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Abstract
One of the goals of nuclear physics is to understand the physical characteristics of hadrons

and their interaction based on the picture of quarks. The three lightest quarks of u, d, and

s and their antiquarks form a spin-0 meson nonet under the flavor SU (3) symmetry. In this

classification, the η′ meson is an isoscalar meson that has a large mass of 958 MeV/c2 due to

the quantum anomaly of QCD. In recent years, the mass acquisition mechanism of it in finite

nuclear density has been studied through the search for bound states with atomic nuclei. It has

become more interesting subject to research.

Real- and virtual-photoinduced meson productions off a nucleon have been studied in various

reaction channels. Meson production by electromagnetic interaction near the energy threshold is

strongly affected by the couplings with nucleon excited states in the s-channel. The η′p final state

can only be coupled to the N∗ resonances due to isospin conservation. Its higher energy threshold

exposes a lot of candidates for resonances that have not yet been experimentally established.

Also, the angular dependence of extreme forward and backward angles with respect to the beam

particles reveals contributions from resonances with higher spins. The present study reports for

the first time the differential cross section of the η′ production by electron scattering. The latest

setup of hypernuclear spectroscopy allows the measurements of virtual-photoproduction of η′

mesons at ultra-backward angles.

A series of experiments was conducted in Hall-A of Thomas Jefferson National Accelerator

Labratory (JLab) in the United States from October to November 2018 as JLab E12-17-003.

A 4.326 GeV electron beam was irradiated onto a 40 K cryogenic hydrogen target to generate

η′ with the 1H(e, e′p) η′ reaction. The momenta of pp ∼ 1.8 GeV/c and pe′ ∼ 2.1 GeV/c were

measured simultaneously using two arms of magnetic spectrometers, HRS-R and -L that have

the QQDQ magnetic components, at the angles of θp = θe′ = 13.2 deg. A peak of η′ was

identified to count the number of the events on the missing mass distribution. The total charge

of the beam was 4.6 C.

The number of observed η′ was found to be 467 ± 85 counts by fitting the missing mass

spectrum of the 1H(e, e′p)X reaction. The differential cross section of the 1H(γ∗, p) η′reaction

was derived as follows based on the number of η′ given by the data and the acceptance estimated

by a Monte Carlo simulation dedicated to JLab Hall-A setup,(
dσγ∗p→η′p

dΩη′

)CM

= 4.4± 0.8 (stat.)± 0.4 (sys.) [nb/sr] .

In order to consider this result, an isobar model calculation was developed to explain the

electroproduction together with the photoproduction of η′ mesons. It takes into account the

lowest order perturbation of tree-level diagrams, and adopt the couplings with the N∗ resonances,
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ρ and ω meson couplings in the t-channel, and the ground state couplings called Born terms in the

s- and u-channels. Fitting the experimental database of photoproduction has been successfully

performed to determine the effective coupling constants, and the calculation has reproduced

the present data of electroproduction consistently. The present study verifies the theoretical

framework for the meson electroproduction, and also is expected to add new constraint on

analysis of nucleon resonances.



“Philosophy will clip an Angel’s wings,

Concuer all mysteries by rule and line,

Empty the haunted air, and gnomed mine—

Unweave a rainbow, as it erewhile made

The tender-person’d Lamia melt into a shade.”

— Lamia; II, by John Keats



“No, no, no, no! Come, let’s away to prison:

We two alone will sing like birds i’ the cage:

When thou dost ask me blessing, I’ll kneel down,

And ask of thee forgiveness: so we’ll live,

And pray, and sing, and tell old tales, and laugh

At gilded butterflies, and hear poor rogues

Talk of court news; and we’ll talk with them too,

Who loses and who wins; who’s in, who’s out;

And take upon’s the mystery of things,

As if we were God’s spies: and we’ll wear out,

In a wall’d prison, packs and sects of great ones,

That ebb and flow by the moon.”

