
PhD Thesis

Experimental study for spectroscopy of Ξ−-atomic X rays

(Ξ−原子X線分光の実験的研究)

Manami Fujita

Graduate School of Science, Department of Physics,

Tohoku University

2019



Abstract

This thesis describes a first pioneering study on exotic atoms containing Ξ−, one of hyperons

with two strange quarks. The Ξ− atomic X-ray spectroscopy is one of the useful ways to obtain

information on the Ξ-nuclear interaction. The shift of the X-ray energy (∆E) from the energy by

the Coulomb interaction only and the width of the X-ray peak depend on the depth of a real and

imaginary parts of the Ξ−-nuclear potential. The experimental methods and the procedure of data

analysis for the Ξ− atomic X-ray spectroscopy experiment are discussed in this thesis.

The most of produced Ξ−s decay before stopping and cause a huge background. The key of

experiments to measure X rays with good significance is to select Ξ−-stop events cleanly and two

methods were developed. In method 1, Ξ−-stop events are identified in the developed nuclear

emulsion image. And in method 2, the Ξ− with a large stop probability at the target is selected

using information of the Ξ− momentum.

The J-PARC E07 experiment, which aims at searching for double-Λ hypernuclei, was performed

at the J-PARC K1.8 beam line in 2016 and 2017. In the experiment, X-ray measurement of Ξ−C,

Ξ−Ag, and Ξ−Br atoms was also performed at the same time. Ξ−s were produced in a diamond

target via the (K−, K+) reaction and then detected using the nuclear emulsion. By emulsion image

analysis, the Ξ− atoms, as well as double-Λ hypernuclei were searched for. The Ξ− atomic X rays

were measured by the array of germanium (Ge) detectors, called Hyperball-X. The analysis of the

(K−, K+) reaction by the magnetic spectrometers and analysis of the Ξ− track by silicon strip

detectors predicted the position where Ξ− hit at the emulsion surface. This is called a counter-

emulsion hybrid method. In this method, the prediction by counters shortened the time for the

emulsion image analysis.

By coincidence of the Ξ−-stop events selected by the emulsion image analysis and the X-ray hits

by Hyperball-X analysis, the Ξ−Ag and Ξ−Br atomic X-ray spectrum was obtained. At present,

analyzed data correspond to 20% of the estimated total σ-stop yield. No evident peaks were found

in the expected X-ray regions. The background level was evaluated to be 0.17+0.57
−0.10 in 1 keV around

the 370-keV region. When the emulsion image analysis is completed, an expected X-ray yield of

the Ag(8J → 7I) transition will be 7.75 counts for σ-stop events and S/
√
N would be 4.56 in the

±2σ peak region.

As a byproduct, the Ξ−C atomic X-ray spectrum was obtained by coincidence analysis of the

(K−, K+) reaction and Hyperball-X. The X ray of the 12C(3D → 2P ) transition was searched

for, but no evident peak with 3σ significance was found. Then, the branching ratio that Ξ− in

the 3D orbit was absorbed by the nucleus due to the Ξ−-nuclear interaction was constrained from

the upper limit of the X-ray yield. This limit was compared to the theoretical calculation using

the Woods-Saxon type optical potential. It was found that the experimental sensitivity was not

sufficient to constrain the imaginary part of the Ξ−-nuclear potential. More improvements, for
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example optimization of the target thickness and detector developments to reject contamination

of the background, are needed in the future experiment.

From this research, the method of Ξ− atomic X-ray spectroscopy was established and the

present sensitivity was shown. If the data is acquired for a double period using a larger Ge array

with 3 times efficiency of Hyperball-X, a statistical error will be improved to be comparable with

a systematic error and the energy shift would be measured with 100-eV accuracy.
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Chapter 1

Introduction

This thesis describes a pioneering study on exotic atoms containing Ξ−, one of hyperons with two

strange quarks. In this chapter, basic explanations on the ΞN and Ξ-nuclear interactions with

Ξ−-hypernuclei and Ξ−-atoms are given. Then, introduction of Ξ− atomic X-ray spectroscopy is

described.

1.1 Nuclear and hypernuclear physics

A baryon is a fermion consisting of three quarks. Nuclei are formed of nucleons via the strong

interaction, and various matter consists of atoms. Understanding the strong interaction leads to

understanding the formation and the diversity of matter.

The nucleons (N), namely protons and neutrons, consist of only up and down quarks, and

they have almost the same properties except for their charge. Thus a proton and a neutron can

be considered to be identical particles that differ only in the z component of isospin. They are

described by isospin vectors which are orthogonal to each other. That is, nucleons are expressed

in the isospin 2-dimensional special unitary group SU(2). The N-N interaction can be understood

under the isospin SU(2) symmetry.

Of six kinds of quarks, consider the light three, up, down and strange quarks. Assuming the

masses of u, d and s quarks are the same, they can be considered as the identical particles except

for the difference in the quantum number of flavor. A baryon consisting of these quarks is expressed

by flavor 3-dimensional special unitary group SU(3). The baryons which contain strange quarks

such as Λ, Σ, Ξ, are called hyperons (Y).

Nucleons and hyperons, are classified into the octet with spin 1/2 and the decuplet with spin

3/2. The baryon octet is represented using the axes for charge (Q) and for strangeness (S) as

shown in Fig. 1.1. Protons and neutrons classified as S = 0 had been investigated by numerous

scattering experiments. On the other hand, scattering experiments with the hyperons are difficult

due to their short lifetime of the order of 100 ps. Researches on the S = −1 systems, such as

Λ hypernuclei and Σ hypernuclei, have progressed at KEK, BNL, J-PARC, JLab and MAMI. In

2
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particular, spectroscopy of Λ hypernuclei has been well studied as reviewed in [1]. Information on

the ΛN interaction has been obtained from such experimental researches together with theoretical

studies. Σ-hypernulear state was searched for by the reaction spectroscopy experiment at KEK-

PS via the (π−, K+) reaction and it was found that the Σ−N interaction was repulsive [4]. ΣN

interaction was also investigated by Σ− atomic X-ray spectroscopy (see Subsection 1.3.2 ). On the

other hand, for the ΞN interaction, the experimental data are especially limited.

Figure 1.1: The baryon octet with spin-parity 1/2+

1.2 Physics of ΞN interaction

Ξ− particle is one of hyperons which contains two strange quarks, and its mass is 1321.71 ± 0.07

MeV/c2 and lifetime is 163.9 ± 0.015 ps [2]. In this section, the purpose of investigation for ΞN

interaction and past experiments are described.

1.2.1 Motivation

The Y-N interaction should be investigated to understand the baryon-baryon interactions under

the flavor SU(3) symmetry, As described above, ΛN and ΣN interactions are better known than

ΞN interaction. For the S = −2 sector with Ξ−(dss) and Ξ0(uss) hyperons, the small cross section

of Ξ production makes experiments difficult. For this reason experimental studies on S = −2

system such as Ξ− hypernuclei and Ξ− atoms are extremely limited so far even though they are

essential for the general understanding of the baryon-baryon interaction.

In addition, research on Ξ−-nucleon interaction would give important information for under-

standing neutron stars. A neutron star, which has a radius of about 10 km and a density of 1012

kg/cm3, is produced after a supernova explosion and mainly it is composed with neutron. In such

high density matter, some neutrons occupy high-lying orbits because they cannot occupy the same

orbit with others due to the Pauli blocking. In such a situation, to reduce a fermi energy, some of

the neutrons are expected to convert to other particles which are not affected by the Pauli blocking
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of nucleons. As described in ref. [3], Λ and Ξ− hyperons are the candidates. The understanding

for ΞN interaction gives us information that whether Ξ−s exist or not in neutron stars.

1.2.2 Past experiments on the ΞN interaction

In the past experiments for investigation of ΞN interaction, a Ξ− particle can be produced using

the (K−, K+) reaction which is a double charge and double strangeness exchange reaction.

The (K−, K+) reaction itself had been studied in order to clarify various possible processes.

At Lawrence Radiation Laboratory, the production of Ξ− and Ξ−∗ hyperons and their decay were

studied in the experiment using a hydrogen bubble chamber. Not only the processes with two

particles in the final states such as K+Ξ−, K+Ξ−∗, but also three-particle states such as K+Ξ−π0

and K+Ξ0π− were identified by their trajectories. The cross section and the angular distribution

of each process were reported [5]. At KEK E176, for study of the (K−, K+) reaction, a nuclear

emulsion was used to record trajectories of charged particles [6][7]. At KEK-PS E224, using

scintillation fiber detector, productions of scaler and vector mesons (f0/a0/ϕ) via the (K−, K+)

reaction were studied [8]. According to Ref. [9], the cross section of the elementary process depends

on K− momentum pk in laboratory frame and the cross section peaks around pk(lab) = 1.8 GeV/c

in forward angles.

The Ξ− bound systems, namely, Ξ− hypernuclei or Ξ− atoms, were produced in two ways using

the (K−, K+) reaction. The first way is to produce a Ξ− hypernucleus directly by replacing a

proton in a nucleus with a Ξ−. The second one is to stop a Ξ− in material and make a Ξ− atom.

Since Ξ− is negatively charged, it replaces an electron in an outer orbit and forms Ξ− atom, which

is similar to other exotic atoms such as µ−, p̄, π−, K− and Σ−-atoms. The captured Ξ− cascades

down to inner orbits while emitting Auger electrons and X rays. At the end, it is absorbed by a

nucleus via the strong interaction between the Ξ− and the nucleus. Both of these two ways can

provide information of the Ξ-nuclear potential. Overview of the past experiments and the outcome

of the present study on the Ξ-nuclear potential are explained in the following.

Mass spectroscopy of Ξ− hypernuclei by a direct production

The first way is to produce Ξ− hypernuclei directly via the (K−, K+) reaction. The mass spec-

troscopy of hypernuclei with S = −2 using magnetic spectrometers was performed as KEK-PS

E224 [10] and AGS E885 experiments [11]. In KEK-PS E224, the 12C(K−, K+)X reaction was

measured using a scintillation fiber target. As a result, the missing mass distribution as a function

of the binding energy (BΞ−) of the 11B-Ξ bound system is shown in the left side of Fig. 1.2. The

lower figure is expanded around the bound region. The theoretical curve for 12
Ξ−Be production

with Ξ− potential of Woods-Saxon type are shown in solid lines. Curves assuming the well depth

of 12, 16, and 24 MeV are shown in solid line. In AGS E885, the 12C(K−, K+)X reaction was

measured using a diamond target. The obtained missing mass distributions with the scattered

angles of the outgoing K+ , θK+ < 14◦ and θK+ < 8◦, are shown in the right side of Fig. 1.2. The
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arrows represent the expected location of the ground state of 12
ΛΛBe,

11
Λ Be+Λ, and 11B+Ξ−. The

theoretical curves with the 12, 14, 16, 18, and 20-MeV well depth of Woods-Saxon potentials were

shown in dotted line. In both experiments, statistics and mass resolution were very limited. Since

the experimental sensitivity is not sufficient, any signal of Ξ−-hypernuclei, such as 12
Ξ Be, was not

observed clearly from these experiments. Compared the data to the theoretical curves, the ΞN

interaction is suggested to be attractive and a real part of the potential (V0) is −10 ∼ −20 MeV.

with the potential depth between 10 and 20 MeV. To obtain a definitive Ξ− well depth, subse-

quent experiments with better resolution and higher statistic are desired.

Figure 1.2: Missing mass spectra as a function of the binding energy of Ξ− (BΞ−) for 12C(K−, K+)X

reaction obtained in the KEK E224 [10] and AGS E885 [11].

1.2.3 Production of Ξ−-bound system using stopped Ξ−

In the second way, a Ξ− is produced by the (K−, K+) reaction, slows down, stops in material,

then it is captured by an atomic orbit, and eventually absorbed by a nucleus. The Ξ− atoms are

in highly excited states and de-excite to lower states via Auger effect and X-ray emission before

absorbed by a nucleus via the strong interaction process, Ξ−p → ΛΛ, then the nucleus is broken.

Some of fragments end up with double-Λ hypernuclei or twin single-Λ hypernuclei. This process

has been investigated by nuclear emulsion experiments. When the formed Ξ− atom decays into

two single-Λ hypernuclei (such an event is called “twin Λ hypernuclei”), the mass of the bound



CHAPTER 1. INTRODUCTION 6

Table 1.1: Theoretically predicted BΞ− values of the Ξ−N bound system [21].

state BΞ− [Ξ−-14N] (MeV)

1S 5.93

2P 1.14

3D 0.174

2S 0.54

3P 0.28

(atomic) Ξ− nucleus state is reconstructed from the masses and the kinetic energies of the two Λ

hypernuclei. The binding energy of the Ξ−(BΞ−) can be obtained with 100-keV accuracy, which

comes from a systematic error in the emulsion method. Experiments to search for S = −2 system

using nuclear emulsion were performed at KEK (E176 [7], E373 [12]). The observed twin single-Λ

and double-Λ hypernuclei were reported in [7] [13] [15] [16].

Here, the reported Ξ-bound systems are described. In KEK E176, two events of twin single-Λ

hypernuclei were observed [13][14]. In these events, Ξ− was considered to be captured by a light

nucleus contained in the emulsion (12C, 14N, or 16O) and then decayed into two Λ hypernuclei. One

of them was identified as 4
ΛH. Considering the momentum balance with the 4

ΛH track, the range

of the other hypernucleus was estimated and compared with the measured value. As a result, the

process of

Ξ− + 12C → 4
ΛH+ 9

ΛBe

was concluded to be most probable. However, the possibility of Ξ−+14N or Ξ−+16O state cannot

be ruled out due to momentum error of 4
ΛH, and thus the reaction was not identified uniquely.

In KEK E373, a twin single-Λ hypernuclei event named “KISO” was found [17]. For this event,

the species of hyperfragments was identified and the process was uniquely determined as follows,

Ξ− + 14N → 10
Λ Be + 5

ΛHe.

As a result of the KISO event, BΞ− was obtained to be 4.38 ± 0.25 MeV if the produced 10
Λ Be was

in the ground state. However, the case that 10
Λ Be produced in excited states should be taken into

account. Since there was no experimental data of exited stated of 10
Λ Be, theoretically calculated

values using a cluster model [18] and a shell model [19] are used. The difference between the models

was less than 200 keV. If 10
Λ Be is in the 2nd excited state, which is the highest bound excited state

theoretically predicted, BΞ− was estimated to be 1.11 ± 0.25 MeV.

Considering electromagnetic and strong interactions, the Ξ− binding energy of the Ξ−-N system

is theoretically predicted as shown in Table. 1.1. In this calculation, Ehime potential [21] is

employed for the strong interaction. According to the theoretical calculation, the BΞ− value for

the 3D state is 0.174 MeV which is far from the experimental result. Assuming that 10Be was

in the 2nd excite state, the 10
Λ Be value of 1.11 MeV is consistent with the theoretically calculated

BΞ− of the 2P state, 1.14 MeV. They concluded that the Ξ− could be absorbed from the 2P state
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in the KISO event, although the theoretical calculation suggests that the probability of Ξ− being

absorbed from the 2P state is as small as a few %.

From the emulsion experiment, some of the Ξ−bound systems were observed and they gave us

important information that the ΞN interaction was attractive. Several theoretical models predict

the Ξ-nuclear potential, but the difference in the Ξ−-binding energy depending on models is from

hundreds eV to a few keV. The data of emulsion experiments which have at least 100-keV system-

atic errors cannot be used to discuss the Ξ-nuclear potential at sub-keV level. Thus, more accurate

measurement with accuracy of at least a few hundreds eV is necessary to investigate the Ξ-nuclear

potential in detail. We approach the Ξ-nuclear potential with a new experimental method, namely

Ξ− atomic X-ray spectroscopy.

1.3 X-ray spectroscopy of exotic atoms

The exotic atom and physical information given by its study are explained in this section. The

previous research of an exotic atoms, especially of Σ− atomic X-ray spectroscopy is introduced as

an example. Then, the motivation and experimental concept of Ξ− atomic X-ray spectroscopy are

described.

1.3.1 Exotic atom

When a negatively charged particle (X−) kicks off an electron in an atom and is captured by the

atom, the exotic atom (X− atom) is formed. ThisX− deexcites to lower states with X-ray emission.

The X-ray energy corresponds to an atomic level spacing which is related to the interaction between

X− and the nucleus describes as a potential, U(r). When Coulomb interaction (UCoul(r)) and the

strong interaction (USt(r)) work as a central force (U(r)), information on USt(r) can be extracted

by subtracting the known UCoul(r) from U(r). So far, research on the strong interaction using

exotic atoms such as π−, K−, p and Σ−, have been developed. Their properties summarized in

PDG are listed in Table 1.2. When the typical stopping time in material is shorter than their life

time, they from exotic atoms.

With the radial wave function for the X− atom and the energy written as Φ(r) and E, respec-

tively. The radial Schrödinger equation is given as(
− ℏ2

2µ

d2

dr2
+

ℏ2l(l + 1)

2µr2
+ U(r)

)
Φ(r) = EΦ(r) (1.1)

where Φ(r) is the wave function of the X− atom. The reduced mass (µ) is defined as follows using

the mass of X− (mX−) and that of a core nucleus (mN),

µ =
mX−mN

mX− +mN

. (1.2)
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Table 1.2: Properties of negative particles summarized in PDG [2].

mass [MeV] lifetime [ns] cτ [m]
Bohr radius [m]

(Z=1)

e− 0.511 ∞ - 0.529×10−10

π− 140 26.0 7.8 1.93×10−13

K− 494 12.4 3.7 5.47×10−14

p 938 ∞ - 2.88×10−14

Σ− 1197 0.148 0.044 2.26×10−14

Ξ− 1322 0.164 0.050 2.05×10−14

By solving Eq. 1.1, the energy eigenvalues were obtained as a function of principal quantum number

n. The orbital angular momentum l can take the values l = 0, 1, · · · , n−1. An orbit where l = n−1

is called a circular orbit.

The energy shift and width

An atomic level is shifted and broadened due to the strong interaction compared to that with only

Coulomb interaction considered. For the strong interaction potential USt(r), an optical potential

is employed, USt(r) = V (r)+ iW (r), and the real and the imaginary parts are written in V (r) and

W (r), respectively. As an example, the energy levels for Ξ−-C bound system is shown in Fig. 1.3.

It shows the schematic figure of the difference between the levels calculated only from Coulomb

interaction (in dashed line) and from the Coulomb plus the strong interaction (in solid line) as the

Ξ−-nuclear interaction. The difference between the two is called as the energy shift (∆E) and is

expressed with arrows. The shaded regions represent the width (Γ) of the state. The energy shift

is given as

∆E = En,l
Re(Coul.+St.) − En,l

Re(Coul.) (1.3)

= ⟨Φn,l|Hkin + UCoul + V |Φn,l⟩ − ⟨Φ′n,l|Hkin + UCoul|Φ′n,l⟩ (1.4)

where ⟨Φn,l| and ⟨Φ′n,l| are (n, l) eigenstates with and without the strong interaction, respectively.

Note that the kinematical terms of Hamiltonian in Eq.1.1 are written in Hkin,

Hkin ≡ − ℏ2

2µ

d2

dr2
+

ℏ2l(l + 1)

2µr2
. (1.5)

The absorption means that a X− reacts with a nucleon and produces another particles; it is

expressed in the imaginary part of the optical potential. In the case of Ξ−, Ξ− is absorbed via

the Ξ−p →ΛΛ reaction. The width Γabs. is related to the imaginary energy eigenvalue EIm as

EIm = − i
2
Γabs.. That is Γabs. is given as

ERe −
i

2
Γabs. = ⟨Φn,l|Hkin + UCoul + USt|Φn,l⟩ (1.6)
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Figure 1.3: The schematic figure of the energy shift and width of Ξ−-C system.

The energy shift and width are obtained as a function of the overlap of the potential term and

wave functions. The Wood-Saxon type potential is assumed and it is given as

USt(r) =
V0 + iW0

1 + exp
(
r−R
a

) , (1.7)

where R is the nuclear radius, a is the diffuseness and V0 and W0 are the well depths of the real

and imaginary potential. The wave functions with only Coulomb interaction for the circular orbit

where n = 1 to 5 and the Woods-Saxon type nuclear potential with V0 is 15 MeV and W0 is 1.5

MeV are shown in Fig. 1.4. In Fig. 1.4, the potential with a 15-MeV well depth is shown.

Where r is small enough, the centrifugal force is much larger than U(r) − E(r) and Eq.1.1 is

approximated as

− ℏ2

2µ

d2Φ(r)

dr2
+

l(l + 1)ℏ2

2µr2
Φ(r) ∼= 0. (1.8)

The wave function of X− atom near the nucleus behaves as ∼ rl. Therefore, the wave function

and the potential overlap more for the lower l. The more overlap between a wave function and the

nuclear potential results in the larger energy shifts and width. This shift and width are especially

sensitive to the shape of the potential near the surface of the nucleus.

E1 transition and absorption

When a X− is captured by an atomic orbit, it is more likely to be captured by larger l orbits among

the same n orbits. The levels of the X−C atomic orbits are shown in Fig. 1.5. Arrows represent
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Figure 1.4: The wave functions of C atom with only Coulomb interaction are shown in top. The strong

Ξ potential U(r) is shown bottom, real part V (r) and imaginary part W (r) are shown in a solid red line

and a dashed blue line, respectively.

E1 transitions and absorption. Small overlaps between a wave function of 5G state and the strong

Ξ− potential, and Coulomb interaction is dominate. Most of Ξ− E1 transitions, satisfying δl = 1,

and nf < ni.

The X− in the atomic state (ni, li) de-excites to a lower orbit (nf , lf ) with X-ray emission.

In the state with a large l, the wave function is pushed out as shown in Fig. 1.4, and Coulomb

interaction dominates (Γabs. ≪ ΓE1). E1 transitions satisfying δl = lf − li = 1 and nf < ni

are dominant. Thus, the X− tends to occupy the circular orbits after several E1 transitions are

repeated. In this thesis, we discuss transitions between the circular orbits only, otherwise noted.

After E1 transitions, the X− enters the inner orbit, the (n, l) state in Fig. 1.5, and the strong

interaction works similarly to Coulomb interaction (Γabs. ≈ ΓE1). In this region, in addition to

the deexcitation to the (n− 1, l − 1) state by the E1 transition, the X− is absorbed by a nucleus

due to the strong interaction. In the inner orbits of the (n− 1, l− 1) state, the nuclear absorption

is much more dominant than the E1 transition (Γabs. ≫ ΓE1), and thus the X− is absorbed by a

nucleus with a large probability. The (n, l) → (n− 1, l − 1) transition, just before the absorption

shown in a blue arrow, is called the “last transition”. The (n − 1, l − 1) orbit is called the last

orbit. In this thesis only, a transition (n+ 1, l + 1) → (n, l) before the last transition is called the

“preceding transition”. To measure X rays of the last transition is most effective since the lower l

state is, the more affected by the strong interaction.
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Figure 1.5: The energy levels of a X− atom and dominant transitions.

Branching ratio

The probability for the X− in the (ni, li) state to de-excite to the (nf , lf ) state is defined as

the branching ratio BR(E1; (ni, li) → (nf , lf )). When a Ξ− atom undergoes a transition from the

(ni, li) state to the (nf , lf ) state, both of the electromagnetic and the strong interaction contribute.

The branching ratio of the E1 transition, denoted as BR(E1; (ni, li) → (nf , lf )), is given as

BR(E1; (ni, li) → (nf , lf )) =
w(E1)

w(E1) + w(abs)
(1.9)

=
Γ
(ni,li)→(nf ,lf )
E1

Γ
(ni,li)→(nf ,lf )
E1 + Γ

(ni,li)
abs

(1.10)

where w(E1) is the transition probability of E1, w(abs) is the probability of absorption by the

nucleus due to the strong interaction. The probability w is proportional to the width, that is

ΓE1 = w(E1)ℏ and Γabs = w(abs)ℏ. BR is given as a function of the width as shown in Eq. 1.10.

The total width of a state, Γ, is given as Γ = ΓE1 + Γabs.

The ratio of the number of X−s which finally reach the (n, l) orbit to the total number of Ξ−s

captured in the atom is written as PΞ(n,l). When the E1 transition is dominant (Γabs ≪ ΓE1),

that is, most of all orbits above the last orbit, the PΞ(n,l) can be essentially calculated only from

Coulomb interaction.
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As a notation representing a transition, for example, the (3, 2) → (2, 1) transition is also

expressed as (3D → 2P ).

