるバックグラウンド事象が多い。3.4節で述べたように、$K\pi$トリガーの中にはK^-中間子の崩壊事象が多数含まれる。バックグラウンドのγ線はこれらの崩壊事象に対しても一様に検出されるため、図63に示すような散乱角と束縛エネルギーの2次元プロット上でK^-中間子の崩壊事象を判別できる領域ではバックグラウンド事象の割合が多くなる。このため、S/N比を良くする目的でK^-中間子の崩壊事象の領域を切り取ることで、バックグラウンドの割合を大幅に減らすことができるので図63で、左側が除去前、右側が除去後である。ただし、この方法では特定の散乱角において本物の事象も一部除かれてしまうという問題がある。

図63: K^-中間子の崩壊事象によるバックグラウンドの除去（左:除去前、右:除去後）。

$^{10}_{\Lambda}B$のΛ粒子がs軌道に入った状態に対応する励起エネルギーの範囲は、$^{16}_{\Lambda}O$に対して行なった様にsubstitutional stateの位置から過去の実験データを用いて推定し18)、

$$ -29 \text{ MeV} < -B_{\Lambda} < 9 \text{ MeV} $$

を選んだ。

上記のバックグラウンドの除去を行なった後、この領域において散乱断面積の大きい、散乱角が

$$ \theta > 5^\circ $$

の事象を選んだときに得られたγ線のエネルギースペクトルが図64の上段である。先程も述べたように、この領域ではドップラー補正の効果はないため、行なわな
かった。下段は

\[-B_\Lambda > 40 \text{ MeV}\] \quad (26)

の非常に高い励起エネルギー領域を選択したときのスペクトルである。

現段階では、^{10}Bの基底状態と重項間の遷移に対応するγ線を同定することはできなかった。結論は、今後のより詳しい解析の結果で議論しなければならない。

図 64: ^{10}B標的による測定で得られたγ線スペクトル (preliminary)。
4.4 テンソル力の大きさの導出

p-shell ハイパー核のエネルギー準位に対する、ΛN 間のスピン-スピン力(Δ)、スピン-軌道力(S_N, S_A)、テンソル力(T)の寄与について調べた Millener の核模型による計算 [2] では、これまでの実験によって測定されたデータを再現するように 1 章で述べた 4 つのパラメータを決定し、

$$\Delta = 0.432, \quad S_A = -0.010, \quad S_N = -0.380, \quad T = 0.021 \text{ (MeV)} \quad (27)$$

という値が提案されている。ここで、Δ, S_A, S_N の値は実験値に基づいている。しかし、これまでの実験ではテンソル力についての情報は得られておらず、上記の T の値は、ΛN 相互作用のメソン交換模型から予想される値をもとに仮定している。本実験では、これを決定することが目的であった。このため、テンソル力以外に対するパラメータに、上式の値を用いて、実験値を再現するようなテンソル力の大きさを求めてみる。

Millener の計算によると、$^{16}_\Lambda O$ の基底状態の分岐幅は

$$E(1^-) - E(0^-) = -0.387\Delta + 1.382S_A - 0.005S_N + 7.820T \quad (28)$$

と書くことができる。

本実験により得られた $^{16}_\Lambda O$ の基底状態 2 重項の間隔が約 26 keV であることを用いて ΛN 間のテンソル力の大きさを計算すると、

$$T \sim 0.03 \text{ MeV} \quad (29)$$

が得られる。

同様の方法により、$^{15}_\Lambda N$ の基底状態 2 重項の間隔からもテンソル力の大きさについて計算できる。$^{15}_\Lambda N$ の基底状態の分岐幅は

$$E\left(\frac{3^+}{2}\right) - E\left(\frac{1^+}{2}\right) = -0.758\Delta + 2.252S_A - 0.048S_N + 9.886T \quad (30)$$

と与えられる。4.2 節で述べた $^{15}_\Lambda N$ の γ 線の仮の同定が正しく、$^{15}_\Lambda N$ の基底状態の分岐幅が 170 keV 程度であるとすると、

$$T \sim 0.05 \text{ MeV} \quad (31)$$

という値が得られる。

ここで得られた結果は、どちらも Nijmegen のメソン交換模型を用いた ΛN 相互作用の予想値 ($T = 0.02 \sim 0.06$) と比較して同程度である。
§5 まとめ