1.3.2 Previous X-ray measurements of exotic atoms

For exotic atoms with the particles listed in Table 1.2 expect for Ξ−, X-ray measurements have

been performed. Among them, the characteristics of Σ− atom is similar to and Ξ− atoms. The

lifetime of hyperons, Σ− and Ξ−, is as short as ∼150 ps while that of π−, K− is of the order of

10 ns. The small yield of exotic atoms with negative hyperons due to their short lifetimes makes

X-ray measurement difficult. In addition, the mass of Σ− hyperon is 1197 MeV/c2 which is not

very different from Ξ− hyperon.

In the past, Σ− atomic X-ray spectroscopy experiments were performed using stoppedK− beams

at CERN [24], RAL [25] and BNL [26]. A stopped K− is absorbed in material followed by Σ−

production as follows,

K− + p → Σ− + π+

K− + n → Σ− + π0

K− + p+ n → Σ− + p.

X rays were measured by Ge detectors with resolution of 0.6 ∼ 0.7 keV (σ) at 120 keV in coincidence

with the stopped K−. The obtained results are listed in Table 1.3.

Table 1.3: The result of the past Σ− atomic X-ray measurements.

Target Z
Transition

n+ 1 → n

Electromagnetic

energy [keV]

Measured

energy [keV]
Shift (∆E) [eV] Width(Γn) [eV] Γn+1 [keV] ref.

C 6 4→3 50.68 50.65±0.02 0.031±0.012 [24]

Ca 20 6→5 152.07 151.66±0.29 0.408±0.223 [24]

Ti 22 6→5 185.02 185.41±0.20 0.649±0.422 [24]

Ba 56 9→8 327.58 326.72±0.50 2.925±3.475 [24]

O 8 4→3 92.437 92.76±0.23 320±230 - 1.0+1.7
−0.4 [25]

Mg 12 5→4 98.748 98.77±0.04 25±40 <70 0.11±0.09 [25]

Al 13 5→4 116.508 116.576±0.028 68±28 43±75 0.24±0.06 [25]

Si 14 5→4 135.403 135.56±0.04 159±36 220±110 0.41±0.10 [25]

S 16 5→4 177.921 178.28±0.22 360±220 870±700 1.5±0.8 [25]

Pb 82 10→9 504.899 505.321±0.048 422±65 428±158 17±3 [26]

W 74 10→9 410.901 411.115±0.053 214±60 18±149 2±2 [26]

According to Ref. [27], the Σ− atomic X-ray data were best fitted by the phenomenological

density dependent potential. It is suggested that the Σ−-nuclear potential has a shallow attractive

pocket at just outside a nucleus and a repulsive core inside the nucleus. However, the Σ− atomic

X-ray data allow for several potential shapes inside the nucleus.



CHAPTER 1. INTRODUCTION 13

Sigma-nucleus potential was investigated with the reaction spectroscopy experiment [4]. From

the result of this experiment, a real part of the Σ−-nuclear potential was found to be strongly

repulsive. Taking into account the repulsive Σ-nuclear potential, it is suggested that neutrons

convert to Σ hyperons under much higher density compared to Λ hyperons inside neutron stars.

As shown in the research on Σ-nuclear interaction, the X-ray spectroscopic experiment and

the reaction spectroscopic experiment To investigate the potential at inside and the surface of a

nucleus, both of two experimental methods are important.

1.4 The motivation of this research

The purpose of this research is to measure Ξ− atomic X-rays and to obtain information on the Ξ−-

nuclear potential. For the future experiments, evaluation of detection sensitivity and measurement

accuracy are important to establish the experimental method.

To obtain information on the Ξ−-nuclear potential by measuring X rays, a clean spectrum,

with a good signal to noise ratio is necessary. Since the lifetime of Ξ− is as short as 164 ps, most

of the Ξ−s decay before stopping and make a huge background. The main decay mode of Ξ− is

Ξ−→Λπ− (branching ratio 99.9%). Λ decay as Λ → nπ0 followed by a π0 decay to 2γ, and make

background. On the other hand, when Λ decay as Λ → pπ−, the produced π−s hit surrounding

material, π−+A→ n+X /γ+ X’, and make background γ rays, Also, a high energy π− makes

background γ rays.

In addition to the small cross section of Ξ− production, these huge background make it difficult

to measure X rays of Ξ− atoms. Tagging Ξ− stop events is a key to overcome these difficulties for

and successful measurement of X rays. Two methods for selecting Ξ−-stop events were developed

and studied to see whether Ξ− atomic X rays were measured with sufficient accuracy.

1.4.1 Method 1: Emulsion image method

A tracking detector for Ξ− is useful to identify the Ξ−-stop events. The experiment to search for

double-Λ hypernuclei using nuclear emulsion was planned (J-PARC E07[28]). E07 was designed to

obtain 10 times the statistics, that is 104 Ξ−-stop events, than the KEK E373 experiment in which

the first double-Λ hypernucler event (NAGARA [15]) was discovered. The target for Ξ− production

and the detectors were designed so that the produced Ξ− stops in the emulsion with a large

probability. Thus, we planned to measure Ξ− atomic X rays simultaneously since it is possible

to select Ξ−-stop events cleanly using this emulsion as a Ξ− tracking detector. Selecting Ξ−-stop

events by the emulsion image analysis is called the emulsion image method in this thesis. The

Ξ− atoms of C, N, O, Br, and Ag contained in the emulsion were produced. By X-ray measurement

in coincidence with the Ξ− stop image, the Ξ− atomic X-ray spectra can be obtained, especially

of the Ξ− Ag, and Ξ− Br atoms, with almost background free condition.
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The last transition of Ξ− Ag and Ξ− Br atoms are assumed as Ag(8J → 7I) and Br(7I → 6H),

respectively. The energy shift and width of their X rays were predicted by assuming two types of

the potential, the tρ potential and the Nijmegen D (ND) potential, as shown in Table. 1.4. The

tρ potential [27] is an optical potential which is proportional to a nuclear density distribution ρ(r)

and given as

Vopt(r) = − 4π

2m
(1 +

m

M
)b0ρ(r) (1.11)

where m is the Ξ−-nucleus reduced mass, M is the mass of the nucleon, ρ(r) is the nuclear density,

and b0 is the complex parameter of the hadron-nucleon scattering length. The tρ potential which

is corrected to have a 14-MeV depth is shown in red in Fig. 1.6. On the other hand, ND potential

is calculated based on one-boson exchange model [20]. It is shown in blue in Fig. 1.6, and it is

adjusted so that its averaged depth reproduces 14 MeV. The expected shift is of the order of keV

although they vary depending on the model.

Table 1.4: The theoretically predicted shift and width for the last transition of Ξ− Ag and Ξ− Br atoms [22].

transition potential
X-ray energy

[keV]

shift

[keV]

width

[keV]

Ag(8J → 7I)
tρ

370.45
0.28 0.15

ND 3.3 0.79

Br(7I → 6H)
tρ

315.5
0.73 0.44

ND 5.5 1.74

Figure 1.6: The Ξ−-nucleus potential expected with two types of theoretical model, the tρ potential shown

in red [27] and the Nijmegen D (ND) type potential shown in blue [20].
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Requirements for an experiment

The detectors were designed for Ξ−Ag and Ξ−Br atomic X-ray measurement. The X-ray yield of

the Ag(8J → 7I) transition was estimated as

Y ield(NXray) = NΞcapture(Ag)× PΞ(8J) ×BR(E1; 8J → 7I)× ϵdetector (1.12)

where NΞcapture(Ag) is the number of Ξ−s captured by Ag atoms, PΞ(8J) is the ratio that captured

Ξ−s deexcite to the 8J state and ϵdetector is the efficiency of a X-ray detector. The statistical

error (σstat.) and systematic error (σsys.) should be small enough to determine the X-ray energy

with accuracy of a few hundreds eV. The number of Ξ−-stop events depended on the amount of

the emulsion and 3600 Ξ−s were estimated to be captured by Ag atoms in this experiment. A

value of 0.6 estimated from the past Σ− atomic X-ray measurement was employed as PΞ [23].

The σstat. depends on the X-ray yield and the energy resolution of X-ray detector σdet. as σstat. =

σdet./
√

NXray. Germanium (Ge) detectors were employed due to their good energy resolution of

∼2 keV (FWHM) at 400 keV. Then, the systematic error was required to be comparable to the

statistical error, which is around ∼ 200 eV from an expected value of NXray. When, roughly

estimated, NΞcapture (Ag) is 3600, PΞ is 0.6, BR(E1; 8J → 7I) is ∼0.9, and the Ge detector

efficiency is 1%, and then the yield is NXray ∼20 counts.

1.4.2 Method 2 : Kinematical method

In the method 1, only atoms included in the emulsion are used for Ξ− atoms. To develop a

systematic study of Ξ− atomic X rays, by measuring mass (A) dependence of the energy shift, the

method other than method1 is necessary. One of the possible methods is to select Ξ−-stop events

using kinematical information of Ξ− obtained from reaction analysis. This method, called the

kinematical method in this thesis, was also studied and applied as a byproduct. Since a diamond

target was used, Ξ−C atomic X rays were studied in this experiment. The levels of Ξ−C atom

is shown in Fig. 1.7. Since the energy range of the Ge detectors for the X-ray measurement is

higher than ∼100 keV, the (3D → 2P ) transition whose energy is 154 keV considering only the

Coulomb interaction can be measured. The shift and width are possibly as large as hundreds

of keV since the 3D orbit is considered as the last orbit of Ξ−C atom. Thus, X rays should be

searched for over a wide region. When it is not observed as an evident peak, the branching ratios

of BR(E1;3D → 2P ) and BR(abs.; 3D) will be discussed based on the X-ray yield.
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Figure 1.7: The levels of Ξ−C atom.



Chapter 2

Experiment

In this section, the first Ξ− atomic X-ray spectroscopy experiment (J-PARC E07) performed at

J-PARC, Japan Proton Accelerator Research Complex, in 2016 and 2017 is described.

2.1 Overview

The experiment was originally planned to search for double-Λ hypernuclei and designed based on

the concept of identifying hypernuclei by emulsion image analysis. The process from production

of a Ξ− particle to form the hypernuclei is shown in Fig. 2.1. The Ξ− produced via the (K−, K+)

reaction at a reaction target is injected to the emulsion, and some of them are stopped there.

Then, they are captured by atoms and form Ξ− atoms. The captured Ξ− de-exicites to lower

atomic orbits with X-ray emission, and, at the end, the Ξ− is absorbed by the nucleus, that is,

the Ξ− reacts with a proton as Ξ−p →ΛΛ and the nucleus is break up to fragments. Sometimes

a double-Λ hypernucleus, or one or two single-Λ hypernuclei are produced as fragments, and

sometimes produced Λs not bound to the nucleus and mesonic decay as Λ → pπ− or Λ → nπ0.

The Λ inside a nucleus decays as Λp → pn or Λn → nn. If one or more charged fragments are

produced, one or more charged tracks are observed at the stopping point of Ξ− as shown in (a) of

the figure and they are called “σ-stop” events. On the other hand, the events in which no tracks

are observed at the stopping point of Ξ− except tracks of Auger electrons as shown in (b) are

called “ρ-stop” events. By selecting σ- and ρ-stop events, the events of Ξ− atom production are

identified cleanly. This method allows us to measure X rays of Ξ− atom, which contains in the

emulsion such as Ag and Br, with a good S/N ratio.

17
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Figure 2.1: The process of the double-Λ hypernuclear production.

The (K−, K+) reaction cross section is maximum at the incident K− momentum of 1.8

GeV/c [9]. The K1.8 beam line at J-PARC was designed to supply K− beam of 1.8 GeV/c

momentum for experiments using the (K−, K+) reaction. Thus, the present experiment was

performed using this facility.

A diamond target was used as the Ξ− production target, and it was also used as an energy

degrader for the produced Ξ−. The slowed down Ξ− passed through the target, then reached the

emulsion placed downstream of the target, and stopped in it. To obtain information on where the

Ξ− arrived at the surface of the emulsion, the Ξ− track was measured by silicon strip detectors

(SSD) placed sandwiching the emulsion. The prediction on the Ξ− hit position given by SSD

made time shorter to search for the Ξ− track in the emulsion image analysis. This is called the

emulsion-counter hybrid method. The experiment was designed to obtain 1 × 104 Ξ− which was

10 times that obtained in the past experiment, KEK E373 [16].

For the identification of the (K−, K+) reaction, two magnetic spectrometers were used. The

magnetic spectrometers were not necessary to have a high momentum resolution because the

reaction was identified by K− and K+ tracks as well as the Ξ− track analyzed by SSD. In addition

to that, the production of hypernuclei was cleanly identified by emulsion image analysis. The

important requirement was to detect the scattered K+ with large efficiency. Thus, KURAMA

spectrometer with a large acceptance of 280 msr was used for the scattered K+. The incident

K− beam was analyzed by the K1.8 beam line spectrometer which was optimized to measure

K− around 1.8 GeV/c and had been also used in the past experiments.

For measurement of Ξ− Ag and Ξ− Br atomic X rays for the last transition, 300 − 400 keV,

germanium (Ge) detectors were employed. To achieve high-precision measurement with a system-
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atic error as small as a statistical error of ∼150 eV, a new developed in-beam energy calibration

system was employed.

2.2 J-PARC and the K1.8 beam line

J-PARC, Japan Proton Accelerator Research Complex, is the proton synchrotron facility located

at Tokai, Ibaraki. In this facility, primary protons are accelerated in every 5.5 seconds and supplied

to the experimental facility (Hadron hall) during a period (called “spill”) of 2.2 seconds. In the

present experiment, 4.3×1013 protons per spill were accelerated with 37-kW operation and were

irradiated to a primary gold target. The dimension of the primary target was 15 mm (horizontal)

× 11 mm (vertical) × 66 mm (thickness). Many species of produced secondary beams such as

K, π, ν and µ are available, and we used a secondary K− beam of 1.8 GeV/c momentum in this

experiment. As shown in Fig. 2.2, it was transported to the K1.8 area through the K1.8 beam

line consisting of several magnets of dipole (D1-D4), quadrupole (Q1-Q13), sextapole (S1-S4),

and octapole (O1-O2). Momentum of the particle was selected by the dipole magnets and the

momentum slit. To reject contamination of other secondary particles, mainly π−, two electrostatic

separators (ESS1,2) and mass slits (MS1, 2) were used. The ESS1 and ESS2 were operated by

applying ±250 kV to a 10-cm gap. The trajectories of beam particles were different according to

their velocities when an electric field by the electrostatic separators was applied together with a

magnetic field. The position and width of the mass slits located downstream of each electrostatic

separators were adjusted to select K−. In our data-taking period, 280 × 103 K− and 60 × 103

π− per spill were transported to the experimental target at the K1.8 area. The ratio of K− and

π− particles contained in the beam was 4:1. The beam profile of x (horizontal) and y (vertical)

directions are shown in Fig. 2.3 and Fig. 2.4, respectively. The momentum bite was ±3% and

momentum resolution (δp/p) was 3.3×10−4 (FWHM). Detail information is given in elsewhere [29].

2.3 Target

The cross section of the (K−, K+) reaction is reported to be proportional to A0.38 [6] but the

produced Ξ− is absorbed in nuclei particularly with a large Z. To stop the produced Ξ− in the

emulsion located downstream of the target, the target was also used as a degrader. Thus, a diamond

target was employed since it has a high density. Size of the target was 5.06x × 3.03y × 3.04z cm3

and its density was 3.24 g/cm3 and thickness was 9.85 g/cm2.
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KURAMA

K1.8 area

Figure 2.2: The schematic view of K1.8 beam line.

2.4 Reaction spectrometers

2.4.1 Beam line spectrometer

To identify K− beam and analyze its momentum, the K1.8 beam lime spectrometer which consists

of QQDQQ magnets, trigger counters, and tracking detectors were used. The schematic view of the

K1.8 beam line spectrometer is shown in Fig. 2.5. To identify the incident beam, two hodoscopes

(BH1, BH2) were placed, one was upstream of the magnets and the other was downstream. To

reject contamination of π− beam at the trigger level, aerogel Cherenkov detectors (BAC1, BAC2)

were used. For the selection of K−, time-of-flight between BH1 and BH2 were measured. For

momentum analysis, the beam position upstream of the magnets and the beam track downstream

of the magnets were measured by the beam fiber detector (BFT) and drift chambers (BC3, BC4),

respectively. From the information on the magnetic field of the magnets of QQDQQ, the transfer

matrix was calculated by TRANSPORT code1. The specifications of detectors of the beam line

spectrometer are summarized in Table. 2.2, and they are explained below. Main specifications of

this spectrometer are shown in Table 2.1.

1the program for calculating particle transport based on the beam line optics
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Figure 2.4: Beam profile in y direction at the

experimental target.
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Figure 2.5: The schematic view of the K1.8 beam line spectrometer.
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Table 2.1: Main specification of the beam line spectrometer

Momentum resolution 3.3 ×10−4 (FWHM)

Maximum momentum 2.0 [GeV/c]

Central momentum 1.8 [ GeV/c]

Momentum bite ±3[%]

Bending angle 64 [deg]

Flight length between BH1 and BH2 11.2 [m]

Table 2.2: The specifications of detectors of beam line spectrometer.

Hodoscope effective area [mm2] thickness [mm] segment Readout

BH1 170x × 66y 5 11 3/4” PMT ; H6524MOD, both ends

BH2 120x × 40y 60 1 2” PMT ; H10570, both ends

FBH 82.5x × 30y 2 16 MPPC w/ wave length shifting fiber, both ends

Aerogel Cherenkov effective area [mm2] thickness [mm] index Readout

BAC1, 2 170x × 70y 46 1.03 3” PMT ; R6683

Fiber tracker effective area [mm2] fiber Readout

BFT 160x × 80y
KURARAYSCSF-78M

ϕ = 1 mm
MPPC

Drift chamber effective area [mm2] plane title angle [deg] wire pitch [mm]

anode-anode anode-cathode

BC3 192x × 100y xx′vv′uu′ 0,−15,+15 3 2

BC4 192x × 100y uu′vv′xx′ +15,−15, 0 3 2

Trigger Counters

BH1, BH2

As trigger counters for beam particles, two Beam Hodoscope (BH1, BH2) were used. BH1 was

located upstream of the Q10 magnet of the beam spectrometer as shown in Fig. 2.5. It consists of

horizontally-segmented 11 slabs of plastics scintillator (BC420) with 5 mm thickness and effective

area was 170x × 66y mm2. Scintillation light was collected on photo-multiplier tubes (PMT)

attached to both ends. BH2 was located downstream of the drift chamber (BC4) as shown in

Fig. 2.5. It consists of a plastic scintillator (Eljen Technology EJ-212) with dimension of 120x ×
40y × 60z mm3. Acrylic light guides and PMTs were attached to both ends of the scintillator.

BH2 was used as a reference timing counter for all the other detectors. In addition, time-of-flight

between BH1 and BH2 was measured in order to reject contaminating π−.
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FBH

Fine Beam Hodoscope (FBH) was located just upstream of the target. It consists of horizontally-

segmented 16 slabs of plastic scintillator (EJ-212) of 2 mm thick with wave length shifting fibers

(Kuraray PSFY-11J). The size of each segment was 7.5x × 35y mm2, and the whole effective area

was 82.5x × 30y mm2. The scintillator slabs were placed with 2.5 mm overlap to each other as

shown in Fig. 2.6. Emitted scintillation light was collected by MPPC -Multi-Pixel Photon Counter-

(Hamamatsu S12571-100P) with 1 mm×1 mm size through the wave length shifting fiber. Signals

from MPPCs were read out using the EASIROC boards. FBH was used as one of the trigger

counters for the 2D Matrix trigger to be described in section 2.4.3.

Figure 2.6: The schematic drawing of FBH.

BAC1, BAC2

To reject contaminating π− beam of 1.8 GeV/c, Beam Aerogel Cherenkov counter (BAC) was

placed upstream of FBH. In aerogel of refractive index (n), Cherenkov light was emitted when the

velocity of particle exceeds the light speed in the material (βc > c/n). The correlation between

momentum and β forK− and π− are plotted in Fig. 2.7. Aerogel with index n = 1.03 was employed

for BAC to distinguish an incident K− and π− with 1.8 GeV/c momentum. Only a π− passing

through the radiator emitted Cherenkov light, but not K−. The radiator was wrapped with a

teflon sheet and shielded with a black sheet. Emitted Cherenkov light was collected by fine-mesh

type PMTs with 3” diameter (Hamamatsu R6683).
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Figure 2.8: The schematic drawing of BAC.

Tracking detectors

For momentum analysis of the K− beam, the beam position and angle at upstream and down

stream of the magnets (QQDQQ) were measured using a fiber detector (BFT) and drift chambers

(BC3, BC4).

BFT

Scintillation fiber detector (BFT) [30] was located upstream of the Q10 magnet to measure the x

position of the incident beam particle. BFT consists of 320 horizontally-aligned fibers with 1 mm

diameter. Two layers of fibers were stacked as shown in Fig. 2.9 to increase detection efficiency.

The effective area was 160x × 80y mm2. A multi photon pixel counter (MPPC) attached to one

end of each fiber collects scintillation light. The timing resolution (σt) was 0.8 ns and the position



CHAPTER 2. EXPERIMENT 25

resolution (σpos) was 0.2 mm. Note that only x position of the beam particles was measured at

upstream of the magnets.
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Figure 2.9: The schematic drawing of BFT.

BC3, BC4

Two multi-wire drift chambers (BC3, BC4) were located at the downstream of the Q12 magnet.

A schematic drawing of BC3,4 is shown in Fig. 2.10. Both of them had 6 layers of sense-wire plane

(xx′uu′vv′). The u and v planes were inclined to +15 and −15 degrees, respectively, with respect

to the x plane. The wire spacing was 3 mm, and the distance between the wire and the cathode

plane was 2 mm. Mixed gas of Ar (76%) and iso-C4H10 (20%) was flown in to the chambers. In

addition, C3H8O2 (4%) was mixed. A typical position resolution (σ) was 0.2 mm.
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Figure 2.10: Top view of BC3, BC4.

2.4.2 Reaction spectrometer : KURAMA

To measure the scattered K+, a magnetic spectrometer, called KURAMA, was placed downstream

of the target. To identify Ξ− particles, not only reaction analysis by the magnetic spectrometers but

also information of emulsion image analysis were used. Thus, we used the KURAMA spectrometer

with a large solid angle of 280 msr in favor of higher acceptance than good resolution. The main

specifications of the KURAMA spectrometer are shown in Table 2.3.

Table 2.3: Main specification of KURAMA spectrometer

Momentum resolution (δp/p) 2.8 ×10−2 (FWHM)

Gap size 80 [cm]

acceptance (solid angle) 280 [msr]

magnetic field 0.76 [T]

The schematic view is shown in Fig. 2.11. It consists of a dipole magnet, trigger counters,

and tracking detectors. Scintillation hodoscopes (SCH, TOF) were used as trigger counters and

TOF measured time-of-flight between BH2 and TOF. To reject low-momentum protons and pi-

ons emitted forward, Aerogel Cherenkov detectors (PVAC, FAC) were used as trigger counters.

The particle tracks were reconstructed by drift chambers (SCD1, SDC2, SDC3), SCH and SSD

described below. The scattered particles were identified by the mass calculated by the time-of-

flight, the path length, and the momentum. The specifications of detectors of the KURAMA

spectrometer are summarized in Table. 2.4.
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Figure 2.11: The schematic view of KURAMA spectrometer.

Table 2.4: The specifications of detectors of KURAMA spectrometer.

Hodoscope effective area [mm2] thickness [mm] segment Readout

SCH 673x × 450y 2 64 MPPC w/ wave length shifting fiber, both ends

TOF 1805x × 1800y 30 24 2” PMT ; H1949, both ends

Aerogel Cherenkov effective area [mm2] thickness [mm] index Readout

PVAC 117x × 117y 14 1.12 2.5” PMT ; R6682

FAC 225x × 162y 60 1.05 2.5” PMT ; R6682

Drift chamber effective area [mm2] plane title angle [deg] wire pitch [mm]

anode-anode anode-cathode

SDC1 384x × 264y vv′xx′uu′ +15, 0,−15 6 2

SDC2 1152x × 1152y xx′yy′ 0, 90 9 2

SDC3 1920x × 1280y yy′xx′ 90, 0 20 2

Trigger Counters

PVAC and FAC

The Proton Veto Aerogel Cherenkov counter (PVAC) was located downstream of an emulsion

module. The scattered K+ was contaminated with protons with low momenta from ∼0.8 GeV/c

to ∼1.6 GeV/c. Aerogel with the refractive index of the 1.12 was employed to remove the protons

(see Fig 2.7). A schematic drawing of PVAC is shown in Fig. 2.12. The effective area was 117x×117y

mm2, and the thickness was 14 mm.

The Forward Aerogel Cherenkov counter (FAC) was employed in order to remove forward

background particles, namely high momentum π and unscattered beam K−. It was located at
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the downstream of PVAC. The refractive index of the radiator was 1.05. The effective size was

225x × 162y mm2 and the thickness was 60 mm. Six 2.5” PMTs were attached at both ends of the

radiator. A schematic drawing of FAC is shown in Fig. 2.12. Cherenkov light was emitted only for

high momentum π and beam K− around 1.8 GeV/c momentum, but was not for scattered K+.
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Figure 2.12: The schematic drawing of PVAC and FAC.

SCH

Only with particle identification by AC detectors, contamination of the incident K− which did

not react at the target was not rejected. The hodoscopes were used to distinguish the scattered

particles and the beam K− using the correlation of their hit pattern. To measure the particle

position at downstream of the target, the charge hodoscope (SCH) was placed between the poles

of the dipole magnet, that is, inside of the magnetic field. The information of SCH hit pattern was

included in the matrix trigger described in section. 2.4.3, and hit position information was also

used in tracking analysis of the scattered particles. SCH consists of horizontally-segmented 64 slabs

of plastic scintillator (EJ-212) of 2 mm thick, wave length shift fibers (Kuraray PSFY-11J) and

MPPCs (Hamamatsu S10362-11-100P), similar to FBH. The size of each segment was 11.5x×450y

mm2 and they were assembled with 1 mm overlap in the same way as FBH. The effective area was

673x × 450y mm2.

TOF

To measure the position and time-of-flight of the scattered particles downstream of a dipole magnet,

the time-of-flight counter (TOF) was installed downstream of SDC3. TOF consists of 24 segments

of 30 mm thick plastic scintillator and the effective area was 1805x × 1800y mm2.

Each segment was wrapped with aluminized mylar and a black sheet. Fish-tail-shaped acrylic

light guides and PMTs with 2” diameter (H1949-50) were attached at both ends of a scintillator
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slab. The TOF counter was also used for the matrix trigger.

Tracking detectors

SDC1

The drift chamber SDC1 was located at upstream of the KURAMA magnet. SDC1 had six sense-

wire planes (vv′xx′uu′) with hexagonal cell structure. Each pair plane was tiled by +15, 0,−15

degree, respectively, respect to the vertical direction as shown in Fig 2.13 (a). A placement of the

wires is shown in Fig 2.13 (b). The sense-wire spacing was 6 mm. Between a pair planes, the

position of sense-wire was shifted by a half of the cell. The same mixed gas as used in BC3,4 was

used in SDC1. The tracks of scattered particles were affected by the magnetic field because SDC1

was installed close to the yoke of the KURAMA magnet.

sensitive wire

potential wire

shield wire

(b) wire placement

-15 deg. tilt

vv'

xx'

uu'

Beam

(a) SDC1 layers

15 deg. tilt

6 mm

Figure 2.13: The schematic drawing of SDC1

SDC2, SDC3

The drift chambers SDC2 and SDC3 were installed at downstream of the KURAMA magnet.

Both of them had four sense-wire planes (xx′yy′). The cell structure was almost the same as SDC1

although details such as the wire spacing were different. The sense-wire spacing was 9 mm for

SDC2 and 20 mm for SDC3. The y and y′ planes were tilted by 90 degree with respect to the

vertical direction. Mixed gas of Ar (50%) and C2H6 (50%) was filled in both chambers.

2.4.3 Trigger and data acquisition system

KK trigger

The trigger for the data taking of the (K−, K+) reaction events was made using the combination

of the detector response described above. The logical signals of incident K− (Kin) and outgoing
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K+ (Kout) were defined as follows and the diagram is shown in Fig. 2.14.

Kin = BH1 ∩BH2 ∩ (BAC1 ∩BAC2), (2.1)

Kout = TOF ∩ PV AC ∩ FAC. (2.2)

In the Kin side, the coincidence between BH1 and BH2 was taken in order to identify beam

particles. To reject pion contamination, it was required that both of BACs had no signal. In

the Kout side, the events with TOF hit were accepted as scattered particles. To reject unscattered

beam kaons and pions which were transported to TOF, events with no signal at FAC were selected.

In addition, a proton with low momentum was rejected if coincident with PVAC.

The matrix trigger (MATRIX) was introduced to select the (K−,K+) reaction efficiently since

the incident K− which did not react at the target was not rejected by particle identification using

the AC counters. The data of the hodoscopes were analyzed online, and the scattered particles

were selected using combination of hit pattern. The result was applied to the data taking as the

matrix trigger. The 2-dimensional matrix (2DMATRIX) was used for selection of the scattered

particles using the combination of hit pattern of two hodoscopes, SCH and TOF. The event with

a particular correlation between the hit positions of the two detectors were accepted. The beam

K− was identified by the 3-dimensional matrix (3DMATRIX) using hit pattern of BFT, TOF

and SCH. The particles which were not scattered and passed through the three detectors were

rejected as the beam K−. The matrix trigger is given as

MATRIX = 2DMATRIX ∩ 3DMATRIX. (2.3)

The “KK trigger” was a coincidence betweenKin andKout together with the matrix trigger applied,

that is,

KK trigger = Kin ∩Kout ∩MATRIX. (2.4)

Table 2.5: Typical values of trigger rates.

trigger BH1∩BH2 Kin Kout KK trigger

Rate [kHz] 180 140 15 0.6



CHAPTER 2. EXPERIMENT 31

BH1 MT

BH2

BAC2

BAC1

PVAC

FAC

TOF

SCH

FBH

MT

2D Matrix

3D Matrix

HUL

Kin

K out

MT

KK
trigger

ADC gate
for detectors

TDC common stop
for detectors

HBX readout system
(see Sec.1.6.5 )

HBX 
readout system

Figure 2.14: The logic diagram of the readout system of the magnetic spectrometers. MT represents a

mean timer.

DAQ system

For a data acquisition system for the magnetic spectrometers, we used HD-DAQ [31]. It consists

of a master trigger module (MTM), a host computer and subsystems such as VME, COPPER,

EASIROC and HUL. An overview of HD-DAQ is shown in Fig. 2.15. The KK trigger, spill gate and
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DAQ gate were input to MTM, then the trigger and information of “event tag”, that is, the event

and spill number, were distributed to each subsystem. The data acquired by the subsystems were

sent to the event builder and event distributer of the host computer via the network. Then, the

data was kept on being monitored. The signals of PMTs used in the hodoscopes and AC detectors

were taken by VME modules, namely CAEN V792 for ADC and CAEN V775 for TDC. The signals

of MPPCs used for BFT, FBH and SCH were read out by EASIROC (Extended Analogue Silicon

PM Integrated Read-Out Chip) modules [32]. The COPPER (COmmon Pipelined Platform for

Electronics Readout)[33] module was used to digitize the timing signal of the drift chamber, BC3

and SDC1. The matrix coincidence trigger was mede using FPGA at the Hadron Universal Logic

Module (HUL).

Figure 2.15: Overview of the data acquisition system for the magnetic spectrometers.

2.5 Ξ− tracking detectors

A track of the Ξ− particle was reconstructed by the Silicon Strip Detectors (SSD) and the nuclear

emulsion. As shown in Fig. 2.16, the SSDs and an emulsion module were located at just downstream

of the diamond target. The emulsion module was put between a pair of SSDs. The distance between

the end of the target and the first layer of SSD1 was 0.5 mm.

2.5.1 Silicon Strip Detector (SSD1 and SSD2)

A pair of Silicon Strip Detectors (SSD1 and SSD2) was used to reconstruct tracks of the produced

Ξ− and the scattered positive kaon. In emulsion image analysis, the Ξ− track reconstructed by

SSD1 is a clue to find a Ξ− track in the emulsion. When the Ξ− particle was detected by SSD2,
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Figure 2.16: The schematic drawing around the target.

the event was rejected since the Ξ− passed through the emulsion module. Both of SSDs had 4

layers; two measured x position and the others measured y position. The p-in-n type silicon sensors

which were a product of Hamamatsu Photonics were used, and their thickness was 0.32 mm. The

sensitive area was 76.8x×76.8y mm2. A strip pitch was 0.05 mm. One side of the silicon sensor was

attached to the APV readout chip (APV25-s1) and signals were transferred to 10-bit Flash-ADCs.

The ADC value summed up for all the readout channels was defined as the energy deposit at SSD.

Calculating with a typical density of the silicon sensor, 2.33 [g/cm3], the thickness of SSD1 in the

beam direction was 2.98 [g/cm2].

2.5.2 Nuclear emulsion

The emulsion module was located about 0.7 cm downstream of the target. In one module, 13

nuclear emulsion sheets were packed as shown in Fig. 2.17. The size of an emulsion sheet was

345x × 350y mm2. Two types (thin type and thick type) of emulsion sheets were prepared. Each

sheet had a polystyrene base. Its both sides were coated with photographic emulsion layer as shown

in Fig. 2.17. For the thin- and thick- type sheets, thickness of the emulsion layer was 0.2 mm and

0.9 mm, respectively. The thickness of the base layer was 0.18 mm and 0.04 mm for the thin and

thick sheets, respectively. The thin-type sheets were placed at both faces of the emulsion module

to improve angular accuracy of tracking. The thick-type sheets with a large sensitive volume were

employed for the other 11 sheets. The density of the employed emulsion called Fuji GIF was 3.53

g/cm3. The composition of Fuji GIF is listed in Table. 2.6.

In the experiment, they were installed in a special holder called the Emulsion Mover (EM).

EM changed the emulsion position automatically. In this way, a position at the emulsion module

where the beam particles were incident was changed spill by spill so that the whole area of emulsion

sheets was exposed almost uniformly.
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Figure 2.17: Drawing of an emulsion module

Table 2.6: Composition of dried emulsion, Fuji GIF

H C N O Br Ag I others total

density [g/cm3] 0.05 0.326 0.11 0.23 1.166 1.6 0.033 0.015 3.53

2.6 X-ray detector : Hyperball-X (HBX)

The X-ray detector must be able to measure the energy shift of a few hundreds eV. Accuracy

of X-ray measurement depends on statistical errors (σstat.) and systematic errors (σsys.). The

former depends on the X-ray yield (NXray) and energy resolution of detectors (σEγ ) and is given as

σstat. = σEγ/
√

NXray if the background is negligible. The expected X-ray yield was a few tens of

counts in this experiment. In order to measure Ξ− atomic X rays with a few hundreds eV accuracy,

germanium (Ge) detectors which can measure X rays with high resolution (σEγ ∼0.85 keV at 300

keV) was employed. Assuming that NXray is 30 counts, the statistical error is 160 eV. On the

other hand, for systematic errors, those associated with energy calibration were considered. By

the energy calibration method used in our past hypernuclear γ−ray spectroscopy experiment at

J-PARC (J-PARC E13)[34], a few hundreds eV of calibration accuracy was not achieved. Thus,

the new method was developed for this experiment.

The schematic view of the Ge detector array called Hyperball-X is shown in Fig. 2.18. It

consists of six sets of a Ge detector and BGO detectors placed around the diamond target. The

positions for the three sets at the right half were numbered as SLOT1, 2 and 3, and those at the

left half were numbered as SLOT4, 5 and 6. A pair of LSO scintillators and 22Na sources were also

installed for a new calibration system.
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Figure 2.18: Schematic view of Hyperball-X. It consists of six sets of Ge detector and BGO detectors placed

around the diamond target. In addition, LSO scintillation counters and 22 Na sources were installed as an

energy calibration system.

2.6.1 Ge detectors

The coaxial-type Ge detectors were used. Two of them were of the “clover-type” and the others

were of the “standard-type”. The clover-type detector, the products of EURISYS company, had

four n-type crystals with a volume of 85 cm3 and they were arranged like clover leaves in a common

cryostat. Entrance of the Ge crystal was covered with a thin beryllium window. The relative

efficiency was 80%2. They were installed at SLOT 1 and 2. On the other hand, the standard-type

detector has a single crystal. In this thesis, this detector is called a ”single-type” detector. Four

single-type detectors, one by Canberra and the others by ORTEC, were installed at SLOT 3, 4, 5

and 6. These detectors had n-type crystals with a volume of 250 cm3. The relative efficiency was

about 60%. The detailed specifications of the Ge detectors are listed in Table 2.7. The distance

between the entrance of the Ge detector and the center of the emulsion module was about 17 cm.

The single rate was 2 kHz for the clover-type detectors and 4∼6 kHz for the single-type detectors.

The reset rate was 100 Hz for the clover-type and 200∼400 Hz for the single-type detectors.

2The reference value of the efficiency is defined as the absolute photopeak detection efficiency of 1.33 MeV-γ ray

from 60Co placed at 25 cm away by a NaI detector with crystal size of 3”×3”ϕ
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Table 2.7: Main specifications of the Ge detectors.

Location type crystal volume [cm3] relative efficiency [%]

SLOT 1 clover 85 80

SLOT 2 clover 85 80

SLOT 3 single(ORTEC) 250 61.3

SLOT 4 single(Canberra) 250 55

SLOT 5 single(ORTEC) 250 62.3

SLOT 6 single(ORTEC) 250 60.3

The Ge detectors were located around the target where high energy γ rays were produced by

the high rate beam (∼700 kHz). In order to operate Ge detectors under this high energy-deposit

environment, a transistor-reset type preamplifier was employed. As shown in Fig. 2.19, a feed back

capacitor and a transistor switch were connected to an operational amplifier in parallel. When a

charge was collected, the output voltage changes stepwise as shown in Fig. 2.20. The step height

corresponds to the energy deposit by a radiation. Input charges were stored in a capacitor. When

charges were accumulated up to the maximum voltage allowed for the amplifier operation, the

transistor switch was turned on. Then the change in the capacitor was discharged at once and the

voltage was reset to zero level. At the timing of this discharge, the “reset signal” was produced.

After the reset, input pulses cannot be processed correctly because of an undershoot caused by

the reset signal in the shaping amplifier due to a rapid change of voltage. It took a few hundreds

of microsecond to recover the base line of the shaping amplifier.

+

-

C

Q in Vout

switch

Figure 2.19: A circuit of a transistor-

reset type preamplifier.

Vout

[s]

step

threshold
reset

~ input pulse height

bese line

Figure 2.20: The output signal of a preamplifier.

2.6.2 BGO (Bi4Ge3O12) detector

Each Ge detector was surrounded by BGO detectors for background suppression. When γ rays are

Compton-scattered in the Ge detector or high energy charged particles from the beam penetrate
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the Ge detector, they make background in the Ge detector. The BGO detectors were introduced

in order to reject these background events by anti-coincidence of the Ge detector and the BGO

detectors. As shown in Fig. 2.21, two types of the BGO detectors were used, one with 6 crystals

and the other with 12 crystals. 9/8” PMTs were attached to each crystal. For the clover-type

Ge detector, the 12-crystal BGO detector was used, and background events were rejected by

coincidence between the Ge detector and 4 BGO crystals close to it. For the single-type detector,

the 12 crystal-type or the 6 crystal-type BGO detector was used; coincidence hit in any of the 12

or 6 BGO crystals was checked. An iron shield was installed around the PMTs to reduce the effect

of the magnetic field of the KURAMA magnet.

Ge

BGO

19 mm

100 mm

9 mm

53 mm

76 mm

�:70 mm

50 mm

coincidence hit

BGO

Ge

(clover)

reject

(BG event)

19 mm

150 mm

9 mm

53 mm

12 crystals-type 6 crystals-type

Figure 2.21: Schematic drawing of BGO detectors. Two types of BGO detectors, assembled in 12 or 6

crystals, were used. The 12 crystals-type detectors for the clover and single Ge detectors were installed in

SLOT 1, 2, 3 and 4. The 6 crystals-type detectors for the single Ge detectors were installed in SLOT 5

and 6.

2.6.3 Readout system

The readout system of Hyperball-X is shown in Fig. 2.22. The output signal of the preamplifier

for the Ge detector was divided into two lines; one was for TDC and the other was for ADC. One

of the Ge preamplifier output signals was sent to the timing filter amplifier (TFA), ORTEC 579,

and then sent to the constant function discriminator (CFD) in which the signal was discriminated

at a timing independent of pulse height. The output signal of the CFD was sent to a multi-hit

TDC. The CFD signals were also used for the trigger signal of the Ge detector hit. A noise due

to electronics and low energy background radiation lead to an increase of the single rate of the Ge

detector and dead time of the shaping amplifier. To prevent a high singles rate, the threshold for

the input pulse height was set in CFD as shown in Table 2.8. The highest CFD threshold sets

the lower limit of the ADC range to 120 keV. The single rate of the Ge detectors was 10∼20 kHz

during the data-taking period.
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Table 2.8: The threshold value set in CFD. Ge detector ID represents the SLOT number. For clover-type

detector, the crystal number is written after the hyphen.

Ge detector ID threshold [keV] Ge detector ID threshold [keV]

1-1 100 3 110

1-2 70 4 80

1-3 90 5 80

1-4 90 6 110

2-1 100

2-2 110

2-3 120

2-4 90

For the transistor-reset type preamplifier, the baseline of the shaping amplifier output signal

was distorted over a few hundreds of µs after the transistor reset. To avoid data-taking during this

period, the veto signal of 300 µs width was sent to the CFD. The reset timing signal from each

Ge detector was used as a start timing of the veto signal. For the clover-type Ge detector, the

reset timing signals were sent to a reset synchronizer module. When a reset happens in one of the

four channels, this module sends signals to the other three preamplifier channels forcing them to

reset. The other Ge preamplifier output signal was used for ADC. Firstly, it was sent to a shaping

amplifier, ORTEC 671 with 2-µs shaping time, to produce a Gaussian shaped signal. Then the

signal was sent to a peak-sensitive ADC, ORTEC AD413a. The trigger signal for X-ray detection

was generated from the CFD output signal of the Ge detector in coincidence with the (K−, K+)

reaction trigger (Ge∩KK trigger). Two additional triggers explained in Section 2.6.5 were also

generated for energy calibration.
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Figure 2.22: The diagram of readout system for Ge and BGO detectors.

For the BGO detector, only TDC data were taken. The output signal from a PMT was

discriminated and sent to a multi-hit TDC. As a common stop signal of the TDC, the KK trigger

was used.

2.6.4 Energy calibration system

When the Ge detectors are operated with high counting rate at the J-PARC K1.8 beam line, the

γ-ray peak position is shifted a few hundreds eV between during the beam on and off period due

to a huge beam background. This shift can not be negligible for measurement of the Ξ−atomic

X-ray energy shift expected to be ∼300 eV. Thus, an in-beam energy calibration was required. In

addition, a high precision calibration was required so that the systematic error by energy calibration

is comparable to or less than the expected statistical error of 150 eV. A new In-beam calibration

method with a high accuracy using LSO triggerable sources and 22Na sources was developed. There

are four advantages for this calibration system.

• The in-beam calibration data can be taken.

• The calibration data can be taken simultaneously under the same condition as the main data

taking.

• The reference peaks can be clearly identified even with a high counting rate due to high

intensity beams.
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• The X-ray energy region of our interest is calibrated by interpolation using the reference

energies.

Firstly, the calibration data should be taken under the same in-beam condition as the main data

taking. It is because a peak position shifts between the on-beam and off-beam periods due to

baseline shift of the shaping amplifier. The spectra of 307-keV γ ray during on-beam and off-beam

period for one hour data-taking is shown in Fig. 2.23. The calibration parameters for on-beam

data were applied to both data. These γ-ray peaks were fitted with a gauss function plus linear

function. For on-beam and off-beam data, the mean value was obtained to be 306.91 keV and

306.77 keV, respectively, with the errors of less than 10−3 keV. Thus the peak position shifted at

least ∼100 eV.
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Figure 2.23: The 307-keV γ ray peak detected on-beam (blue) and off-beam (red) period.

Secondly, the calibration data should be taken simultaneously during the data taking to track

the gain drift of the Ge detector readout system due to beam intensity and temperature changes.

Such gain shift can not be tolerated for one month of the data-taking period considering an energy

shift of the X ray less than sub keV. The shift of the mean value of the 307-keV γ ray from 176Lu

in LSO during data-taking period was plotted in Fig. 2.24. The calibration parameters for the

first run were applied to all the runs. The peak position shifted by 200 eV.

Thirdly, the reference peaks should be identified without buried in huge in-beam background

events. When performing a run by run calibration, use of a weak radiation source is desired in

order to avoid increase of background in the X-ray spectrum. Thus, the data of the reference γ

rays should be selectively acquired.

Fourthly, X-ray energies of our interest, 370 keV and 316 keV, should be calibrated by interpo-

lation of the reference γ-ray energies. Therefore, for example, the 60Co source emitting 1173 keV

and 1332 keV γ rays were not suitable for this experiment.
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Figure 2.24: The shift of peak position of the 307-keV γ ray from LSO during the data-taking period.

Figure 2.25: Decay scheme of 176Lu [36]. The 176Lu nucleus beta decays to excited states of 176Hf. It

decays to the ground state with cascade γ-ray emission. The 202-keV and 307-keV γ rays are used in the

present calibration.

Triggerable calibration source : LSO system

LSO (Lu2SiO5) is a scintillator having self-activity of 176Lu. As shown in the 176Lu decay scheme

(Fig. 2.25), 176Lu beta decays (half life ∼ 3.7 × 1010 y) followed by three γ-ray emissions in cascade

(88.34 keV, 202.843 keV, and 306.791 keV). The activity of LSO amounts to 300 Bq/cm3. The

idea here is that we take β-γ coincidence between the LSO counter (β) and the Ge detector (γ)

for β-decay events of 176Lu [35]. The scintillation light from an LSO crystal was detected using

a multi-pixel photon counter (MPPC) since it can be operational even in the magnetic field from

the magnetic spectrometer installed just downstream.

The statistical accuracy of the peak position of the reference γ rays depends on the peak counts.

When the peak counts are more than 300, the accuracy is σ = 50 eV at 400 keV which is good

enough. The LSO counter was designed to detect 300 counts of γ rays in one-hour run taking into

account the distance between the LSO counter and the Ge detector, the LSO crystal size, and the
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Figure 2.26: The location of the LSO counters. The distance between the LSO counter and the Ge detector

on the beam height is about 5 cm.
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Figure 2.27: Schematic drawing of the LSO counter. The LSO crystal size was 12.5 mm × 15 mm × 40

mm (2250 Bq). The MPPC attached to the LSO crystal had a size of 6 mm × 6 mm and contained 6400

pixels.

light yield of the LSO scintillator.

A pair of LSO counters was installed near the Ge detectors as shown in Fig. 2.26. They were

fixed to the Hyperball-X frame beside the two Ge detectors at the beam height (SLOT 2 and

SLOT 5) via aluminum arms. The distance between the LSO counter and the Ge detector was

about 5 cm. One LSO counter was used to take coincidence with the Ge detectors on the right

half side (SLOT 1-3) and the other on the left half side (SLOT 4-6) of Hyperball-X.

The crystal size was determined so that sufficient peak counts of 300 for an hour could be

obtained when installed in the position shown in Fig. 2.26 3. In this geometry, the expected

absolute total photopeak detection efficiency for one clover-type Ge crystal was 0.07% at 370 keV.

The required activity was then estimated to be 2500 Bq. We used two 2250 Bq LSO crystals (12.5

mm × 15 mm × 40 mm) as shown in Fig. 2.27, that is, 4500 Bq of activity in total.