本研究では、(K^-,π^-) 反応により生成した$^{16}_A O$、$^{15}_A N$ および$^{10}_A B$ から放出される\(\gamma\)線をハイパー核研究用ゲルマニウム検出器システム、Hyperball を用いて測定し、これまでの実験方法では不可能であった$^{16}_A O$ と$^{15}_A N$ の基底状態スピン 2 重項の間隔を測定することを目的とした。

解析は現在も進行中であり、ドップラー補正の精度に対する評価など、いまだに不十分な点はもあるものの、実験データから$^{16}_A O$ の基底状態 2 重項への \(\gamma\) 遷移、\(M1(1^- \rightarrow 1^-)\) と \(M1(1^- \rightarrow 0^-)\) が 6530 keV 〜6570 keV のエネルギー領域に観測された。また、$^{15}_A N$ からの \(\gamma\) 線は約 1600 keV、約 2270 keV、約 2440 keV の 3 つを観測した。これらの \(\gamma\) 線は観測段階で正確には同定できなかったが、約 2270 keV の \(\gamma\) 線は \(M1(1/2^+; T = 1 \rightarrow 3/2^+)\)、約 2440 keV の \(\gamma\) 線は \(M1(1/2^+; T = 1 \rightarrow 1/2^+)\) と考えた。

結果として、基底状態 2 重項の間隔について、$^{16}_A O$ では約 30 keV であることがわかった。また、$^{15}_A N$ については上記の \(\gamma\) 線の同定が正しいとすると、間隔が約 170 keV であることがわかった。これは \(\Lambda N\) 間のテンソル力の大きさについての初めての実験結果であり、ここからテンソル力の大きさが、0.03 MeV \(\lesssim T \lesssim 0.05\) MeV であることが導き出された。この結果は、Nijmegen のメゾン交換模型を用いた \(\Lambda N\) 相互作用の予想値と同程度である。

$^{15}_A N$ の基底状態 2 重項間の遷移 \(M1(3/2^+ \rightarrow 1/2^+)\) と、$^{10}_A B$ の基底状態 2 重項間の遷移 \(M1(2^- \rightarrow 1^-)\) については、現在解析中である。

この論文で述べたすべての結果は preliminary である。現在も解析は進行中であり、今後の研究でより詳しい検証を行う必要がある。
謝辞

橋本 治 教授には、私に非常に興味深い研究テーマと研究の機会を与えていただき、とても感謝しています。また、有益なアドバイスの数々には感謝の念が絶えません。

私の指導教官である田村 裕和 助教授には、本研究を行ううえにあたり最もお世話になりました。研究を行う上での質問のみならず、日常的な事にも親身になって数多くの助言をして頂き、心より感謝しています。

谷田 聖 博士、発知 英明 博士には長期に渡る BNL での実験期間中有益なことをたくさん教えて頂きました。また、慣れない海外での生活をいろいろサポートして頂きました。本当にありがとうございます。

中村 哲 助教授、高橋 俊行 博士、藤井 優 博士には、この研究をまとめるにあたり、様々な良い助言をして頂きました。大変感謝しております。また、橋本研究室の皆様には、大変多くの協力をして頂きました。ありがとうございます。

特に鶴養 美冬 氏、水沼 克人 氏には、BNL での日常生活を含め、いろいろ御迷惑をお掛けしたと思います。

京都大学の秋川 藤志 氏、高橋 仁 氏には、お忙しい中、この実験のために協力して頂いた事を大変ありがたく思っています。

味村 周平 博士、早川 知克 氏他、本実験に参加して頂いた大阪大学の皆様には、心より感謝致します。

I would like to express my thanks to Prof. M. May, Dr. R.E. Chrien, Prof. P. Pile, Dr. A. Rusek, and Dr. D.J. Millener for valuable discussions and advice. During our experiments, I was helped by many BNL person. I also thank all of them.

また、ここには書ききれませんが、非常に多くの方々が BNL-E930 実験に参加してくださいました。この実験がすばらしい成果を挙げることができたのは皆様の数多くの助力の結果だと思っています。本当にありがとうございます。

最後に、つねに私を支えてくれる両親に、心からの感謝を述べたいと思います。ありがとうございます。
参考文献

76