The light yield of the LSO scintillator also affects the peak counts. The MPPC we used has a

3The beam is extracted every 5.5 seconds with the duration of about 2.2 seconds in the J-PARC accelerating

cycle. Therefore, the total on-beam period is about 1400 seconds in an hour data taking.
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Figure 2.28: The threshold dependency of LSO singles rate. The lower threshold dependency without the

upper threshold is shown in (A). The upper threshold dependence lower threshold of 30 mV is shown in

(B).

size of 6 mm × 6 mm with 6400 pixels. The LSO crystal to which the MPPC was attached with

silicone optical grease (BC-630) was wrapped with a teflon sheet. The waveform was observed

on the oscilloscope to check amount of a dark current (a few photons) and γ rays from a 60Co

source. In the case of an LSO crystal which is twice in the volume of the actually used ones, about

1500 photons were observed for the 1173-keV γ ray from a 60Co source. As shown in Fig. 2.25,

the maximum β-ray energy of 167Lu is 596 keV. It means that this β ray corresponds up to 800

photons. We found, therefore, that a maximum number of photons from the 596 keV β ray is well

above that from dark current. In addition to the dark current of MPPC, high energy particles from

the beam also produce signals in LSO. In order to reject these false events, we should set lower

and upper thresholds for the LSO trigger event for the dark current and the high energy deposit,

respectively. We optimized these threshold levels by studying the in-beam LSO singles count rate.

The dependence of the LSO single rate on the lower/upper thresholds are shown in Fig. 2.28. In

plot (A), the lower threshold dependence of the single rate is shown; the upper threshold is not

applied. We set the lower threshold to 30 mV to suppress the dark current. Similarly, the plot (B)

shows the upper threshold dependence with a lower threshold fixed to 30 mV. The upper threshold

was set to 180 mV and 140 mV for the LSO1 and the LSO2, respectively, above which the single

rate saturates because these levels correspond to the maximum energy deposit (1200 keV) by the
167Lu β-decay event.

The peak counts of the 176Lu γ rays detected in each Ge detector during one hour data-taking

period are shown in Fig. 2.29. SLOT 1 and 2 were of the clover-type Ge detector. The LSO peak

counts are larger for the Ge crystals in SLOT 2 and 5 since they are closest to the LSO counters.

The γ rays could be self absorbed in the LSO scintillator. The 202-keV γ ray count is smaller than

that of 307-keV γ ray because of a higher self-absorption probability for lower energy γ rays. At

least 400 peak counts were attained for each of all the reference γ rays.
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Figure 2.29: Peak counts detected by the Ge detectors for the reference γ rays from 176Lu. Ge detector

ID represents the SLOT number. For clover-type detector, the crystal number is written after the hyphen.

For each reference γ ray, the peak counts are more than 400.

22Na source

In order to calibrate 370-keV γ ray by interpolation, a reference point is required over 370 keV. The

511-keV γ ray produced by the disappearance of electron and positron come beam was not used

because the peak shape was found to be distorted and broadened in the past study. Thus, a γ-ray

from a reference 22Na source was used. 22Na emits a positron via β+ decay, followed by emission

of two back-to-back 511-keV γ rays. Using the 511-keV peak from 22Na source as well as the LSO

peaks, the energy region of our interest can be calibrated by interpolation. Two 22Na sources were

installed above and below the reaction target as shown in Fig. 2.18. Coincidence measurement

was made between a pair of Ge detectors located on the left and right half of Hyperball-X (SLOT

1 and 5, SLOT 2 and 4, SLOT 3 and 6). The radioactivity of the two 22Na sources were 3.7×103

Bq and 1.07×102 Bq, respectively. The 22Na peak counts in an hour are also shown in Fig. 2.29.

Even for the case of SLOT 3 and 6 with the weaker 22Na source, the peak counts were more than

400.

2.6.5 Triggers for Hyperball-X

Data of the X rays from Ξ− atoms and the three reference γ rays were taken by independent

triggers. Three types of triggers were: (a) Ge-(K−, K+) coincidence trigger (Ge∩KK), (b) Ge-

LSO coincidence trigger (Ge∩LSO), (c) Ge-Ge coincidence trigger for 22Na (Ge∩Ge). The diagram

of these trigger logic circuits is shown in Fig. 2.30. The Ge CFD output signal explained in Fig. 2.22

was used as the Ge timing signal. The output signal of the LSO counter was sent to a discriminator

to apply the lower/upper threshold discussed above. These trigger signals were sent as a start signal
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to a multi-hit TDC (MHTDC) used in the common stop mode. The BH2 signal from the incident

beam particles was used as the stop signal. Every event was registered together with its trigger

type. Which trigger is used to record an event can be identified by checking a correlation between

TDC data of these triggers and the Ge TDC data.

low threshold

high threshold

KK trig.

LSO 
(Right) Discri.

Discri.

low threshold

high threshold

LSO 
(Left) Discri.

Discri.

Ge CFD out  
(Right) 

Ge CFD out  
(Left) ADC 

(AD413A) 

MHTDC 

gate

Ge*LSO  trigger

Ge*Ge trigger

Ge*(KK) trigger

MHTDC 

MHTDC 

Figure 2.30: The diagram of the trigger logic circuit. Three trigger signals were generated from the

CFD output signal of the Ge detector in coincidence with the LSO signal (Ge∩LSO), the other Ge signal

(Ge∩Ge) or the (K−, K+) reaction trigger (Ge∩KK). The trigger signals were sent to the multi-hit TDC

(MHTDC) so that every event was tagged with the trigger type.

The in-beam ADC spectra selected by these three triggers for one of the clover-type Ge crystals

are shown in Fig 2.31. The beam intensity was 130 kHz for kaon plus 30 kHz for pion. After the

events that a Ξ− stopped in the emulsion are identified by the emulsion image analysis, Ξ− atomic

X rays should be visible in (a) of the Ge∩KK trigger. The (b) and (c) spectra are for the Ge∩LSO
trigger and the Ge∩Ge trigger, respectively. With the β-γ or γ-γ coincidence, clean spectra for

calibration data were obtained even in high background counting rates. Each peak was fitted with

a Gaussian function and a quadratic function for background.

2.7 Data summary

The data taking was performed in 2016 and 2017. For the Ξ− production run, the diamond target

was irradiated with 11.4×1010 K− beam in total. In 2016, 18 emulsion modules were exposed in
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Figure 2.31: ADC spectra for one of the clover-type Ge crystals taken by three trigger conditions. The(a),

(b) and (c) spectra are for the Ge∩KK trigger, the Ge∩LSO trigger and the Ge∩Ge trigger, respectively.

They are from the in-beam X-ray measurement run data taken for an hour.

11 days, and in 2017, 100 emulsion modules were exposed in 38 days. For the calibration run, the

polyethylene target was irradiated with 1.9×109 K− beam.
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Analysis and Results

3.1 Overview

The data for X rays from Ξ−Ag and Ξ−Br atoms (case1) and Ξ−C atoms (case2) were analyzed.

The procedure of analysis is shown in the flowchart in Fig. 3.1.

The X-ray analysis was common to both cases and described in Section 3.2. The coincidence

events between the (K−, K+) trigger and the Ge detectors were selected and analyzed. Using the

Ge hit TDC, the Ge detector which triggered was selected. The Ge ADC was calibrated by the

new calibration method using LSO counters and 22Na sources. Background events were rejected

by the BGO detectors. Analysis of the (K−, K+) reaction was also performed common to both

cases. The incident K− and the scattered K+ were analyzed by the K1.8 beam line and KURAMA

spectrometers, respectively. The missing mass was reconstructed, and the Ξ− production events

were selected. This is described in Section 3.3.

The events in which the Ξ− stops in the emulsion were selected for Ξ−Ag and Ξ−Br atoms

production. The Ξ− track was analyzed by SSDs, and the vertex point of the p(K−,K+)Ξ− reaction

was reconstructed. From the Ξ− track, the Ξ− injected point on the surface of the first layer of the

emulsion was determined. Then a Ξ− track was searched for in the developed emulsion image. The

Ξ−Ag and Ξ−Br atomic X-ray spectra were obtained by combining the analysis for production of

Ξ−Ag and Ξ−Br atoms and the X-ray analysis. This is described in Section 3.4.

For production of Ξ−C atoms, those events in which a produced Ξ− is expected to stop in

the diamond target with a large probability were selected. Using information of SSD1 located

downstream of the target, the events Ξ− passing through the target were rejected. Then, by

comparing to Geant4 simulation1, Ξ−s with a large probability of stopping in the target were

selected. The Ξ−C atomic X-ray spectra were obtained by combining analysis for production of

Ξ−C atoms and the X-ray analysis. This analysis is described in Section 3.5.

1Simulation tool which calculate the passage of particles using Monte Carlo method. Developed by CERN.

47
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Figure 3.1: A procedure of analysis.
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3.2 X-ray Analysis

In this section, analysis of Hyperball-X is explained. The analysis was carried out following the

items listed below.

• Matching the data taken by HD- and HBX- DAQ

• Selection of Ge hit events with a TDC gate

• Energy calibration

• Background suppression by BGO

In addition, the performance of Hyperball-X, i.e, energy resolution and efficiency, is described in

the later part of this chapter.

3.2.1 Event selection and calibration

Matching the data taken by HD- and HBX- DAQ

The data of Hyperball-X were taken by the HBX-DAQ system which was independent of the HD-

DAQ system explained in subsection 2.4.3. On the HD-DAQ side, data were acquired with the KK

trigger, while on HBX-DAQ, data were acquired with the Ge∩KK trigger. The data from each of

the DAQs were synchronized using the spill and event numbers. In addition, a time stamp was

distributed and its TDC value was recored by both DAQ systems. This TDC value was used to

ensure that the data sets belong to the same KK trigger. The correlation between the time stamp

TDC value taken in the HBX DAQ (clockHD) and that taken in the HD DAQ (clockHBX) is shown

in Fig 3.2. This is for the data of one emulsion module. We accepted events in the area enclosed

by the black lines as shown in the figure, and events within this area was used for each module.

Figure 3.2: Correlation of clock values measured with HD DAQ and HBX DAQ.
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Selection of Ge hit events with a TDC gate

For the data taken by the Ge∩KK trigger, the timing of Ge hit was selected to identify which

Ge detector had a signal. The common stop signal for the Ge hit TDC was the Ge∩KK trigger.

The timing resolution of the Ge detector depends on γ-ray energy. The TDC distributions of a

clover-type and a single-type Ge detector are shown in Fig. 3.3. They depend on the ADC value.

The distributions are shown for four ranges of ADC channels, (1) 0 - 500, (2) 500 - 1000, (3) 1000

- 1500, (4) 1500 - 8000 (unit is an ADC channel). Note that the gain of the Ge detectors was

adjusted to ∼0.2 keV/channel. The four ranges are described in unit of keV, as (1) 0 - 100 keV,

(2) 100 - 200 keV, (3) 200 - 300 keV, (4) 300 - 1600 keV. The timing resolution of clover-type and

single-type detectors were 21 and 14 ns in FWHM at 200 - 300 keV, respectively. They were 80

ns and 140 ns, respectively, at 100 - 200 keV.
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Figure 3.3: TDC distribution of Ge detector.

Accordingly, the gate width of TDC depends on the ADC value. A correlation between ADC

and TDC for a clover-type detector is shown in Fig. 3.4. The TDC gate as shown in red lines was

set for every Ge detector. The higher edge of the gate was fixed to t0, which was tuned for each

Ge detector. The lower boundary t1 was given by a function of t1 = −C2/(C1 − t0). The C1 was

adjusted to the peak position of the TDC distribution, and C2 was a constant common to all the

Ge detectors.

Energy calibration

For energy calibration of the Ge detectors, three reference γ rays from LSO (202 keV, 307 keV)

and 22Na (511 keV) were used. Usually, the ADC data for each Ge detector were calibrated every

one hour. Each γ-ray peak was fitted with a Gaussian function and a quadratic function by the

χ2 method as shown in Fig. 3.5. Correlations between the peak mean value and the energy are
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Figure 3.4: Correlation between ADC and TDC of Ge detectors.

fitted by the least squares method with a linear function as follow,

y[keV ] = a× x[ADCch] + b, (3.1)

where a and b are calibration coefficients. The new calibration method enabled us to calibrate the

Ge detectors run by run. The peak mean values of 307-keV γ ray are plotted in Fig. 3.6. The black

dots represent the case of calibration with the common parameters for through out the runs, and

the red dots is the case of calibration made run by run. The effect of Ge gain drifting in long-term

data-taking was corrected for by the new calibration method.

When Eq. 3.1 is employed as a calibration function, the calibration error (σcalib) for this method

can be calculated with an error propagation mothod as follows,

σcalib =

√(
∂y

∂a

)2

σ2
a +

(
∂y

∂b

)2

σ2
b + 2

(
∂y

∂a

)(
∂y

∂b

)
σab

=

√(
y − b

a

)2

σ2
a + σ2

b + 2

(
y − b

a

)
σab (3.2)

where σa and σb are the errors on a and b, respectively, and σab is a covariance. σa and σb are

proportional to the peak mean accuracy. Thus, low statical peaks make calibration accuracy

worse. As an example, an hour data taken by one of the clover-type Ge crystals (No.1-1) was

calibrated, and the resulting residuals for each reference γ-ray energy are represented by black

dots in Fig. 3.7. Errors on the points were obtained by peak fitting. The solid magenta line
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Figure 3.5: Peak fitting of reference γ rays.
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Figure 3.6: The gain drift of Ge detector

represents σcalib calculated with Eq. 3.2. The σcalib was less than ±50 eV at the interpolated

energy region, between 202 keV and 511 keV. For the case of 370-keV X ray, the σcalib was ±20

eV. Similar or better results were obtained for almost all the other crystals as shown in Fig. 3.8.
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Figure 3.8: Residue for the three reference peaks for all the Ge crystals. This is for an hour data. The

calibration errors are shown in magenta.

The validity of this calibration method was checked using γ rays from a 133Ba source. For

several hours, the in-beam data was taken with a 133Ba source placed on the target. Four γ rays,

between 200 and 400 keV, from 133Ba shown in Table 3.1 were measured and calibrated with the

three-point method. The residues were obtained as shown in Fig. 3.9. The black and red dots

represent the residues for reference γ rays and γ rays from 133Ba, respectively. This is the result for
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one Ge crystal (No.1-1) and γ rays were calibrated with less than 50-eV accuracy. The results of

all the other Ge crystal are shown in Fig. 3.10. For some Ge crystals, such as No.1-2 or No.6, the

residue has correlation with γ-ray energy. It is possible that the fitting function was not optimized

or the linearity of the ADC modules was not enough. As a result, γ rays were calibrated with at

least 100-eV accuracy by any Ge detector.

Table 3.1: The γ rays from the 133Ba source.

energy [keV] intensity [%]

276.398 7.164

302.853 18.33

356.017 62.05

383.851 8.94
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Figure 3.9: Residues for γ rays from 133Ba (shown in red dots). It is an hour data taken by clover-type

Ge crystal (No.1). Black dots represent residues for reference γ rays.
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Figure 3.10: Residuals for γ rays from 133Ba (shown in red) and for reference γ rays (shown in blalck) for

all Ge crystals.

Finally, the calibration error for one X-ray event depends on a Ge detector that it is measured,

thus, the weighted average of the calibration error for the obtained X rays should be regard as a

systematic error.

Background suppression by BGO detectors

Using the hit information of the BGO detector, background events are rejected (BGO suppression).

The TDC data of the BGO detectors are used as hit information. The TDC distribution is shown

in Fig. 3.11, and some region is accepted as events which are synchronized with the Ge∩KK trigger.

The upper edge of the gate is fixed to 790 channel. The suppression efficiency and the survival

ratio of signals depend on the width of the gate. They are evaluated using 718-keV γ ray from
11B produced by the beam on the 12C target. In Fig. 3.12, the gate width dependence of the peak

significance (S/
√
N) is shown. When the gate width is less than 50 ns, the S/

√
N is increased

greatly with expansion of the gate. On the other hand, when the gate width is larger than 50 ns,

S/
√
N is increased gradually and tends to plateau with over 70-ns width. Thus, 50-ns width is

employed as the BGO gate.
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Figure 3.11: TDC distribution of the BGO detector.
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Figure 3.12: The gate width dependence of peak significance (S/
√
N).

The gate width dependence of the survival ratio for the 718-keV γ-ray signal is shown in

Fig. 3.13. When the gate width is 50 ns, the survival ratio of signal is 84%.
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Figure 3.13: The gate width dependence of the 718-keV γ-ray signal survival ratio.

3.2.2 Performance of Hyperball-X

Energy resolution

The energy resolution of the Ge detectors is evaluated using γ rays from the 152Eu nucleus as

shown in Table 3.2. The energy dependence of the resolution (in FWHM) is shown in Fig. 3.14.

This correlation can be written in the following equation.

δE = aE1/2
γ + bEγ + c (3.3)

where a, b and c are coefficients, Eγ is the energy. The first term which depends on the square root

of the γ-ray energy represents uncertainty of the number of electron-hole pairs produced by γ-ray

interaction. Empirically, uncertainty in carrier collection is proportional to the energy. The third

constant term is caused by electric noise which is independent of the energy. The fitted value of a,

Table 3.2: The γ rays from the 152Eu source.

energy [keV] Intensity [%]

121.78 28.58

244.6975 7.583

344.2785 26.5

443.965 2.821

778.9040 12.942

964.079 14.605

1112.074 13.644
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Figure 3.14: Energy dependence of energy resolution. The resolution is evaluated using γ-ray peaks of
152Eu.

b, and c are 2.3× 10−2, 1.5× 10−3, and 1.8, respectively, for the on-beam data and the resolution

is 1.9 keV (FWHM) at 370 keV.

The live time of Ge detector

Operating the Ge detectors under high counting rate environment lowers their live time. Energies

are processed incorrectly in the readout electronics when the signals input to ADCs are piled up

and distorted. In addition, high reset rate increases a dead time due to the baseline distortion

after a transistor reset. Counting rates of the Ge detectors were 2∼3 kHz for the clover-type and

4∼5 kHz for the single-type detector. The intensity of the beam supplied from the accelerator was

not stable. At the time when the instantaneous beam intensity is extremely high, it is possible

that pile up and a reset rate increase significantly. The live time under such a beam environment

was evaluated using γ rays from a 60Co source. It is defined as

Live time =
counts of γ rays which wave correctly processed by readout electronics

counts of original γ rays giving a signal in the Ge detector.
(3.4)

To evaluate the live time under the data-taking condition, γ rays were counted with the “beam

trigger” which was a pre-scaled timing signal of the beam hodoscope (BH2). Since the original γ

rays were not able to be counted, the data in which the live time achieves 100% were also taken

as a reference. The counts of γ rays detected during the off-beam period was regarded as that of

the original γ rays. The data was also taken with the “random trigger” which was a clock signal

and has no correlation to the instantaneous beam intensity during both on-beam and off-beam

periods. The conditions and results are summarized in Table 3.3. The live time for Ξ− atomic X

rays synchronized to the beam was found to be 88±1%. On the other hand, the live time for γ
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Table 3.3: Live time of Ge detectors.

trigger beam live time [%]

(1) clock off reference

(2) clock on 95±1

(3) beam (pre-scaled) on 88±1

rays from the LSOs and 22Na sources, corresponding to the condition of the random trigger, was

95±1%. The error comes from statistics of the γ rays.

Photo-peak efficiency

The photo-peak efficiency (ϵphotopeak) depends on where X rays are generated and absorbed by

materical. It is evaluated for X rays from the emulsion and from the target separately.

Efficiency for X rays from the center position of the emulsion

The photo-peak efficiency for X rays emitted from the emulsion was evaluated considering both of

absolute value and energy dependence.

Firstly, the absolute value of the efficiency was measured. Cascading two γ rays from a reference

source were detected by a Ge detector and a reference detector, respectively. A NaI detector was

used as a reference detector. The efficiency was calculated as the ratio of the number of γ rays

detected by the NaI detector to that detected by the Ge detector. Advantage of this method is that

the absolute value is determined even without knowing the source intensity exactly. As reference

γ rays, 1173-keV and 1332-keV γ rays from 60Co were used. They are emitted in cascade with a

branching ratio of 99.9% (see Fig. 3.15). The efficiency is given by

eff. = (Nγ1173Ge − Nγ1333Ge)/Nγ1333NaI, (3.5)

where Nγ1173Ge is the number of counts of the 1173-keV γ rays detected by the Ge detector,

Nγ1333NaI is the number of counts of the 1333-keV γ ray detected by the NaI detector. The γ-ray

spectra detected by the NaI and Ge detectors are shown in (a) and (b) in Fig. 3.16, respectively. As

shown in (a), a region from 1330 to 1450 keV is selected as the 1333-keV γ ray (Nγ1333NaI) in order

to avoid contamination of the 1173-keV γ ray. A γ-ray spectrum detected by the Ge detectors

when the 1333-keV γ ray was selected is shown in (b). As shown in (b), there were 1333-keV

γ rays detected in accidental coincidence. The 1173-keV peak should have a similar amount of

accidental contamination to be subtracted. The number of detected 1173-keV γ rays by the Ge

detector should be corrected considering the following two points. The two γ rays from 60Co have

an angular correlation. It is corrected depending on the angle between the Ge detector and the

NaI detector. In addition, a correction for the live time of the Ge detector should be considered.

The live time of the Ge detector decreased due to the 60Co source activity of about 4.2×105 Bq. It
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was evaluated to be 84±1% using 306-keV γ ray from the LSO during the off-beam period. Thus,

the absolute efficiency for all the Ge detectors was measured to be 0.84±0.05(stat.)% at 1117 keV.

Only statistical error for γ rays detected by the Ge detector was employed because the others were

small enough to be ignored.

Figure 3.15: The decay scheme of 60Co.
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Figure 3.16: The γ-ray spectrum of 1173-keV and 1333-keV γ rays from 60Co by a NaI detector (a) and

a Ge detector (b) for the measurement of the absolute efficiency.

Secondly, the energy dependence of the photo-peak efficiency is studied using γ rays from
152Eu during the off-beam period. The energies of six reference γ rays from 152Eu are shown in

Table 3.2. A 152Eu source was put at the center of the emulsion module, in which emulsion was

not installed. The activity of the 152Eu source was 1.27×104 Bq with 3.8% uncertainty at the time

of the measurement. The efficiencies measured for these reference γ rays are shown in black dots

in Fig. 3.17. This result is reproduced by a Geant4 simulation. The efficiency curve estimated by

the simulation is shown in red in the figure. Note that the result of the simulation is scaled to the

measured data. This is because the effective volume of each Ge detector which depends on the
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electrodes and detailed shape of the crystal was not reproduced completely in Geant4 simulation.

In order to reproduce the measured efficiency shown in Table 2.7, the result of the simulation was

multiplied by a factor of around 0.8. The simulated value for the 1117-keV γ ray is different by

0.13% from the measured value, as shown in a blue dot of the absolute efficiency. This is because

the intensity of a 152Eu source had an uncertainty. The simulation result is scaled to reproduce

the measured absolute efficiency within the error, and the scale factor is 1.18.

energy [keV]
0 200 400 600 800 1000 1200

ef
fi

ci
en

cy
[%

]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

simulation, scaled

Eu w/o target
152

Co w/o target
60

Figure 3.17: The efficiency curve for γ rays emitted from the center position of the emulsion. The measured

energy dependence of the efficiency without the target is plotted in black dots. The absolute value for

1173-keV γ ray measured with a 60Co standard source is shown in a blue dot. The simulated efficiency

curve without the target is shown in red.

Thirdly, γ-ray absorption by material is studied. Absorption by the diamond target was mea-

sured. The efficiencies with and without the target are shown in black cross and dots, respectively,

in Fig 3.18. These results are compared to the simulated efficiency curves with and without target,

as shown in blue and red line in the figure. For the case with the target, the efficiencies of the data

and the simulation are different by 0.05% at 344 keV. This is considered as a systematic error.



CHAPTER 3. ANALYSIS AND RESULTS 62

energy [keV]
0 200 400 600 800 1000 1200

ef
fi

ci
en

cy
[%

]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

simulation, w/o target

simulation, w/ target

Eu) w/o target
152

data (

Eu) w/ target
152

data (

Figure 3.18: The effect of γ-ray absorption by the target. The dots and crosses represent a measured

efficiency with and without the target.

Finally, the photo-peak efficiency which also takes into account the absorption by the emulsion

was estimated by simulation. Considering the scale factor to reproduce the absolute value, the

estimated efficiency curves (1) without material, (2) with the target, and (3) with the target and

the emulsion, are shown in red, blue and black line, respectively, in Fig.3.19. About 50% of 300-

keV γ ray from the center of the emulsion module is absorbed by the target or the emulsion. After

all, the efficiency for the 370-keV γ ray was obtained to be 0.99 ± 0.05(stat.) ± 0.05(sys.)%.
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Figure 3.19: The simulated efficiency curves. They are estimated for the conditions (1) without material,

(2) with the target, and (3) with the target and the emulsion, as shown in red, blue and black, respectively.

Efficiency for X rays from the target

The efficiency for X rays generated in the diamond target was also estimated. This was evaluated

for the 150-keV X ray from Ξ−C atom. The efficiency for the reference γ rays from 133Ba and 152Eu

sources on the empty target holder was measured. The result is shown by black dots in Fig. 3.20

and, it is consistent with the result of Geant4 simulation represented by a red line, although the
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curve is scaled considering the same reason as already discussed. The difference from the measured

efficiency comes from the uncertainty of 152Eu source intensity was considered as same as discussed

above. By considering absorption by the target, the efficiency for γ ray generated uniformly inside

the target was estimated by simulation as shown in the blue curve in Fig. 3.20. After all, the

efficiency for the 154-keV γ ray was obtained to be 1.55 ± 0.05(stat.) ±0.05(sys.)%.
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Figure 3.20: The efficiency curve for γ rays emitted from the target. The measured efficiency without the

target is plotted in dots. The simulated efficiency curves with and without absorption by the target are

shown in red and blue, respectively.

Total efficiency

Finally, the total efficiency of Hyperball-X is given by a produce of the live time of the Ge detectors,

the photo-peak efficiency and the DAQ efficiency as follows,

ϵTotal = live time× ϵphotopeak × ϵDAQ. (3.6)

The DAQ efficiency during the Ξ− production period was 95%. The total efficiency was 0.83 ±
0.07% at 370 keV for X rays from the center of the emulsion and 1.30 ± 0.07% at 154 keV for X

rays from the target.



CHAPTER 3. ANALYSIS AND RESULTS 64

3.3 Analysis of the (K−, K+) reaction

In this section, the analysis of the (K−, K+) reaction is described. It was applied to both of case1

and case2 analysis. The momentum of beam particles and scattered particles were analyzed by the

beam line spectrometer and the KURAMA spectrometer, respectively. Then, K− andK+ particles

were identified by the time-of-flight value or the mass calculated by the velocity. The vertex point

of the (K−, K+) reaction was reconstructed by the K− and K+ tracks, and the missing mass and

the momentum were also reconstructed. Detailed items for the analysis are listed as follow.

• Momentum reconstruction of K−

• Incident K− identification by time-of-flight

• Momentum reconstruction of K+

• Scattered K+ identification by a mass

• Reconstruction of a vertex point of the reaction

• Reconstruction of the missing mass.

The procedure of analysis was the same in both cases but the selection conditions were different.

Details of the optimized selections for case1 and case2 are explained in Section 3.4 and Section 3.5,

respectively.

3.3.1 Analysis of K−

Reconstruction of K− track and momentum

The position (x, y), angle (x′, y′), and momentum (p) of the incident particle at upstream of Q10

(xup, yup, x
′
up, y

′
up, p) and at downstream of Q13 (xdown, ydown, x

′
down, y

′
down, p) are related by the

transfer matrix (M) corresponding to the magnetic fields of the magnets of the K1.8 beam line

spectrometers (QQDQQ) as follows,
xup

yup
x′
up

y′up
p

 = M−1


xdown

ydown

x′
down

y′down

p

 . (3.7)

M was calculated by TRANSPORT. M−1 is the inverse matrix of M . We had five simultaneous

equations. When the five values (xup, xdown, ydown, x
′
down, y

′
down) were given from measurement, the

four unknowns (yup, x
′
up, y

′
up, p), were calculated from Eq. 3.7. At upstream of the Q10 magnet,
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xup was measured by BFT. At downstream of Q13, (xdown, ydown, x
′
down, y

′
down) was obtained by

tracking analysis of BC3 and BC4. BC3 and BC4 each having 4 layers measured the hit positions

of the beam particle. The beam track was obtained as a straight track with the least χ2 fitting

method by using hit positions at BC3 and BC4. The χ2 value is defined as

χ2 =
1

n

∑
i=1

(
Pi − f(xi)

σi

)2

, (3.8)

where n is the degree of freedom, Pi is the hit position of the i-th layer, f(x) is the assumed linear

function, σi is the position resolution of i-th layer. When there were multiple hits in BFT, BC3,

and BC4, multiple tracks were considered for all combinations. After analysis of BFT, BC3, and

BC4, the four unknowns (yup, x
′
up, y

′
up, p) were obtained. The obtained momentum of the incident

particle is shown in Fig. 3.21.
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Figure 3.21: The reconstructed momentum of incident particles.

K− identification by time-of-flight

The mass of the beam particle is calculated from the time-of-flight and the measured momentum.

The momentum bite of the beam line spectrometer was as small as ±3%. The time-of-flight

between BH1 and BH2 which mainly contribute to the mass distribution was used to identify the

K− beam. The distance between BH1 and BH2 was 11.2 m. For the case of beam particles of

1.8 GeV/c momentum, the difference of the time-of-flight was 1.27 ns between K− and π−. The

distributions of the time-of-flight are shown in Fig. 3.22. Black and red show the distributions

taken by the BH2 trigger and the KK trigger, respectively. The peak seen only in red represents

the K− particles.
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Figure 3.22: The distribution of time-of-flight (=BH2-BH1).

3.3.2 Analysis of K+

Reconstruction of K+ track and momentum

The track of the scatteredK+ was obtained by analysis of the KURAMA spectrometer. Firstly, the

track of the scattered particle was reconstructed at upstream and downstream of the KURAMA

dipole magnet (KURAMA-Up and -Down side), independently. At the KURAMA-Up side, there

were three types of trackers, SSD, SDC1 and SCH, having 15 layers in total. At the KURAMA-

Down side, there were two drift chambers, SDC2 and SDC3, having 8 layers in total. In local

tracking at the Up side and the Down side, a track was fitted by a linear function. Then a track

under the magnetic field was reconstructed by solving the equation of motion over a certain step,

of which solution is used to calculated the next step; the numerical method so-called Runge-Kutta

method [37] was employed. As initial values, the particle position and the velocity reconstructed

by the KURAMA-Down side tracking were used. The magnetic field of the KURAMA magnet was

calculated using TOSCA code [38] with the finite element method. The strength of the magnetic

field was being monitored by an NMR probe during the experiment. The reconstructed track is

validated based on χ2
KURAMA given as

χ2
KURAMA =

1

n

n∑
i=1

[
xdata
i − xtracking

i

σi

]2

, (3.9)

where n is a number of the layer, xdata
i is the measured hit position on the i-th layer, xtracking

i is the

reconstructed hit position on the i-th layer. The distribution of χ2
KURAMA is shown in Fig. 3.23.

Tracks with χ2
KURAMA less than 30 were accepted.
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Figure 3.23: χ2 of the KURAMA tracking.

Identification of K+ by mass

The mass of scattered particles (Msca) is calculated from β and momentum (psca), as follows,

Msca =
psca
β

√
1− β2. (3.10)

The flight path length between the target and the TOF detector was calculated from the KURAMA

tracking. The time of flight between them was also measured, and thus β of scattered particle

was calculated. As seen in the mass squared distribution of positive charged particles shown in

Fig 3.24, the scattered K+ was contaminated with π+ and proton. For particle identification, the

mass squared was selected in both of case1 and case2.
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Figure 3.24: The mass square distribution of positive charged particles.

The obtained momentum distribution of scattered K+ is shown in Fig. 3.25. For this distribu-

tion, the mass of the scattered particles was roughly selected, 0.19 < mass2 < 0.29 [(GeV/c2)2],
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as a K+ particle.
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Figure 3.25: The momentum distribution of scattered K+.

Several (K−, K+) processes contribute to this momentum distribution. They were investigated

in the past experiment and reported in references [6][8]. For the obtained missing mass distribution,

the contribution of the other possible one-step quasifree processes in the (K−, K+) reaction is

estimated. The possible (K−, K+) processes are

• (a) K−p → K+Ξ−,

• (b) K−p → K+Ξ−∗(1530),

• (c) K−p → K+Ξ−π0,

• (d) K−p → K+Ξ0π−.

Next, meson-induced two step strangeness exchange process,

K−N → πY,

πN → K+Y,

where Y is Λ,Σ or Σ± also contribute.

According to a reference [8], Λ production associated with scaler and vector mesons may exist

as follows,

K−p → f0(975)Λ, a0(980)Λ, ϕΛ

f0/a0/ϕ → K−K+.

The peak around pK+ = 1.2 GeV/c is mainly due to Ξ− production via the process (a).
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3.3.3 Reconstruction of the (K−, K+) reaction

Using the obtained K− and K+ tracks, the (K−, K+) reaction was reconstructed. That is, the

reaction angle, the vertex point, the missing mass and the missing momentum were obtained.

Reconstruction of the reaction angle

When the K− beam reacted downstream of the target, it was possible that some of the tracking

detectors measure the K− track. In that case, a wrong θK+ made a background peak in the

forward direction. The distribution of the reaction angle (θK+) which is the angle between tracks

of incident K− and scattered K+ is shown in Fig. 3.26. To reject the background, cos θK+ less

than 0.996 was selected as the scattered angle.
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Figure 3.26: Reaction angle (θK+) distribution.

Reconstruction of the vertex point

The vertex point was reconstructed as the center of the closest distance of the K− and the

K+ tracks. The distribution of the closest distance is shown in Fig. 3.27.

By the reconstructed vertex point, those events in which the K− reacted at the target region

were selected. The vertex x distribution is shown in Fig. 3.28 and the target region was −25 < x <

25 mm. The target size was limited, and it did not cover the beam region completely. There was

a sudden drop at x of 25 mm, corresponding to the edge of the target. The vertex y distribution

is shown in Fig. 3.29 and the target region was −15 < y < 15 mm.

The obtained vertex z distribution is shown in black in Fig 3.32. SSD1, which had 4 layers

(xyx′y′), and the emulsion were located downstream of the target. Thus, not only the events in

which K− reacted at the target, but also at SSD1 and the emulsion were included.

Distribution of the vertex in the target, SSD1, and the emulsion was separately obtained when

the events were strictly selected using a residue between a SSD1 hit position and a KURAMA
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Figure 3.27: The closest distance between K− and K+ tracks.
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Figure 3.28: The reconstructed vertex point x
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Figure 3.29: The reconstructed vertex point y

track. The residue at the first layer of SSD1 is shown in Fig 3.30. When the K− reacted at

the target as shown in (1) of Fig. 3.31, the residue should be small. By selecting the event that

the residues were less than 0.1 mm at all the 4 layers, the distribution was obtained as shown in

red. This distribution is consistent with the location of the target that is at the −15 < z < 15

mm. When the K− reacted at layer x′ or y′ of SSD1 as shown in (2) of the figure, the residues

should be small but that of layer x or y should be large. By selecting the event that the difference

between the residues of the layer x and x′ ( y and y′) were larger than 0.1 mm, the distribution

was obtained as shown in blue. The distribution is consistent with the location of the SSD1 which

is at the 20 < z < 22 mm region. When the K− reacted at the emulsion as shown in (3) of the

figure, the residues at all layers should be large. In the case of a large scattering angle of K+ , the

residue of the first layer may be much larger than that of the fourth layer. By selecting the event

that the residue of the fourth layer was less than 0.1 mm and that of the first layer was larger than

0.1 mm, the distribution was obtained as shown in magenta. The distribution is consistent with
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the location of the emulsion that is at the 23 < z < 34 mm region.
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Figure 3.30: The distribution of residue between the Ξ− track reconstructed by KURAMA analysis and

the hit position at the first layer of SSD1.

Figure 3.31: The schematic drawing around SSD1. When the K− reacts at the target as shown in (1),

the residues at SSD1 are small. In (2), a dashed line represents the K+ track reconstructed by KURAMA

analysis. When the K− reacts at SSD1, only the residues at downstream layer of SSD1 are small. As

shown in (3), the residues of all the layers are large in particular when the K− reacts at the emulsion.

For the vertex point of z in the beam direction, a correlation with the reaction angle (θK+) was
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checked. The resolution of the vertex in z did not depend on the reaction angle strongly as shown

in Fig 3.33. Therefore, z of the vertex point was selected regardless of the reaction angle.
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Figure 3.32: The reconstructed vertex point z
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Figure 3.33: Correlation between vertex z and reaction angle θK+

Reconstruction of the missing mass

The missing mass (MX) of the produced particle X via the p(K−, K+)X reaction is given as

MX =
√

(E+
K +Mp − EK−)2 − (−−→pK− −−−→pK+)2, (3.11)

where EK+(EK−) and −−→pK+(−−→pK−) are the energy and momentum of K+(K−), and Mp is a proton

mass. Actually, K− reacts with a proton in a nucleus with a fermi motion, but the proton was

assumed to be at rest because it cannot be measured in the experiment. The reconstructed missing

mass distribution is shown in Fig. 3.34.
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Figure 3.34: The missing mass distribution for the (K−,K+) reaction.
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3.4 Method 1 in Chapter 1: Analysis and results for Ξ−Ag

and Ξ−Br atomic X rays

In this section, analysis and results for case1, that is, X rays from Ξ−Ag atom and Ξ−Br atom

which were generated in the emulsion, are described.

The last orbit of Ξ−Ag and Ξ−Br atoms are theoretically expected to be the 7I and 6H states,

respectively. The levels of Ξ−Ag atom is shown in Fig. 3.35. The energies of the last transitions

calculated assuming tρ potential and the branching ratio of the last transition calculated by A.

Gal are listed inTable. 3.4 [22]. The energies for the preceding transition calculated assuming just

Coulomb interaction alone and a point charge are also shown. In the experiment, the value of

PΞ(n,l) × BR(E1; (n, l) → (n− 1, l − 1)) was obtained from X-ray yield. From the last transition,

the BR(8J → 7I) is evaluated if PΞ(8J) value is known. Since BR(9K → 8J) is considered to be

∼100%, PΞ(8J) is evaluated from the preceding transition.

Figure 3.35: The levels of Ξ−Ag atom.

Table 3.4: The theoretically estimated X-ray energy for the last and the previous transitions. The energies

and the branching ratios of the last transitions were calculated using the tρ potential [22].

transition
energy

[keV]

shift

[keV]

width

[keV]
branching ratio

Ag
9K→8J 255

8J→7I 370 0.28 0.15 0.88

Br
8J→7I 206

7I→6H 316 0.73 0.44 0.73

3.4.1 Selection of Ξ−Ag and Ξ−Br atom production

For Ξ−Ag and Ξ−Br atoms production, the events in which the produced Ξ− stops in the emulsion

were selected with steps as shown below.
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1. Selection of the (K−, K+) reaction

2. Reconstruction of the Ξ− track

3. Rejection of Ξ− passing through the emulsion using SSD2

4. Selection of Ξ−-stop events by emulsion image analysis

Firstly, the Ξ− production via the (K−, K+) reaction was selected by analysis of the magnetic

spectrometers (step 1). Then, the Ξ− track was analyzed by SSD, and the Ξ− hit position and angle

at the surface of the emulsion were predicted. The reaction was reconstructed and selected by the

three particles, K−, K+ and Ξ− (step 2). Using hit information of SSD2 located downstream of the

emulsion, the Ξ− passing through the target was rejected (step 3). Then, based on the Ξ− position

on the surface predicted by the Ξ− track analyzed in step 2, the Ξ− track was searched for at

the developed emulsion (step 4). The reaction analysis by the magnetic spectrometers and the

Ξ− track analysis by SSD make the time for the emulsion image analysis shorter. This is called

the counter-emulsion hybrid method. Four levels of Ξ−-stop selections were set by the reaction

analysis. The selection (1) was the most strict, and the selected Ξ−-stop events were with good

S/N . In order to analyzed the Ξ−-stop events which were missed in the selection (1), the selection

(2) was set to be looser. With the selection (2), the number of events to be analyzed in the emulsion

is huge, and it will take more time than the selection (1). But the final S/N after emulsion analysis

will be the same. More events were selected in the selection (3) with a worse S/N but all Ξ−-stop

events are selected. The selection (1) is explained below and all the four conditions are summarized

at the end.

Selection of the (K−, K+) reaction

For the case1, after applying the selection for the (K−, K+) reaction, the Ξ− track was analyzed

by SSD, and the (K−, K+)Ξ− reaction was reconstructed.

The K+ momentum region of less than 0.9 GeV/c was rejected, in which Ξ−∗ and Ξπ were

produced dominantly, in order to reject contamination of Ξ0. The region of more than 1.5 GeV/c

was also rejected because there was a large proton contamination. To select Ξ− stopped in the

emulsion, the K+ momentum region of 0.9 < pK+ < 1.45 GeV/c was accepted. In addition, the

±3σ region of the K+ peak in the mass square distribution, which depends on the K+ momentum,

was accepted. The correlation of the K+ mass square and the momentum is shown in Fig. 3.36.

The accepted region is shown in black line.

Reconstruction of the Ξ− track

Here, analysis of the (K−, K+)Ξ− reaction to select the events in which Ξ− stopped in the emulsion

is described. The Ξ− track was reconstructed by using hit information of SSD1. When there were

hits in all the four layers, at least one hit in each layer except for the hit by the scattered K+ was
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Figure 3.36: Correlation between the mass square and the momentum of scattered particles. The region

surrounded by the black line is accepted as the scattered K+.

required for the Ξ− track reconstruction. When there were multi-hit planes, multi candidate tracks

were obtained using all the combinations. The reaction point is reconstructed using tracks of K−,

K+ and Ξ−. Firstly, the vertex point was determined by two tracks, namely Ξ− and K+ tracks.

The distributions of reconstructed vertex point are shown in Fig. 3.37. The accepted region was

set to −28 < x < 28 [mm], −20 < y < 20 [mm] and −20 < z < 20 [mm].
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Figure 3.37: The vertex point distributions reconstructed by the K+ and Ξ−tracks.

Residue of vertex point

Consistency between the x and y positions of K− at the target and the vertex point reconstructed

by K+ and Ξ− tracks was checked. The residue is shown in Fig. 3.38. Events in the ±2σ region of
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the residual peaks were accepted since they were considered to have three tracks consistent with

the (K−, K+)Ξ− reaction.
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Figure 3.38: Residue of the vertex point.

Residue of angle for Ξ− track

The track of Ξ− was obtained from the analysis of SSD. On the other hand, from the missing

momentum of Ξ− reconstructed by the (K−, K+) reaction analysis, the angle of the Ξ− track

when it is incident on SSD1 was predicted. Consistency between the reconstructed Ξ− emission

angle and the direction of the missing momentum (−→pΞ−) was checked. The residues of the angles in

x and y directions are obtained as shown in Fig.3.39, and events in the ±6σ regions of the peaks

were accepted.
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Figure 3.39: Residue of the angle of Ξ−.
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Rejection of Ξ− passing through the emulsion using SSD2

To reject events in which Ξ− particles passed through the emulsion module, SSD2 located down-

stream was used as a veto detector. A hit position was predicted from the track reconstructed by

SSD1. When there was a hit excluding K+ hit within 3 mm from the predicted position, this was

regarded as a hit by the Ξ− particle and the event was rejected.

Summary of selections in reaction analysis

The above selection conditions are summarized as selection (1) in Table 3.5. Selection (1) was

applied in the present analysis described in this thesis. The number of candidates for Ξ− stop was

8×103. Using Geant4 simulation [40], 80% of all Ξ−-stop events are estimated to be selected by

the selection (1).

As shown in Table 3.5, some other selection conditions with wider regions were also considered.

Selection (2) and (3) contain 94% and 100 % of the Ξ−-stop events, respectively. Selection(4)

contains all the Ξ− production events. Analysis will be completed when the selection (3) is applied,

and the longest time is required to analyze the emulsion images due to lots of candidate events.

Thus, these events selected by selection (1) for which emulsion image analysis was finished are

discussed in this thesis.

Table 3.5: Summery of the selection conditions

selection

(1) (2) (3) (4)

χ2 KURMA 30 10000 10000 10000

K+ mass2 ±3σ ±5σ ±5σ ±5σ

vertex residual ±3σ ±5σ ±5σ ±5σ

angle residual ±6σ ±12σ ±12σ ±12σ

SSD2 no Ξ− hit no Ξ− hit no Ξ− hit

SSD1 dE >60000 >40000 >30000

track / mod 440 850 6200 16000

Ξ−stop 80 % 94 % 100 % 100 %

Selection of Ξ−-stop events by emulsion image analysis

Based on the predicted position from the SSD analysis, the candidates of Ξ− tracks were searched

for in the first layer of the emulsion sheets by an optical microscope. Then, the tracks of the

candidate particles were traced until they stop. Just before the particle stops in the emulsion, a

thick track is observed because of a large energy deposit. In addition, the track gets dizzy due to a
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multiple Coulomb scattering. When these two features were observed at the stop point of a track,

the event was considered as a “stop-event”. After Ξ− stopped in the emulsion, it is captured by

an atom, and at the end, it is absorbed in the nucleus as Ξ−p →ΛΛ and the nucleus is break up to

fragments. Sometimes a double-Λ hypernucleus, or one or two single-Λ hypernuclei are produced

as fragments, sometimes the produced Λs not bound to a nucleus and mesonic decay as Λ → pπ−

or Λ → nπ0. Then, Λ inside a nucleus decays as Λp → pn or Λn → nn. The stop events were

classified into two types according to their visible structure at the stop point.

1. “σ-stop” event

If one or more charged fragments are produced, one or more charged tracks are observed at

the stopping point as shown in Fig. 3.40. Such an event is called a “σ-stop” event. The

arrow represents a Ξ− track with “dizziness”. Then, for the case of Fig. 3.40, three charged

tracks are seen from the Ξ− stop point.

2. “ρ-stop” event

In this case, no charged particle track is observed except for an Auger electron at the stop

point as shown in Fig. 3.41. If only neutral particles, n, Λ, and π0 are produced as fragment,

there is no tracks at the stopping point. Or, if heavy fragment is produced, the track was

too short to be observed. Such an event is called a “ρ-stop” event.

If Ξ− is absorbed in the nucleus and form hypernuclei, it is observed as a σ- or ρ-stop event.

Figure 3.40: An example of the Ξ− “σ-stop”

event. A Ξ− was observed as a dizzy track and

there were three charged tracks from the Ξ−-stop

point.

Figure 3.41: An example of the Ξ− “ρ-stop”

event. An expanded picture of the stop point

is shown in the lower left. An Auger electron

was observed from the stop point.
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At present, the image analysis for 67 emulsion modules has been completed with the selection

(1). The number of confirmed “σ-stop” and “ρ-stop” events are 1319 and 6317, respectively. The

number of the σ-stop events corresponds to 20% of the estimated total σ-stop events. For Ξ− stop

events, the ratio of the σ-stop and ρ-stop events is ∼2:1 [7]. Many of the ρ-stop events are not

Ξ− but backgrounds such as protons. The ρ-stop events are further classified based on absence or

presence of an Auger electron. By selecting “ρ-stop with an Auger electron” events, contamination

of the proton ρ-stop events can be rejected. When there were three or more grains within 3 µm

from the Ξ−-stop point, it is regarded as a track of an Auger electron. For the Ξ− ρ-stop, the

probability of the Auger electron emission is about 50% [7]. At present, for the 44 emulsion

modules, 37 “ρ-stop with Auger electron emission” events were found.

The number of σ-stop events

When the Ξ− atomic X-ray yield is discussed, the number of captured Ξ−s (NΞcapture) is needed.

Thus, as a systematic error for NΞcapture, the effect of the human error is evaluated. The human

error means the probability that the observer of emulsion image makes misjudgment in the event

classification. Five people (A, B, C, D, and E) analyzed the same event set as cross-check. When

the result analyzed by A disagrees with the majority of the others, it was regarded as the error by

A. The number of σ-stop events analyzed by each observer and his/her error is listed in Table 3.6.

The weighted average of the error is 13.8%. For 1319 event, the error was 154 events. In addition,

the amount of contamination of non Ξ−-stop events, that is, π− σ-stop events, is estimated to be

3% [41]. Considering both of the human error and the π− contamination, the number of observed

Ξ− σ-stop events was 1279−149.

Table 3.6: The number of analyzed σ-stop events by each observer.

person σ-stop events[event] Error [%] Error [event]

A 223 6 13.4

B 12 20 2.4

C 220 24 52.8

D 286 11 31.5

E 448 8 35.8

F 79 no data 10.9

G 46 no data 6.3

H 3 no data 0.4

I 2 no data 0.3

total average total

1319 13.8 153.8

The following results in this thesis are based on Ξ−-stop events obtained from analysis of 67
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emulsion modules (see Section. 3.4.1). The number of classified events and that of coincidence

events with Hyperball-X are listed in Table. 3.7. The error for the ρ-stop events, including Auger

emission, was not evaluated. It is not used in the following discussion in this thesis.

Table 3.7: The number of classified events.

HBX coin [events] Total [events] error [%]

σ-stop of Ξ− 457 1279 ±12

ρ-stop 1685 5822 -

ρ-stop with Auger emission 37 Not analyzed -

The stopped Ξ− particle is captured by light nuclei such as C, N and O, or by heavy nuclei

such as Ag and Br in the emulsion. According to the previous experiment (KEK E176[7]), the

capture probability of Ξ− by light and heavy nuclei is 42.3+4.5
−9.6% and 57.7+6.1

−9.6%, respectively. The

same situation is assumed in this experiment. The ratio of the capture probabilities by Ag and Br

can be assumed to be proportional to the atomic number Z. In the current analysis, the expected

yields of Ξ−Ag atom and Ξ−Br atom with the σ−stop selection are 421± 63 counts and 317± 48

counts, respectively, as summarized in Table 3.8. The X-ray yield of the Ag(8J → 7I) transition

detected by Hyperball-X is estimated as

yield = NΞcapture × PΞ(8J) ×BR(8J → 7I)× ϵHBX × ϵBGO (3.12)

where ϵBGO is the survival ratio of the BGO detector. Assuming that PΞ(n,l) is 0.6, the yield of

370-keV X ray is estimated to be 421×0.6×0.88×0.0083×0.84 = 1.55 counts at present analysis.

Table 3.8: Summary of Ξ− atom yield.

event ratio[%] error [%]

Ξ−σ-stop 1279 12

Light Ξ− atom 541 42.3 9.6

Heavy Ξ− atom 738 57.7 9.6

Ag 57

Br 43

total
Ξ−Ag atom 421 15

Ξ−Br atom 317 15
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3.4.2 X rays from Ξ−Ag and Ξ−Br atom

The X-ray spectra for (a) σ-stop, (b) ρ-stop with an Auger emission, (c) σ- and ρ-stop with an

Auger and (d) all the selection (1) events are shown in Fig. 3.42. The spectra with and without

the BGO suppression with the 50-ns gate are shown in red and black, respectively.
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Figure 3.42: X-ray spectra in coincidence with emulsion image analysis. (a) is a spectrum for the σ-stop

events, (b) is for the ρ-stop events with an Auger emission, (c) is for the σ- and ρ-stop with the Auger

events and (d) is for all the events of selection (1). The spectra with and without the BGO suppression

are shown in red and black, respectively.

Search for X-ray peaks

X-ray peaks were searched for in the region from 100 to 500 keV which includes the theoretically

expected energies. Using the likelihood method, the spectrum (c) for the σ-stop events with the
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BGO suppression was fitted by a Gaussian plus a background function,

µ(x) = AMP exp

(
−(x−mean)2

2σGauss

)
+ C (3.13)

where x is X-ray energy, AMP, mean and σGauss are the amplitude, mean and sigma value of the

Gaussian function, and C is a constant background. Assuming the X-ray counts follow a Poisson

distribution, the L value is given as

L =
∏
i

µyi
i e

−µi

yi!
(3.14)

where yi is X-ray counts at xi (i-th bin). σGauss was fixed to the resolution of 0.8 keV and AMP

was constrained to be 0 or more. As shown in Fig. 3.43, for example, the mean value was fixed to

Emean, and a fit range (2∆Erange) was 40 keV. The AMP and C values were obtained to maximize

the logL. The peak significance is defined as follows using AMP and its fitting error, AMPerror,

peak significance = AMP/AMPerror.

The mean value (Emean) was changed from 100 to 500 keV with 1-keV step.
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Figure 3.43: An example of the peak fitting at Ξ−Ag atomic X-ray spectrum. The spectrum was fitted

by a Gaussian plus a constant function. Emean and ∆Erange represent the mean value of the gaussian

function and the fitting range, respectively.

The evaluated peak significance as a function of Emean was plotted in Fig. 3.44. No evident

peak with 3 sigma significance was found.
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Figure 3.44: The obtained peak significance. The top is the spectrum (c) for σ-stop and ρ-stop with an

Auger electron, and the bottom shows the evaluated peak significance.

X-ray spectrum for high energy region (500 keV < Emean)

The spectrum of the energy region over 500 keV under the condition of σ-stop and ρ-stop with an

Auger electron is shown in Fig. 3.45. The BGO suppression was applied. Although statistics is low,

it seems that there is a peak structure around 661 keV. According to the National Nuclear Data

Center2, none of the nuclei contained in the material around the detector emits the corresponding

γ ray. It should be explained whether it is statistical fluctuation or some signal when statistics is

increased in future analysis.
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Figure 3.45: The X-ray spectrum (c) of the over 500 keV region for σ-stop and ρ-stop with an Auger

electron is shown at top, and the peak significance was obtained as shown at bottom.

X rays from Ξ−Ag atom

The expanded spectrum with the BGO suppression around 370 keV, which corresponds to the

X-ray energy of the last transition of the Ξ−Ag atom, was obtained as shown in top of Fig. 3.46.

2Nuclear physics data base. All the known nuclear levels and γ-ray energies are compiled [42].
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Assuming that the signal was small enough, the spectrum (a) was fitted with a constant. From

the fitting result, the background level was obtained to be 0.17+0.57
−0.10 counts/keV in this region as

overlayed in a black line in the spectrum (a). Note that Poisson distribution was assumed for

evaluation of the statistical errors 68% confidence level.

Since there was no evident peak as mentioned above, the upper limit of the X-ray yield was eval-

uated. The X-ray yield (NXrays) and the number of Ξ− stopped and captured by atom (NΞcapture)

were experimentally obtained and ϵHBX was evaluated. From these, the following value is given,

BR(E1, (n, l) → (n− 1, l − 1))× PΞ−(n,l) =
NXrays

NΞcapture × ϵHBX

(3.15)

where BR(E1, (n, l) → (n − 1, l − 1)) is branching ratio of E1 transition and PΞ− is the ratio

of the number of Ξ−s which reach the (n, l) orbit to the total number of Ξ−s captured in the

atom. In the present analysis, the value of NΞcapture was obtained only with the condition of the

σ-stop selection. Thus, assuming that X-ray peak was observed, the spectrum (a) was fitted with

a Gaussian function plus a constant. For the Ag(8J → 7I) transition, this value was evaluated

using the number of Ξ−σ-stop events and the efficiency taking the lower value of their errors as

shown in bottom of Fig. 3.46. The central value is plotted by cross, and the error comes from that

of X-ray yield (68%). The axis converted to BR(8J → 7I) assuming that PΞ(8J) is ∼ 0.6 [23] is

also shown on the right side of the figure as a reference. The upper limit of PΞ(8J)×BR(8J → 7I)

is found to be over 1 in the region of energy shift less than 10 keV due to poor statistic.
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Figure 3.46: The expanded X-ray spectrum for the (8J → 7I) transition of Ξ−Ag atom shown in top.

The X-ray energy is 370 keV without the strong interaction. The constant background obtained by fitting

is shown in solid line. The upper limit of PΞ(8J) × BR(8J → 7I) with error of 68% confidence level was

obtained as shown at bottom.

For the preceding transition Ag(9K → 8J), the expanded spectrum around the expected energy,

255 keV, is shown in top of Fig. 3.47. The background level was obtained to be 0.32 counts/keV

in this region as overlayed in a black line in the spectrum (a). The evaluated PΞ−(9K)×BR(9K →
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8J) is also shown in bottom, and this can be considered to be nearly equal to PΞ−(9K) because

BR(9K → 8J) shold be ∼100%.
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Figure 3.47: The expanded X-ray spectrum around the expected energy, 255 keV, of the (9K → 8J)

transition of Ξ−Ag atom shown in top. The upper limit of PΞ(9K) ×BR(9K → 8J) with the error of 68%

confidence level was obtained as shown in bottom.

X rays from Ξ−Br atom

For the last and the preceding transitions of Ξ−Br atom, the X-ray spectra around the energy for

(7I → 6H), 316 keV, and for (6H → 7I), 206 keV without the strong interaction.

The expanded spectrum with the BGO suppression around 316 keV was obtained as shown

in top of Fig. 3.48. The background level was obtained to be 0.30 counts/keV in this region as

overlayed in a black line in the spectrum (a). The upper limit of PΞ(7I)×BR(7I → 6H) with error

of 68% confidence level was obtained as shown in bottom.

For the preceding transition Br(8J → 7I), the expanded spectrum around the expected energy,

206 keV, is shown in top of Fig. 3.49. The background level was obtained to be 0.76 counts/keV

in this region as overlayed in a black line in the spectrum (a).
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Figure 3.48: The expanded X-ray spectrum for the (7I → 6H)) transition of Ξ−Br atom shown in top.

The X-ray energy is 316 keV without the strong interaction. The background constant obtained by the

fitting is shown in solid line. The upper limit of PΞ(7I) ×BR(7I → 6H)) with the error of 68% confidence

level was obtained as shown in bottom.

co
u

n
ts

/k
eV

0

2

4

6
­stop w/ BGO suppressionσ(a) 

energy [keV]
190 200 210 220

7
I)

→
B

R
(8

J
×

(8
J
)

Ξ
P

0

1

2

3

Br

Figure 3.49: The expanded X-ray spectrum around the expected energy, 206 keV, of the (8J → 7I)

transition of Ξ−Br atom shown in top. The upper limit of PΞ(8J) × BR(8J → 7I) with the error of 68%

confidence level was obtained as shown in bottom.
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3.5 Method 2 in Chapter 1: Analysis and results for Ξ−C

atom

In this section, the analysis and result for X rays from Ξ−C atom is described. When the produced

Ξ− was stopped in the diamond target, a Ξ−C atom was formed and X rays were emitted. The

energies of Ξ−-C bound states are theoretically calculated considering only Coulomb potential as

shown in Table 3.9. For the light nuclei such as C, N and O, the 3D orbit is considered as the last

orbit, that is, most of Ξ−s are absorbed by the 12C nucleus from the 3D orbit [23]. The Ge detector

had no sensitivity for X rays less than 100 keV because the experiment was designed to measure

X rays of 300 - 400 keV. The X-ray energy of the last transition 12C(4F → 3D) is 55 + ∆E keV,

and this is out of the sensitive energy region of the Ge detector. However, the X-ray energy of the

(3D → 2P ) transition with the Coulomb interaction alone is 154 keV, and this is in the sensitive

region. According to A. Gal [23], a few % of Ξ−s are not absorbed from the 3D state. When the

Ehime potential as shown in Fig. 3.50 is employed as the ΞN potential, for example, the energy

shift of the (3D → 2P ) transition is calculated to be 454 keV [21]. Analysis and results on X rays

of the (3D → 2P ) transition is described in this section.

Table 3.9: The energies of the Ξ−-C bound system with only Coulomb interaction.

state energy [MeV]

1S 0.940

2P 0.283

3D 0.126

4F 0.070

5G 0.045

Figure 3.50: The Ehime [21] and the Woods-Saxon type potentials to describe the Ξ-nucleus interaction.
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3.5.1 Selection of Ξ−C atom production

Since the experiment was not optimized to detect Ξ−C atomic X rays, most of Ξ−s were not

stopped inside the target, and the stopped Ξ− was not directly identified by dedicated detectors.

The events in which the produced Ξ−s were likely to stop inside the target were extracted using

information of existing detectors following the procedure below, and the X-ray spectrum of Ξ−C

atom was obtained.

1. Selection of the (K−, K+) reaction

2. Rejection of Ξ− passing through the target using SSD1

3. Selection of a vertex point

4. Select Ξ− with a large stopping probability in the target

5. Reconstruct the missing mass

Firstly, the Ξ− production was selected by analysis of the magnetic spectrometers (step 1). Then,

the Ξ− which was produced in the target and had a large probability to stop inside the target was

selected (step 2, 3, 4). SSD1 located downstream of the target was used as a veto detector for a

Ξ− passing through the target. Using the vertex point, Ξ−s produced in SSD1 and the emulsion

were rejected. Since the Ξ− produced with a low momentum was likely to stop, its behavior in

the target was simulated, and the Ξ− with a large stop probability was selected. Then, to select

the Ξ−s produced via the K−p → K+Ξ− reaction, the missing mass was reconstructed and the

Ξ−-peak region was selected (step 5).

Selection of the (K−, K+) reaction

K− and K+ were analyzed as described in Section 3.3, and they were selected with the conditions

explained as follows.

K− was identified by the time-of-flight between BH1 and BH2 shown in Fig. 3.51. The distri-

butions taken by the KK trigger are shown and there was no π+ peak. Thus, the lower end of the

gate was set to 0.6 ns, that is, 5σ from the mean of the K− peak. The higher end of the gate was

set to 4 ns because there is no contamination in the region. The region of 0.6 < time-of-flight < 4

ns was accepted.

The scattered K+ was selected by a calculated mass square. The mass square distributions are

obtained depending on their momentum as shown in Fig. 3.52. The mass resolution was worse in

the high momentum region. Since the mass resolution depends on momentum, the K+ selected

region was set for each momentum region. The K+ peak was fitted by a Gaussian plus a quadratic

function, and the ±3σ region of the K+ peak, which are shaded regions in Fig. 3.52, was accepted.

As seen in the lowest distribution of Fig. 3.52, K+ with a momentum over 1.4 GeV/c was not
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Figure 3.51: Selection of the time-of-flight between BH1 and BH2.

produced, which shows that the threshold of the (K−, K+) process was around 1.4 GeV/c. The

K+ of the momentum less than the threshold, namely 0 < psca < 1.4 GeV/c, was selected since

the processes in which a Ξ− was produced, e.i., the process (a) and (c) (cf. pp65), were accepted.

Since in the process (b), Ξ−∗ is produced and it partly decays to Ξ− , the process (b) was also

accepted.
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Figure 3.52: The mass square distribution of the scattered particle for various psca (momentum of the

scattered particle). K+ peak is fitted by a gaussian plus a quadratic function. The ±3σ region of the K+

peak shown in the figure was accepted as K+.
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Rejection of Ξ− passing through the target using SSD1

The Ξ−s which did not stop in the target and hit SSD1 were rejected. As sketched in the Fig. 3.53,

they were classified into two cases,

(1) Ξ−s reached the emulsion module,

(2) Ξ−s stopped in a layer of SSD1.

Figure 3.53: Examples of the SSD1 rejection. The Ξ−s reached at the emulsion (1) and stopped in SSD1

(2) were rejected.

The hit at SSD1 was analyzed using an energy deposit value (dE). The signal wave form was

acquired in SSD, and its integrated value corresponds to dE. The dE distribution at SSD is shown

in Fig 3.54, especially for the cases with a low missing momentum (pΞ). Each distribution is scaled

for comparison. The horizontal axis indicates dE in SSD1, and dE value of 1×104 corresponds to

MIP (minimum ionizing particle energy). Note that the data for the scattered K+ is excluded in

this distribution. The correlation of the missing momentum and the energy deposit at the most

upstream layer of SSD1 is shown in Fig. 3.55. In the case (1), when a dE value was larger than

1.5 MIP, it was regarded as a hit. For the Ξ− with high momentum passing through SSD1, its

track was reconstructed successfully using the hit information of all the four layers of SSD1. In

the case (2), when the Ξ− with a low momentum, Ξ− slows down sufficiently but not stops in the

target, they can be identified by a large energy deposit value. In Fig 3.55, the dE distribution of

the case of the 0.7 < pΞ < 0.8 GeV/c is shown in blue. There are relatively many events with dE

more than 3×104. This structure is due to the Ξ− just before stopping. The lower momentum at

production gives the larger dE at SSD1. Indeed, this tendency is seen in the dE distribution of low

momentum (pΞ < 0.7 GeV/c), shown in red and black. For the case of 0 < pΞ < 0.6 GeV/c, shown

in black, the structure from Ξ− is seen in the region where dE is more than 4×104. Therefore,

the threshold of dE was set to 4×104. When any layer of SSD1 has a signal of dE more than this
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threshold, that event was rejected. The Ξ−s that fit to these cases were rejected, and this is called

the SSD1 rejection in this thesis.
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Figure 3.54: The energy deposit at SSD1 for the various missing momentum.
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Figure 3.55: Correlation of the missing momentum and the energy deposit at SSD1.

Selection of vertex point

TheK− reacted in the target, SSD1 or the emulsion. To select Ξ− produced in the target, the vertex

z point was reconstructed from the K− and K+ tracks. When the SSD1 rejection was applied, the

vertex z distribution is obtained as shown in blue in Fig. 3.56. As described in Section 3.3.3, when
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the events with the residue in SSD1 less than 0.1 mm were selected, the distribution for the target

reaction events was obtained. The obtained distribution was scaled and shown in red in the figure.

The total data (black) was fitted by the scaled distribution (red) plus constant in the region of

−50 < z < −20 mm. The scale factor and the constant value were optimized so that the difference

between two distributions in that region was minimum. As a result, the difference between the

total data (black) and the fitted distribution for the target (red) was obtained as shown in blue.

The fitted distribution for the target was regarded as a signal, and the lower end of the selected

region was set to −50 mm. The upper end was set to achieve the best significance (S/
√
N) that

was 0 mm.
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Figure 3.56: The vertex point in z direction with the SSD1 rejection (black). The scaled distributions in

the case of Ξ− produced in the target and in SSD or the emulsion are shown in red and blue, respectively.

Select Ξ− with a large stopping probability in the target

The probability that the produced Ξ− particle stopped inside the target was estimated for each

event using Geant4 simulation. The missing momentum of the produced particle (X) is given as

−→pX = −−→pK− +−→pp −−−→pK+ . (3.16)

The fermi motion of a proton in the nucleus (−→pp) which reacted with the K−should be taken into

account. The momentum distribution of a proton in a 12C nuclear was assumed as the same as

to that assumed in the JAM code as shown in Fig. 3.573. Because of the vertex resolution and

the fermi motion of a proton, both of the z position of the vertex and the missing momentum had

uncertainties. Therefore, motion of the produced particle in the target was simulated 100 times

under different assumptions of the generated point and the momentum. In the simulation, all the

3JAM is a program to simulate relativistic nuclear collisions [39]. In the program, the Fermi motion of nucleons

is assigned according to the local fermi momentum which depends on the nuclear density distribution.
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Figure 3.57: The momentum distribution of a proton in a 12C nucleus.

produced particles were assumed to be Ξ− particles, and their decay in flight was considered. As a

result, “the stop probability” that the Ξ− stops inside the target is obtained as shown in Fig. 3.58.

As is seen in the correlation between the stop probability and the missing momentum shown in

Fig 3.59, a Ξ− with the lower momentum less than 0.7 GeV/c has the higher stop probability.

0 10 20 30 40 50 60 70 80 90 100
0

10000

20000

30000

40000

50000

60000

70000

stop probability [%]

co
u

n
t

Figure 3.58: The stop probability of Ξ−particles.
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Figure 3.59: Correlation between the stop prob-

ability and the missing momentum of Ξ−.

To select events in which a Ξ− stopped in the target with a high probability, the threshold of

the stop probability was set. When a Ξ− stops inside the target, the event is regarded as signal

(S) because it is possible to emit X rays from a Ξ− atom. Otherwise, it is assumed to be a noise
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(N) because of possible γ-ray or neutron emission as follow,

Ξ− → Λ + π−

Λ → π0n/pπ−

π0 → γγ

and, π− + A → n+X/γ +X ′.

The expected number of events above the threshold was defined as S and the other was defined

as N . The threshold was determined to achieve the best significance (S/
√
N). The significance

depending on a threshold for the stop probability is plotted in Fig. 3.60. When the threshold is

set at 9%, the best significance was achieved. In this thesis, selecting events with 9% or more stop

probability is called the “kinematical selection”. As you can seen in Fig. 3.59, this selection is

almost equivalent to selecting the Ξ− momentum less than 0.6 GeV/c.
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Figure 3.60: The stop probability threshold dependence of S/
√
N where the number of events above the

threshold for the stop probability is defined as S and the other is defined as N .

It was impossible to identify the type of the (K−, K+) process event by event. Thus, the

process (a) was assumed for all the events in the simulation. Thus, the stopping probability of

particles produced via the other processes was not estimated correctly. It is justified, however,

because almost only the process (a) was selected later by the missing mass as described below.

Reconstruct the missing mass

The missing mass distribution reconstructed from K− and K+ momentum is shown in Fig. 3.61.

The black one represents all the (K−, K+) processes, and the red one represents the events with

the SSD1 rejection and the kinematical selection.
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Figure 3.61: The reconstructed missing mass distribution. The distribution in black is with the (K−, K+)

reaction, the distribution in red is with the SSD1 rejection and the kinematical selection.

To select the produced Ξ− via the process (a), the missing mass distribution was estimated by

simulation. The processes (a)-(d) were simulated following the uniform phase space of two-body

and three-body decays taking into account as the followings.

• Proton momentum

The momentum of a proton (−→pp) in a nucleus was assumed to follow the same distribution

as in Fig.3.57 since it cannot be measured.

• Proton mass

The energy should be conserved among the proton and the spectator, 11B.

The proton mass (Mp) was calculated as,

M2
p =

(
M12C −

√
MS

2 +−→pS
2

)2

−−→p p
2

(3.17)

where M12C is the mass of the 12C nucleus and MS and −→pS are the mass and the momentum

of the spectator .

• The (K−, K+) reaction angle

K+ was assumed to be emitted uniformly in the CM system for all the processes.

• Cross section

The ratio of each process was based on the experimental data of the cross section. The total

cross sections of (a), (b), (c), and (d) processes were 175 ± 16, 126 ± 6, 16 ± 4, and 34 ± 4

µb when the incident K− momentum was 1.7 GeV/c [5].

• Experimental acceptance

The geometrical acceptance of the KURAMA spectrometer was taken into account.
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In the simulation, the (c) and (d) processes were treated as the same because the mass of pro-

duced particles, that is, Ξ−π0 and Ξ0π− were not so much different. When the acceptance of the

KURAMA spectrometer was considered, the simulated missing mass distribution was obtained as

shown in Fig. 3.62. According to the simulation, the process (a) shown in red was dominant, and

the other processes shown in blue and magenta contribute less than 1% in the region of the missing

mass less than 1.4 GeV/c2. Thus, the upper value of the selected region was set to 1.4 GeV/c.

To achieve the best S/
√
N , the lower value was set to 1.25 GeV/c considering a contamination of

background events (see Fig. 3.75).
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Figure 3.62: The simulated missing mass distribution for the each (K−, K+) processes.

3.5.2 X ray from Ξ−C atom

The X-ray spectra obtained by the coincidence analysis of the magnetic spectrometers and Hyperball-

X are shown in Fig. 3.63 with the following three conditions,

(a) with the (K−, K+) reaction,

(b) with Ξ− production via the process (a),

(c) with a large probability of Ξ− stopping in the target.

In the condition (a), the event set with the (K−, K+) reaction was selected. In the condition

(b), Ξ− production events were selected in the reconstructed missing mass distribution (1.25 - 1.4

GeV/c2) in addition to the condition (a). In the condition (c), events with a large probability

of Ξ− stopping in the target were selected. That is, in addition to the condition (b), the SSD1

rejection and the kinematical selection were applied. The data was summed up for all the Ge

detectors. The lower limit of a valid energy region of the spectrum, 120 keV, was set by the CFD

threshold. The BGO suppression was always applied with a TDC gate of 50 ns.
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Figure 3.63: The X-ray spectrum with the (K−, K+) reaction. (a) is for the event set with the (K−,

K+) reaction. (b) is for Ξ− production, that is, missing mass selection is applied. (c) is for events with

a large probability of Ξ− stopping in the target, that is, the kinematical selection and the SSD1 rejection

are applied.

Peak search

In the X-ray spectrum (c), the Ξ−C atomic X-ray peak was searched for in the region from 100 to

470 keV. Since the shape of the background γ-ray distribution was not obvious, the shape of the

spectrum (b) was approximated as a background shape of (c) since the S/N of (b) was much worse

than that of (c). The expanded X-ray spectrum of (c) is shown in Fig. 3.64, and a scaled spectrum

(b) is overlayed. To represent the difference between the scaled (b) and the (c) spectrum, the value

∆ =
∑

i(yi − yBG
i )2 was defined where yi and yBG

i represent counts in i−th bin of the (c) and the

scaled (b), respectively. The scale factor was determined to minimize this ∆ in the region from

500 to 800 keV, and it was 0.107.



CHAPTER 3. ANALYSIS AND RESULTS 99

co
u

n
ts

 /
 2

 k
eV

200 400 600 800 1000 1200
0

10

20

30

50 100 150 200 250 300 350 400 450 500
0

10

20

30

energy [keV]

(b), scaled

(c)

co
u

n
ts

 /
 2

 k
eV

Figure 3.64: The X-ray spectra of the whole and expanded regions. The spectrum (b) for the events in

coincidence with Ξ− production is scaled and overlayed to spectrum (c) for the events in coincidence with

Ξ− with a large stop probability in the target.

The scaled (b) was fitted with a quadratic function as background in the fitting range Emean±
∆Erange, where Emean was the center value of the fitting region (2∆Erange). An example of the

fitting is shown in Fig. 3.65. The validity of a background fitting was evaluated with a reduced

χ2. The reduced χ2 values as a function of Emean were shown in Fig 3.66 when (b) was fitted in

various ranges, that is, 2∆Erange=100, 140, 180, and 250 keV where the degree of freedom (DOF)

were 97, 137, 177 and 247, respectively.
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Figure 3.65: The example for the background fitting. Emean is the center value of the fitting and fit region

is Emean ±∆Erange.

To search for a X-ray peak, the spectrum (c) was fitted with the maximum likelihood method.

A Gaussian plus a quadratic function were employed as peak fit function. The mean and sigma

values of the Gaussian function were fixed in the fitting. The fixed mean value was changed from

100 to 470 keV with a 1-keV step. The AMP value was constrained to be 0 or more. The X-ray
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Figure 3.66: The reduced χ2 of the background fitting as a function of the center of the fitting range,

Emean for the fit ranges of 100, 140, 180 and 250 keV. The horizontal axis represents the central of fit

region. When the fit region over a valid ADC region, fit region is expanded to the other side.

peak count (NXray) was obtained with ±1σ error. Peaks with a narrow width less than 10 keV in

sigma as well as with a wide width more than 10 keV were searched for.

I) Search for a peak with a narrow widths (σGauss ≤ 10 keV)

Peaks with narrow widths, that is, σGauss =0.8, 1.2, 3, 5, and 10 keV, were searched for. Note that

the width of 0.8 keV corresponds to the energy resolution of Hyperball-X. A peak was fitted in the

range of 140 keV, namely mean ± 70 keV. The parameters of the background function obtained

from the spectrum (b) were used as initial values of fitting.

As a result of the peak search, the peak significance was obtained as shown in Fig 3.67. No

clear peak with 3σ significance was found. In the case of the 3 -10 keV width, a slightly enhanced

structure was seen around 420 keV. However it was not claimed to be an evident peak because the

peak significance was less than 3σ. In the case of the 0.8 keV width, there was a structure with a

peak significance of 2.4σ around 116 keV. In this region, some Ge detectors had low efficiency due

to a CFD threshold. It is possible that a statistical fluctuation or a dropping of the Ge efficiency

makes this structure. Re-measurement with higher statistics is desired to confirm whether those

enhancements are real peaks or not.

II) Search for a peak with a wide width (σ > 10 keV)

Peaks with wide widths, that is, σGauss =20, 40, 50, 60 and 80 keV, were also searched for. The

spectrum was fitted to a Gaussian plus a background function in the range of 250 keV, that is,

mean ± 125 keV by the maximum likelihood method. As the background, a quadratic function

obtained from the spectrum (b) was employed and fixed. As a result of the peak search, the peak

significance was obtained as shown in Fig 3.68. There was no evident peak structure in any cases.

For the case of 20 - keV width, enhancement was seen around 180 keV and 420 keV. As mentioned

above, the structure of around 420 keV was more enhanced when it is fitted with narrow widths.
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Figure 3.67: The peak significance for Ξ−C atomic X rays assuming narrow widths.

3.5.3 Branching ratio (3D → 2P )

No evident peak of Ξ−C atomic X ray was observed. The upper limit of the X-ray yield of the

3D → 2P transition from experimental observations and then information on the width of the

3D state was obtained. If the 3D state is the last orbit, its width may be broadened from being

affected by strong interaction as shown in Fig. 3.69. The branching ratio of the E1 transition

(3D → 2P ) is related to the partial widths of the E1 transition (Γ3D→2P
E1 ) and the absorption from

the 3D state (Γ3D
abs.) as

BR(E1; 3D → 2P ) =
Γ3D→2P
E1

Γ3D→2P
E1 + Γ3D

abs

(3.18)

The width of the 3D state, Γ3D, is the sum of Γ3D→2P
E1 and Γ3D

abs..

The imaginary part of the optical potential represents the effect that Ξ− is absorbed by the

nucleus via the reaction of Ξ−p →ΛΛ. The imaginary part of the eigenenergy (EIm) is related to

the total width of the sate as EIm = − i
2
Γ. Therefore, the width of the state is obtained by solving

the Schrödinger equation assuming the Ξ−-nucleus potential, which can be constructed from a ΞN

interaction potential. For example, using a real part of ΞN interaction in the Ehime potential

and assuming an imaginary part as W (r) = W0 exp(−r2/β2) with β = 1 fm, Ξ−-C potential is
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Figure 3.68: The peak significance for Ξ−C atomic X rays assuming wide widths.

constructed and the binding energies of the Ξ−-C bound states are calculated [21] as listed in

Table 3.10.

By comparing the branching ratio obtained by the experiment and that obtained by calculating

Γ3D→2P
E1 , Γ3D

abs. can be extracted and further W0 can be determined. In case1, PΞ(8J) ·BR(8J → 7I)

can be evaluated from the X-ray yield (NXrays), the number of Ξ− stopped and captured by atom

(NΞcapture) and ϵHBX . Similarly, in the present case, the X-ray yield of the 3D → 2P transition

was also evaluated from the peak search and the efficiency of HBX was studied (see Section 3.2.2

). The statistical error for X-ray yield derived from the fitting error of peak amplitude in the

maximum likelihood method was typically 40% with 68% confidence level. NΞcapture is evaluated

below.

The number of Ξ− stop events

From the event set selected to obtain the Ξ−C atomic X-ray spectrum, the number of Ξ− stopped

in the target was estimated. The following three contaminations should be considered, that is,

• Ξ− produced at SSD and the emulsion

• misidentification of p and π+ in the scattered particle analysis
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Figure 3.69: The levels of Ξ−C atom. The BR(3D → 2P ) is given by Γ3D→2P
E1 and Γ3D

abs. w(E1) represents

the transition probability of E1 and w(abs.) represents the probability of absorption by the nucleus. They

are proportional to the partial widths.

Table 3.10: The calculated binding energies of the Ξ−-C bound state using the Ehime potential[21].

2P 3D

W0 E [MeV] Γ [MeV] E [MeV] Γ [MeV] ∆E [MeV]

Coulomb + Ehime

0.0 -0.5833 0.0 -0.126 0.0 0.457

-1.0 -0.5793 0.098 -0.126 0.725×10−5

-3.0 -0.5470 0.288 -0.126 0.217×10−4

-5.0 -0.4804 0.457 -0.126 0.359×10−4

-7.0 -0.3733 0.589 -0.126 0.498×10−4

• the (K−, K+) processes other than K−p → K+Ξ−.

Each contamination was evaluated as described below.

Contamination of Ξ− produced at SSD and the emulsion

As discussed in Section 3.3.3, since the vertex resolution in z direction was not sufficient, it is

not possible to completely separate the events in which K− reacted the target or SSD. When the

selection of vertex z, −50 < z < 0 mm was applied, contamination of the Ξ− produced in SSD1

and the emulsion was evaluated. The distribution of vertex z when the SSD1 rejection is applied

is shown in black in Fig. 3.56. This is decomposed into two distributions, as shown in red and

blue, in which Ξ− was produced in the target or in SSD1 and the emulsion, by the same procedure

as described in the Section 3.3.3. In the region of −50 < z < 0 mm, the ratio of the number of

background events (the distribution in blue) to the total number of events (in black) was 9.3%.
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Contamination of p and π+

Background particles such as p and π+ are contaminating the mass square distribution of scattered

particles. Within the gate of the mass square, the contamination ratios of p and π+ to K+ were

estimated by fitting the mass square distribution shown in Fig. 3.70 by a background plus a

K+ peak function. Note that the kinematical and SSD1 rejection were applied. Assuming Gaussian

tails as p and π+ background shapes, this distribution was fitted by three Gaussian functions as

shown in red line. Dashed lines show decomposition to three Gaussian functions, representing

the K+ peak and the p and π+ background on both sides. The ratio of the K+ peak and the

contamination depends on the gate of mass square, and it was set for each K+ momentum region

as shown in the first column of Table 3.11. By using the mass square selection gates previously
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Figure 3.70: The mass square distribution of scattered particles.The distribution was fitted by three gauss

functions shown in red. Dashed lines were decomposed gauss functions, representing the K+ peak and

background on both sides.

determined which depends on the K+ momentum (see Fig. 3.52), the estimated ratio of K+ and

the background in those selected K+ regions were obtained as shown in Table 3.11.

Table 3.11: The ratio of K+ in the mass square distribution.

K+ momentum

[GeV/c]

mass2 selection

[(GeV/c2)2]

K+ production

[%]

left BG tail

[%]

right BG tail

[%]

0.6 - 0.8 0.19 - 0.29 86 9 5

0.8 - 1.0 0.17 - 0.31 83 11 6

1.0 - 1.1 0.14 - 0.34 78 14 8

1.1 - 1.2 0.13 - 0.35 76 15 9

1.2 - 1.4 0.11 - 0.37 72 17 11
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When the kinematic selection and the SSD1 rejection were applied, the K+ with the high

momentum was selected. As seen in the K+ momentum (pK+) distribution shown in red of

Fig. 3.71, 90% of events distribute pK+ < 1.2 GeV/c and the other 10 % distribute in 1.1 < pK+ <

1.2 GeV/c. That is, almost all particles were classified into the conditions in the bottom two rows

of Table 3.11, and the the weighted average of K+ production and BG was 72.4% and 27.6%,

respectively.
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Figure 3.71: The K+ momentum (pK+) distribution for the (K−, K+) reaction. Red line shows the pK+

distribution with the kinematical selection and the SSD1 rejection.

As shown in Fig. 3.70, when the mass square was gated to select K+, the missing mass dis-

tributed as shown in black in Fig. 3.72. When the left- and right- side background regions, the

shaded regions in Fig. 3.70, were selected, the missing mass distributions were obtained as shown

in red and blue in Fig. 3.72, respectively. The spectra are scaled to satisfy the ratio of the number

of events, K+ : left BG : right BG = 72 : 17 : 11. The right-side background, considered to be

mainly as contamination of p, makes a tail in the lower missing mass.

In the above discussion, the function of three Gaussians only was assumed in the fitting. When

the function of three Gaussians plus a constant was assumed, the mass distribution was fitted

as shown in Fig. 3.73. The ratio of K+ and the background contained in the ±3σ region of the

K+ peak is 67 : 33. Differences in K+ contribution due to fit functions, 5%, was considered as a

systematic error of the analysis.

Contamination of the other process

The contamination from the other possible one-step quasi-free process in the (K−, K+) reaction

was estimated. As described already, there are four possible one-step quasi-free processes. When

calculating the stop probability, the Ξ− mass was assumed. So the analysis was not correct for the

processes other than (a) in which only Ξ− was produced. Thus, contamination of these processes

was estimated by simulation. The missing mass distribution via the four processes were simulated
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Figure 3.72: The missing mass distribution after the mass square (mass2) of scattered particles was selected.

When the mass square was gated on the K+ region (0.11 < mass2 < 0.37 [GeV/c2]), on the left side

background region (0 < mass2 < 0.1 [GeV/c2]), and on the right side background region (0.4 < mass2 < 0.5

[GeV/c2]) the missing mass distribution is shown in black, red and blue, respectively.

(see Fig. 3.62). In the same way, as the real data analysis, the Ξ− stop probability was calculated

event by event assuming that the produced particle was Ξ− and the kinematical selection was

applied. The obtained missing mass distribution is shown in Fig. 3.74. The distributions via the

process (a), (b), (c) plus (d) are shown in red, blue and magenta, respectively. The end point of

Ξ− mass distribution via the process (a) is around 1.4 GeV/c2. In the missing mass region less than

1.4 GeV/c2, there were almost no contamination by the processes (b), (c), and (d). In addition,

intermediate meson-induced two-step processes and theK−p→f0Λ, a0Λ, and ϕΛ reaction, followed

by the f0/a0/ϕ →K−K+decay is possible. They contribute to the mass distribution at the larger

mass than Ξ− mass. Thus, they were not considered in the simulation since experimental data

about them were limited and they were not studied precisely.

Comparison with the data

The missing mass distribution was estimated by combining the simulated Ξ−, Ξ−∗, Ξπ production

spectra and the contamination of p and π+ based on real data. The ratio of K+ production to

p and π+ contamination was 72 : 28, and the ratio of the (K−, K+) processes followed their

total cross section. As shown in Fig. 3.75, this estimated distribution shown in red was compared

to the data shown in black when the kinematical selection was applied. The estimated one was

scaled so that the total number of events was equal to the data, and it can be decomposed into

the processes (a) - (d) and the contamination of p and π+, as the shaded histograms shown in

the figure. Compared to the data, the estimation well reproduced the tails on both sides of the

distribution. In the missing mass region less than 1.4 GeV/c2, contaminations of the (K−, K+)

processes not considered in the simulation are negligibly small. When the number of events in the



CHAPTER 3. ANALYSIS AND RESULTS 107

]
2

)
2

[(GeV/c2mass

0.1 0.2 0.3 0.4 0.5 0.6

c
o
u
n
ts

0

50

100

150

200

250

300

350

400

450

500

+
K

selection
2

mass

3 Gaussian+Const fit

Figure 3.73: The mass square distribution of scattered particles fitted by three gauss plus constant func-

tions. The decomposed gaussian functions and constant function were shown in doted lines. The ratio of

K+ and background including with the mass2 selection is 67 : 33.

process (a) was regarded as signal (S) and the other contamination as noise (N), the missing mass

(MM) region of 1.25 < MM < 1.4 GeV/c2 was selected so as to maximize the S/
√
N value. The

process (a) contributes by 80% in this region.

As discussed above, with the condition that the mass square distribution was fitted with three

Gaussians plus a constant function of K+: contamination of p, π+ = 67:33, the missing mass

distribution was also estimated. The Ξ− contributes by 75% in the region of 1.25 < MM <

1.4 GeV/c2. The number of produced Ξ− had a systematic error of a few percents, which was

small compared to the error for X-ray yield of 40%. The minimum value of Ξ−-stop number was

evaluated employing Ξ− contamination of 75%.

The expected yield of Ξ− stops in the target

When the kinematical selection, the SSD1 rejection and the missing mass selection were applied,

3.5×104 events are selected. The expected number of the events in which the produced Ξ− particle

stops in the target is estimated to be 5437. 90.7% of them reacted in the target and 80−5% was

produced via the process (a). Finally, the expected value of the number of Ξ− stopped in the target

was 3945−246. Considering the error, the value with lower error, 3699, was employed to evaluate

the BR.

Evaluation of the branching ratio

The branching ratio BR(3D → 2P ) was evaluated according to Eq. 3.15. The Ξ− stopped in the

target would be captured by a carbon nucleus, but not by the other species. Thus, NΞcapture should

be equal to the number of Ξ− stop, namely 3699 events. As for the ϵHBX , a value evaluated in
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Figure 3.74: The simulated missing mass distributions of the one-step (K−, K+) processes with the

kinematical selection. The expanded distributions are shown in the inset figure.

Section 3.2.2 was employed, and its typical value was 1% at 300 keV. When the BGO suppression

was applied, the signal survival ratio was also considered as a part of the ϵHBX . The X-ray

yield (Nyield) was obtained by the peak fitting. PΞ(3D) of Ξ−C atom has yet to be theoretically

calculated. Thus, it was assumed to be 0.6 which is the same as in the case of Ξ−Ag atom in this

thesis. Finally, since the upper limit of the BR(3D → 2P ) was discussed, the minimum values of

NΞcapture and ϵHBX were used in evaluation.

The evaluated BR(3D → 2P ) as a function of Emean, which is the mean of the Gaussian

function used in the fitting, is plotted in Fig. 3.76. It is the case of the assumed peak width of

0.8 keV. The center values of BR are shown with black dots and the errors representing 68%

confidence level. The 68% upper limits are shown with a black line. The axis of the X-ray energy

shift (∆E) of the (3D → 2P ) transition is added at the top. For the case of the wide peak width

of 20 keV, BR is also plotted as in Fig. 3.77.
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Figure 3.76: The BR(3D → 2P ) assuming narrow width (0.8 keV).
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Figure 3.75: The comparison of the missing mass of experimental data and the estimated one. The

estimated means the spectrum obtained by combining MC simulated Ξ−, Ξ−∗, Ξπ production spectra and

contamination of p and π+ estimated based on the real data.
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Figure 3.77: The BR(3D → 2P ) in the case of wide widths (20 keV).

The X-ray energy region was divided based on the energy shift ∆E, that is, (1) ∆E ≤ 0 keV,

(2) 0 < ∆E ≤ 100 keV, (3) 100 < ∆E ≤ 200 keV, and (4) 200 keV < ∆E. The upper limit of BR

was taken from the maximum point in each region of ∆E, and it was obtained as a function the

experimental X-ray peak width, σexp, as shown in Fig. 3.78.

Comparison to theoretical calculations

The experimentally obtained BR value was compared with the theoretical calculation given by

Eq. 3.18.

Firstly, Γabs was obtained by numerically solving the Schrödinger equation assuming an optical

Ξ−-nucleus potential of Woods-Saxon type as shown in Fig. 3.50. Since the depth of the real part

of the potential V0 was suggested to be 10 − 20 MeV [10], the Schrödinger equation was solved

with assumption of V0 = −15 or −20 MeV and of W0 = 0 − 2.0 MeV. Details of the numerical
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Figure 3.78: The experimentally obtained upper limit of BR(3D → 2P ) as a function of the X-ray peak

width σexp. The upper limit of branching was evaluated in the regions (1) ∆E ≤ 0 keV, (2) 0 < ∆E ≤ 100

keV, (3) 100 < ∆E ≤ 200 keV, and (4) 200 keV< ∆E.

calculation is explained in Appendix A. The results of the calculation for the atomic 2P and 3D

states are listed in Table. 3.12. The correlation between the BR and W0 is obtained as shown

in Fig. 3.79. For the cases of V0 is −15 MeV and V0 is −20 MeV are shown in red and black,

respectively.
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Table 3.12: The theoretically calculated energies and widths assuming the Woods-Saxon type potential.

2P 3D

V0 [MeV] W0[MeV] E[MeV] Γabs[MeV] E[MeV] Γabs[MeV] ΓE1[MeV] BR

−15 0.0 -0.219 0 -0.126 0 2.36 × 10−7

-0.01 -0.219 1.47 × 10−4 -0.126 4.00 × 10−7 2.36 × 10−7 0.37

-0.03 -0.219 4.40 × 10−4 -0.126 1.00 × 10−6 2.36 × 10−7 0.19

-0.05 -0.219 7.33 × 10−4 -0.126 1.80 × 10−6 2.36 × 10−7 0.12

-0.1 -0.219 1.47 × 10−3 -0.126 4.00 × 10−6 2.36 × 10−7 0.056

-0.5 -0.219 7.31 × 10−3 -0.126 1.80 × 10−5 2.43 × 10−7 0.013

-1.0 -0.219 1.45 × 10−2 -0.126 3.60 × 10−5 2.40 × 10−7 0.0066

-1.5 -0.22 2.15 × 10−2 -0.126 5.20 × 10−5 2.44 × 10−7 0.0047

-2.0 -0.22 2.81 × 10−2 -0.126 6.40 × 10−5 2.55 × 10−7 0.0040

−20 0.0 -0.242 0 -0.126 0 3.53× 10−7

-0.01 -0.242 5.92× 10−5 -0.126 6.00× 10−7 3.53× 10−7 0.37

-0.03 -0.242 1.78× 10−4 -0.126 1.80× 10−6 3.53× 10−7 0.16

-0.05 -0.242 2.96× 10−4 -0.126 3.00× 10−6 3.53× 10−7 0.11

-0.1 -0.242 5.93× 10−4 -0.126 5.80× 10−6 3.52× 10−7 0.057

-0.5 -0.242 2.96× 10−3 -0.126 2.92× 10−5 3.52× 10−7 0.012

-1.0 -0.242 5.89× 10−3 -0.126 5.82× 10−5 3.51× 10−7 0.0060

-1.5 -0.242 8.77× 10−3 -0.126 8.66× 10−5 3.50× 10−7 0.0040

-2.0 -0.242 1.16× 10−2 -0.126 1.55× 10−4 3.48× 10−7 0.0030

Secondly, ΓE1 is given as calculated in Appendix B. ΓE1 value and the BR by Eq.3.18 are also

shown in Table. 3.12. The correlations between the BR and the width Γ2P are plotted in red and

black for the case of V0 depth of -15 MeV and -20 MeV, respectively, in Fig. 3.80.

On the other hand, the experimental X-ray peak width, σexp gave the width of the 2P state,

Γ(2P ), assuming that Γ(3D) is negligibly narrow compared to Γ(2P ). Considering the resolution

of the Ge detectors, σGe, Γ(2P ) is given as

Γ(2P ) = σ(2P )× 2.35 ∼=
√

σexp
2 − σGe

2 × 2.35. (3.19)

At the point of Γ(2P ) = 2.0 keV, σ(2P ) and σGe are comparable, ∼0.85 keV. In the region of

Γ(2P ) is less than 2.0 keV, Γ(2P ) can not be measured. Thus, the value at Γ(2P ) = 2.0 keV was

employed as the upper limit of BR in that region. The upper limit of BR as a function of Γ(2P )

with the condition (1) described previously is also shown in blue in Fig. 3.80. It shows the upper

limit of 68% confidence level, and the lower side of the curve is allowed region. The cross point

of the curves obtained by the data and the theoretical calculation corresponds to the lower limit

of W0. The upper limit was not low enough to reach the theoretical curve, and the curves did
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not crossed. As a result, it is found that significant improvement of the experimental sensitivity

is needed to constrain the W0 value.
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Figure 3.80: Comparison of the theoretical calculation and the experimentally obtained upper limit of the

BR(3D → 2P ). The result of theoretical calculation is shown in red and black for the case of V0 depth of

15 and 20 MeV, respectively. The upper limit obtained by the experimental data is shown in blue. It is

the result for the case of (1) ∆E ≤ 0.



Chapter 4

Conclusion and Outlook

4.1 Ξ−Ag and Ξ−Br atomic X rays

Conclusion

The data of 1279 σ-stop events were analyzed in coincidence with Hyperball-X. In both of the

expected regions of Ξ−Ag and Ξ−Br atomic X rays, no evident peak was found. The background

level was 0.17+0.57
−0.10 count per keV in the 370-keV region. The BR and PΞ were also evaluated, but

the obtained upper limits were over 1 due to poor statistics. The background level obtained at

present 20% statistics for Ξ−Ag and Ξ−Br atomic X rays are shown in Table 4.1.

Outlook

The data of the 67 emulsion modules, for which image analysis with selection (1) was finished, were

analyzed. It corresponds to about 20% of the estimated σ-stop total yield in the emulsion exposed

to the beam. Thus, it is expected that 4 times more statistics will be added in the future. Finally,

an expected X-ray yield of the Ag(8J → 7I) transition will be 7.75 counts for Ξ−σ-stop events.

The S/
√
N would be 4.56 in the ±2σ peak region. Note that the PΞ(8J) was assumed to be 0.6.

In addition, 1.5 times of Ξ− atomic X rays will be obtained by combining Ξ−σ-stop and Ξ−ρ-stop

events. For that analysis, it is necessary to distinguish Ξ− events from the background ρ-stop

events of protons. The selection of “ρ-stop with an Auger emission” is useful. A half of Ξ−ρ-stop

events is identified since the 50% of ρ-stop events are accompanied by Auger electrons [7]. If Ξ−ρ-

stop events are identified completely, the X-ray yield will be 11.6 counts and the statistical error

of the peak energy will be 250 eV. Considering a 250-eV statistical error and a 100-eV systematic

error, the energy shift would be determined with a 270-eV accuracy. If a further experiment with a

doubled beam time using a larger Ge array with 3 times the efficiency of Hyperball-X, a statistical

error will be improved to be comparable with a systematic error, and the energy shift will be

measured with a 100-eV accuracy. The estimation with full statistics for Ξ−Ag and Ξ−Br atomic

X rays are summarized in Table 4.1.
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Table 4.1: The BG level obtained in 20% statistics and estimation for full statistics. For yield estimation,

PΞ− is assumed to be 0.6.

20% analyze
100% analyze

(estimation)

BG level

[counts/keV]

Yield

[counts]

S/
√
N

(±2σ)

Ag 9K → 8J 0.32 8.80 3.77

8J → 7I 0.17 7.75 4.56

Br 8J → 7I 0.76 6.64 1.85

7I → 6H 0.32 4.85 2.15

4.2 Ξ−C atomic X rays

Conclusion

From the result of analysis for Ξ− C atom, the upper limit of the BR(3D → 2P ) was obtained as

a function of the width of the X-ray peak. The upper limit was over 1 when a wider peak than

the Ge resolution was assumed, and the result showed that the current experimental sensitivity

was insufficient to give BR an upper limit. The result for the peak of 2-keV (FWHM) width

(∼ resolution of Ge detector) was compared to the model calculation in which the Ξ−-nucleus

interaction was represented by aWoods-Saxon type optical potential in order to extract information

on the imaginary part of the assumed potential. The well depth of the imaginary potential was

not constrained by this experiment due to poor sensitivity.

Outlook

The experimental method for measurement of Ξ− atomic X rays emitted from the reaction target

was established, although it was found that some additional improvements were needed. It is

necessary to improve the sensitivity by 3 times to constrain W0 to be more than ∼10 keV, or by

10 times to constrain W0 to be more than ∼100 keV.

Even though no evident peak was observed, evaluating the upper limit of the branching ratio

of the E1 transition was useful for obtaining information on the imaginary part of the Ξ−-nuclear

potential which describes Ξ− absorption to a nuclei. This is useful especially for the transition

where the BR value is estimated to be small such as the 12C(3D → 2P ) transition. In order to

limit the W0 depth, it is necessary to improve sensitivity by 10 times with some of the following

improvements. Firstly, target thickness should be optimized to increase the yield NΞcapture. It

should be optimized considering both of the Ξ− stopping efficiency and the X-ray absorption.

Secondly, the acceptance of the Ge detector array should be improved. If a more compact Ξ−

tracking detector is introduced instead of the SSD and the emulsion, more Ge detectors can be
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installed around the target and the ϵHBX would be increased. Thirdly, better identification of

scattered particles is needed to reduce background. The (K−, K+) reaction should be selected as

cleanly as possible especially because contamination of protons makes background. Fourthly, the

Ξ− position detector with higher accuracy is needed to reject Ξ− particles which are not stopped

in the target. For example, a segmented scintillation target will be useful to measure the Ξ− track

directly although it is not as dense as diamond.

Observing cascade X-rays from a Ξ− atom simultaneously is the most powerful way to measure

the branching ratio. The energy for the (4F → 3D) transition of Ξ−C atom is 55 keV considering

only Coulomb force. Thus, the region of less than 100 keV should be measured.



Chapter 5

Summary

For a general understanding of the baryon-baryon interaction, investigating of ΞN interaction is

necessary while experimental data are limited. The Ξ− atomic X-ray spectroscopy is one of the

useful ways to obtain information on the ΞN interaction. The shift of the X-ray transition energy

(δE) from that of the Coulomb interaction only and the X-ray peak width give information of the

real and imaginary parts of the Ξ−-nuclear potential, respectively.

From this research, important results are obtained as the first experimental attempt on Ξ− atomic

X-ray spectroscopy. The first Ξ− atomic X-ray spectroscopy experiment (J-PARC E07) to measure

Ξ−C, Ξ−Ag, and Ξ−Br atomic X rays was performed at the J-PARC K1.8 beam line. In the ex-

periment, Ξ−s were produced in a diamond target via the (K−, K+) reaction. Some of them were

stopped in the target or in the nuclear emulsion placed downstream of the target and then formed

Ξ− atoms. Two magnetic spectrometers were used in order to identify the (K−, K+) reaction

events. Incident K−s of 1.8 GeV/c momentum and scattered K+s were analyzed by the beam

line spectrometer and the KURAMA spectrometer, respectively. Ξ− atomic X rays were measured

using the Ge detector array called Hyperball-X. A new in-beam energy calibration method for

the Ge detectors using LSO scintillators and 22Na sources was developed and achieved a 100-eV

accuracy.

Most of produced Ξ−s decay before stopping and cause a huge background. In order to measure

Ξ− atomic X rays with good S/
√
N , two methods to select Ξ−-stop events were developed. In

Method 1, Ξ−-stop events were identified by the nuclear emulsion image analysis. Based on the

present analysis, the Ξ−Ag and Ξ−Br atomic X-ray spectrum was obtained with 20% statistics of

the estimated total σ-stop yield. It was found that the background level was 0.17+0.57
−0.10 in 1 keV

around the 370-keV region where the Ag(8J → 7I) transition is expected. When the emulsion

image analysis is completed, an expected X-ray yield of the Ag(8J → 7I) transition will be 7.75

counts for the σ-stop events, and S/
√
N would be 4.56 for the ±2σ peak region. On the other

hand, in Method 2, the Ξ− produced with a large stop probability at the target is selected using

information of the Ξ− momentum. As a result, in the obtained Ξ−C atomic X-ray spectrum,

no evident peak was found. The upper limit of the branching ratio BR(E1; 3D → 2P ) of the
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Ξ−C atom was experimentally evaluated. This limit was compared to the theoretical calculation

using the Woods-Saxon-type Ξ−-nuclear optical potential. It was found that the experimental

sensitivity was not sufficient to constrain the imaginary part of the Ξ−-nuclear potential. More

improvements, for example optimization of the target thickness and developments of detectors to

reject contamination of the background process, are required in the future experiment.



Appendix A

Numerical calculation of Schrödinger

equation

In this chapter, the procedure to solve the Schrödinger equation is explained. Since the Schrödinger

equation cannot be solved analytically in general, the approximate solution is obtained by numer-

ical calculation.

A.1 Schrödinger equation

Theoretical component of the Schrödinger equation of Ξ− bound system is given as

Hunl(r) = enlunl(r) (A.1)

where unl(r) is the radial wave function with the radial quantum number n and the orbital angular

momentum l, and they are ortho-normalized as follows.

< unl(r)|unl(r) > =

∫
dr3r|unl(r)|2 = 1, (A.2)

< un′l(r)|unl(r)) > =

∫
dr3run′l(r)unl(r) = δn′n. (A.3)

The Ξ−-nucleus Coulomb and strong potentials are represented as VCoul.(r) and Vopt(r), respec-

tively. The Hamiltonian is given by

H = − ℏ2

2m

d2

dr2
+

ℏ2l(l + 1)

2mr2
+ VCoul.(r) + Vopt(r), (A.4)

where m is the reduced mass of Ξ−and the nucleus.
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A.2 Numerical method

There are several numerical calculation methods. The radial space is divided into N by the mesh

with a size of δr as shown in Fig A.1. rmax = Nδr should be far enough so that the wave function

converges at r = rmax. The wave function u is given in matrix representation,

u =



u(r0)
...

u(ri−1)

u(ri)

u(ri+1)
...

u(rmax)


(A.5)

r   =N�rr rr
r

u(r)

i i+1i-1

i

max

mesh size : �r

mesh number : N

u

Figure A.1: The radial wave function. The radial space is divided into N by the mesh of size δr. u(ri) is

the probability density function at ri. ri+1 is given as ri+1 = ri + δr.

The standard method to solve the equation is directly calculating Eq. A.1 at each point, namely,

unl(ri) is calculated from unl(ri − 2) and unl(ri − 1) using the Numerov method or Runge-Kutta

method. The procedure of the calculation is,

(1) Assuming an appropriate energy eigenvalue E0, calculate the Schrödinger equation starting

from around zero to rmax.

(2) In the same way as (1), calculate the Schrödinger equation starting from rmax to around zero

with E0.

(3) Check the connectivity of the wave function obtained in (1) and (2) at a certain point r0.

(4) By changing the E0 value, repeat the procedure (1) to (3) and E is determined.

For the case of Ξ− atom with a complex potential, wave functions and energy eigenvalues are also

complex.
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Inverse Hamiltonian method

On the other hand, the inverse Hamiltonian method [43] [44] was employed in this thesis. Calculate

according to the following procedure (also see a diagram in Fig. A.2),

(1) Introduce a first guess and form a reciprocal operator, Bn = 1 +∆T/(H − E0).

Introduce a set of ortho-nomalized functions {uk=0
n } as initial guess. The energy eigenvalues

and eigenfunctions for the harmonic oscillator are employed as the initial guess.

(2) Apply the operator Bn to {uk=0
n } and make an updated states {uk+1

n }.
Always they are ortho-nomalized using the Gram-Schmit process.

(3) Calculate the energy ek+1 =< u
(k+1)
n |H|u(k+1)

n >

Calculate overlap using H(ri) and u
(k+1)
n (ri) at each point, then sum up them from r0 to

rmax. The derivative can be represented using the three point formula as u(ri)
′′ ≈ (u(ri+1)−

2u(ri) + u(ri−1))/(δr)
2 .

u′′ =
d
(
du
dr

)
dr

(A.6)

∼
u(r+δr)−u(r)

δr
− u(r)−u(r−δr)

δr

δr
(A.7)

=
u(r + δr)− 2u(r)− u(r − δr)

(δr)2
(A.8)

Thus, the Eq. A.1 is

− ℏ2

2m



−2 1 0 0 · · · 0

1 −2 1 0
...

0 1 −2 1
...

. . .

0 · · · 0 1 −2


u+

ℏ2l(l + 1)

2m
diag

(
1

r20
, · · · 1

r2i
, · · · 1

r2max

)
u

+diag (VCoul(r0), · · ·VCoul(ri), · · ·VCoul(rmax))u

+diag (V (r0) + iW (r0), · · ·V (r0) + iW (ri), · · ·V (r0) + iW (rmax))u (A.9)

Note that diag(x1, x2, · · · ) represents diagonal matrix.

(4) Calculate dispersion of energy eigenvalue δE.

δE is defined as

δE ≡
√[

(H − ek+1
nl )uk+1

nl

]†
(H − ek+1

nl )uk+1
nl (A.10)

(5) Iterate (2) to (4) until δE becomes small enough.
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Figure A.2: Overview for the Inverse Hamiltonian method

A.3 Ξ−-C system

In this section, the calculation of Ξ− -C bound system by the inverse Hamiltonian method is shown.

Especially, the wave functions and eigenvalues of 2P and 3D state were obtained.

Ξ-nuclear potential

Assuming the potential of Woods-Saxon type as Ξ-nuclear potential as follows,

Vopt(r) =
V0 + iW0

1 + exp
(
r−R
a

) . (A.11)

where R is the nuclear radius, a is the diffuseness and V0 and W0 are well depths of the real and

the imaginary potentials, respectively. R is r0A
1/3 = 1.27A1/3 fm and a is 0.67 fm. The potential

shape is shown in Fig. A.4 for the case of V0 = 15 MeV and W0 = 1.5 MeV.

Result

The mesh size and rmax should be set so that the wave function converges at rmax. In this case,

the mesh size and rmax were taken as 0.1 fm and 500 fm, respectively, and the convergence of the
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Figure A.3: The potential shape of ΞN interaction.

calculation was checked. If the obtained energy eigenvalue changes when the mesh is refined or

rmax is larger, the calculation is not converged.

For the Ξ−-C system, the eigenvalue as a hydrogen like atom EN = −1.1336/N2, where N is

the Coulomb principal quantum number defined as N = n + l. The effective Coulomb principlal

quantum number Neff is introduced as

Neff ≡
√

E1

ERe

(A.12)

The result of calculation considering only Coulomb potential is shown in Table. A.1.

Table A.1: The calculated eigenvalues (ERe) and Neff for the case of that only the Coulomb interaction

was considered.

nl ERe[MeV ] Neff

1s -0.939282 1.0986

1p -0.282985 2.0015

2s -0.257637 2.0976

1d -0.125953 3.0000

2p -0.125811 3.0017

3s -0.118157 3.0974

2d -0.070849 4.0000

1f -0.070849 4.0000

3p -0.070786 4.0018

4s -0.067523 4.0974

The depth of the potential (V0, W0) are taken as (15 MeV, 0 MeV), (15 MeV, 1.5 MeV) and

(20 MeV, 1.5 MeV), the obtained energy eigenvalues are shown in Table. A.2 For the case of (15

MeV, 1.5 MeV), from Neff value, 2p and 1d state are identified as the 2P and 3D atomic state,

respectively. The obtained wave functions shown in Fig.A.4 in black represent the 2P state. The
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real part is shown in solid and the imaginary part is shown in dotted line. For the 3D state, they

are also shown in red.

Table A.2: The calculated eigenvalues (ERe and EIm) and Neff for the case of that the Coulomb and the

strong interaction were considered.

caseA

(V0=15 MeV, W0=0 MeV)

caseB

(V0=15 MeV, W0=1.5 MeV)

caseC

(V0=20 MeV, W0=1.5 MeV)

nl ERe EIm Neff nl ERe EIm Neff nl ERe EIm Neff

1s -7.593339 - 0.3864 1s -7.578491 -0.952363 0.3868 1s -10.891140 -1.376294 0.3226

1p -1.133883 - 0.9999 1p -1.091383 -0.371776 1.0192 1p -2.718265 -0.786759 0.6458

2s -0.471038 - 1.5513 2s -0.469902 -0.019224 1.5532 2s -0.549581 -0.046017 1.4362

2p -0.218504 - 2.2777 2p -0.220356 -0.010751 2.2681 2p -0.242393 -0.005787 2.1626

3s -0.173247 - 2.5580 3s -0.173046 -0.004379 2.5595 3s -0.190447 -0.009224 2.4397

1d -0.126126 - 2.9980 1d -0.126124 -0.000026 2.9980 1d -0.126232 -0.000057 2.9967

3p -0.104323 - 3.2964 3p -0.104905 -0.003468 3.2872 3p -0.112118 -0.001919 3.1797

4s -0.089453 - 3.5599 4s -0.089387 -0.001636 3.5612 4s -0.095766 -0.003277 3.4405

2d -0.070952 - 3.9971 1f -0.071836 -0.000967 3.9725 1f -0.077082 0.001652 3.8349

1f -0.070849 - 4.0000 2d -0.070951 -0.000016 3.9972 2d -0.071016 -0.000035 3.9953

r [fm]

u
 (

r
) 

[f
m

  
 ]

Figure A.4: The wave function of the 3D and 2P state shown in red and black for the condition of V0

is 15 MeV and W0 is 1.5 MeV. The solid and dotted line represent the real and imaginary part of wave

function, respectively.



Appendix B

Calculation of ΓEλ

In this section, how to obtain the width ΓEλ of the Eλ transition is explained. The width ΓEλ is

related to the transition probability wγ(λµ) of γ-ray emission as Γ = wℏ.

B.1 Transition probability of γ decay

With the atomic state transition from i to f states, a aphoton with an energy ℏω = Ei − Ef

is emitted. This is radiation emission of the atom due to the charge density distribution ρ and

current density distribution j⃗ oscillating over time. When the radiation energy emissions rate all

over the sphere per unit time is written in < W >, the transition probability T is the radiation

energy rate per the emitted photon energy of ℏω, that is, T =< W > /ℏω. The density of the

radiation energy is given as a Pointing vector,
−→
S = c

4π

−→
E ×

−→
H , where

−→
E and

−→
H are written in

−→
E (r⃗, t) = E exp(−iωt) + c.c. (B.1)
−→
H (r⃗, t) = H exp(−iωt) + c.c. (B.2)

For the σλ transition (σ is E or M), the transition probability of a proton emission with the

multipolarity σλµ, T
(σ)
λµ , is given as,

T
(σ)
λµ =

8π(λ+ 1)

λ[(2λ+ 1)!!]2
k2λ+1

ℏ
|M(σ)

λµ |
2, (B.3)

where k is the wave number, M
(σ)
λµ is the transition matrix element. The derivation of Eq. B.3 is

explained in the reference[]. The transition matrix element is obtained as the expectation value of

the σλµ moment as follows,

Eλ : < f |M(E)
λµ |i > = e

∫
rλY ∗

λµ(θ, ϕ)φ
∗
f (r)φi(r)dv (B.4)

Mλ : < f |M(M)
λµ |i > = − ik

λ+ 1

(
eℏ
Mc

)∫
rλY ∗

λµ(θ, ϕ)∇ · (φ∗
f (r)Lφi(r))dv (B.5)

124
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In addition, the terms of internal magnetic moment associated with the electron spin are given as

below,

Eλ : M′(E)
λµ = − ik

λ+ 1

∫
rλY ∗

λµ(θ, ϕ)∇ · (r×M)dτ (B.6)

Mλ : M′(M)
λµ = −

∫
rλY ∗

λµ(θ, ϕ)∇ ·Mdτ (B.7)

Usually, M′(E) can be ignored since it is smaller by 3 order than M(E).

B.2 Specific calculation of T
(E)
λµ

Consider the transition from the initial state |nilimisi⟩ to the final state nf lfmfsf⟩ by the transition
operator M′

λµ, where n is the radial quantum number, l is the orbital angular momentum, m is the

magnetic quantum number and s is the spin quantum number. M′
λµ changes the orbital angular

momentum by λ, that is, l′f = λ + li. Also, the magnetic quantum number is changed by µ as

mf = µ+mi. In general, since the angular momenta of the particles in the initial and final states

are not aligned, T
(σ)
λ is summed up mf and average for mi (divided by multiplicity 2li+1). The

same applies to the spin quantum number. Then we get,

T
(E)
λ (Eγ)[s

−1] =
8π(λ+ 1)

λ{(2λ+ 1)!!}2
× α× c

e2

(
Eγ[MeV ]

197[MeV ]

)2λ+1

B(Eλ), (B.8)

where c is the light speed, ℏc = 197 MeV·fm, and α= e2/ℏc ∼= 1/137. Here, the reduced transition

probability B(λ) is defined as

B(Eλ, nili → nf lf ) =
1

2(2li + 1)

∑
si,sf

∑
mf ,µ,mi

|⟨nf lfmfsf |M′(E)
λµ |nilimisi⟩|2 (B.9)

B.2.1 Reduced transition probability B(λ)

Wigner-Eckart theorem

In general, the matrix element of the spherical tensor operator T (k)
q , which describes a transfor-

mation of coordinate rotation such as a spherical harmonics function, can be separated into two

parts as

⟨αJM |T (k)
q |α′J ′M ′⟩ = ⟨kq, J ′M ′|JM⟩⟨αJ ||T (k)||α′J ′⟩ (B.10)

Here, the first part is the Clebsch-Gordan coefficient ⟨kq, J ′M ′|JM⟩, which depend on the magnetic

quantum numbers, and the second part is the irreducible matrix element, ⟨αJ ||T (k)||α′J ′⟩. This is
the Wigner-Eckart theorem.

The Clebsch-Gordan coefficients are given in terms of the Wigner 3-j symbols by

⟨kq, J ′M ′|JM⟩ = (−1)k−J ′+M(2J + 1)1/2
(

k J ′ J

q M ′ −M

)
. (B.11)
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B.2.2 Eλ transition

For the Eλ transition of nilimisi → nf lfmfsf , the expectation value of the electromagnetic moment

including Eq. B.9 is calculated. The wave function Φ(r) is separated into a radial part unl and a

angular part Ylm(θϕ). The Wigner-Eckart theorem is applied and the transition by the magnetic

operator Mµ
λ is separated into a radial and an angular term as follows,

⟨nf lfmfsf |Mµ
λ|nilimisi⟩ =

(∫
dΩY ∗

lfmf
YλµYlimi

)(
qeffe

∫
drrλu∗

nf lf
unili

)
, (B.12)

where Yλµ(θϕ) is a spherical harmonics function.

Angular term

The angular component, given as the first term on the righthand side of Eq. B.12, is calculated.

The operator of the transition is spherical harmonics function Yλµ and the Wigner-Eckart theorem

is applied.

Or, Eq.(4.6.3) in “Angular momentum in quantum mechanics” by A.R. Edmonds [45],

∫ π

0

∫ π

0

Yl1m1(θ, ϕ)Yl2m2(θ, ϕ)Yl3m3(θ, ϕ) sin(θ)dθdϕ =

[
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

]1/2(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
(B.13)

can be used. By taking a square of Eq. B.13, we get

∑
mf ,µ,mi

∣∣∣∣∫ dΩY ∗
lfmf

YλµYlimi

∣∣∣∣2 = (2lf + 1)(2λ+ 1)(2li + 1)

4π

(
lf λ li
0 0 0

)2

. (B.14)

Here, the following formula was used:

∑
m1,m2

(
l1 l2 l3
m1 m2 m3

)(
l1 l2 l′3
m1 m2 m′

3

)
= δl3l

′
3δm3m

′
3

1

2l3 + 1
(B.15)

Radial term

The component of radial direction of Eq. B.12 is calculated by the wave function obtained in

Appendix A and the operator (rλ).

Since the center of mass of the whole system is stopped, when the Ξ− moves, the remaining

part is recoiled. Along with this recoil motion, the Ξ−’s charge is corrected as the effective charge

qeff considering the mass of core nucleus (MN), the proton number (Z) and the mass of Ξ− (mΞ),

qeff = −MN + ZmΞ

MN +mΞ

. (B.16)
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Residual transition probability B(λ)

From the above explanation, the reduced transition probability B(Eλ) is described as

B(Eλ, nili → nf lf ) =
1

2(2li + 1)

∑
si,sf

∑
mi,µ,mf

(2lf + 1)(2λ+ 1)(2li + 1)

4π

(
lf λ li
0 0 0

)2(
qeffe

∫
drrλu∗

nf lf
unili

)2

(B.17)

The term of 3j symbols in Eq.B.20 has m1 = m2 = m3 = 0. It can be calculated as follows [45],

(
l1 l2 l3
0 0 0

)
= (−1)J/2

[
(lj1 + l2 − l3)(l1 + l3 − l2)(l2 + l3 − l1)!

(l1 + l2 + l3 + 1)!

] 1
2 (L/2)!

(L/2− l1)!(L/2− l2)!(L/2− l3)!
, (B.18)

where L = l1 + l2 + l3.

B.2.3 Transition probability of C(3D → 2P )

Calculation of the probability for E1 transition of 3D→2P is described. The 3j-symbol term

included in Eq. B.13 is calculated using the formula of Eq. B.18,(
l′ 1 l

0 0 0

)
=

(
2 1 1

0 0 0

)
= (−1)2

[
2!2!0!

5!

]1/2
2!

0!1!1!
=

√
2

15
. (B.19)

Then Eq. B.20 is

∑
mf ,µ,mi

∣∣∣∣∫ dΩY ∗
lfmf

YλµYlimi

∣∣∣∣2 = 3× 3× 3

4π
× 2

15
=

3

2π
. (B.20)

After all, the transition probability T
(E)
λ is obtained from Eq. B.8. The width Γ

(E)
λ [MeV] is given

from T
(E)
λ as,

Γ
(E)
λ = ℏTλ(Eγ) (B.21)

By applying λ = 1, calculated transition probability T
(E)
1 and width Γ

(E)
1 are obtained as a

function of Eγ as shown in Fig. B.1. Note that the wave function was obtained assuming the well

depths of the Ξ− potential, V0 and W0, are 15 MeV and 1.5 MeV, respectively. In this case, the

spacing of the 3D and 2P states is 0.94 MeV (see Table. 3.12) and the corresponding width of 3D

state is 2.44× 10−7 [MeV].
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Figure B.1: The transition probability T
(E)
1µ and the width Γ

(E)
1µ of C 3D → 2P transition for the case of

the well depth of the Ξ− potential V0 is 15 MeV and W0 is 1.5 MeV .
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