— King Lear ; Act 5, Scene 3, by William Shakespeare
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Chapter 1

Introduction

1.1 Nuclear Physics

Nuclear physics focuses on compact quantum many-body systems governed by strong interac-

tions, and also attempts to describe astrophysical phenomena, such as element synthesis in the

universe and the internal structure of neutron stars, based on a microscopic understanding. This

compact quantum many-body system consists, on one hand, of particles formed by quarks bound

by gluons—these are baryons and mesons, collectively known as hadrons. On the other hand,

it also includes clusters of nucleons bound together by nuclear forces, known as atomic nuclei.

Therefore, one of the major goals in nuclear physics, particularly when focusing on the former, is

to understand the physical properties of various hadrons—their masses, lifetimes, spins, parities,

radii, production probabilities, and interactions—through the depiction of quarks.

In the modern era, renowned physicists established the Standard Model, which describes

interactions between particles based on quantum field theory. In the Standard Model, elementary

particles are categorized into three generations of six flavors of quarks and leptons that make

up matter, gauge bosons that mediate interactions, and the Higgs boson, which provides “bare”

mass to the particles. With the discovery of the Higgs boson at CERN’s LHC in 2012 [1, 2], all

17 elementary particles in the Standard Model have now been verified experimentally.

The Standard Model encompasses Quantum Chromodynamics (QCD), which is the first-

principle theory describing strong interactions. In QCD, quarks (and antiquarks) with color

charge couple with gluons, which also carry color, to form color-neutral hadrons. This coupling

has an important property: as energy increases, the coupling constant weakens (a phenomenon

known as asymptotic freedom), whereas in the low-energy region, the coupling constant exceeds

1 and grows, making it impossible to isolate quarks individually. It creates a theoretical problem;

while quantum perturbative calculations are available for dynamic properties like high-energy

hadron production, they are no longer applicable for static properties such as hadron masses or

nuclear forces. In recent years, lattice QCD calculations, which were pioneered by M. Creutz [3]

based on the lattice gauge theory proposed by K. Wilson [4], have been actively studied us-

ing massive computational resources to simulate the static properties of hadrons based on first
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principles (for example refs. [5–8]). Yet, this approach remains in a developmental stage, and

descriptions of hadrons in low-energy regions still rely on effective field approximations. There-

fore, it is crucial to provide precise data through experiments to clarify the model dependence

inherent in these approximate and effective theoretical calculations, and to substantiate the va-

lidity of these theories. Thus, we hold in our heart an unsatisfied desire to understand, in a

unified and consistent manner, how hadrons acquire their mass and how interactions between

colorless hadrons occur.

1.2 The η′(958) meson

The η′ meson is a type of meson, which is a color-neutral composite particle formed by a pair

of quark and antiquark. It is known to have a mass of mη′ = 957.78 MeV/c2, a spin of J = 0,

parity of P = −1, and an isospin of I = 0 [9].

Here, it is essential to introduce isospin, one of the important properties of hadrons. Isospin

is a quantum number introduced based on the fact that protons (composed of uud quarks) and

neutrons (composed of udd quarks), which form atomic nuclei, exhibit very similar properties

aside from their electric charge. By analogy with the spin-up and spin-down states of an electron,

isospin is introduced with the idea that these particles are two different states of the same

particle, the “nucleon.” In other words, the magnitude of isospin for nucleons is 1
2 , and the z

component is given by

Îz |p⟩ = +
1

2
|p⟩ (1.1)

Îz |n⟩ = −1

2
|n⟩ . (1.2)

One can discribe other hadrons in terms of isospin, too, by extending this concept. For example,

π mesons exist in three forms— π+, π0 and π− depending on their electrical charge and are

represented as particles with an isospin I = 1. The z components of π mesons’ isospin are

expressed as

Îz
∣∣π+

〉
= +

∣∣π+
〉

(1.3)

Îz
∣∣π0
〉
= 0 (1.4)

Îz
∣∣π−〉 = −

∣∣π−〉 . (1.5)

In the quark model established later, isospin is understood in terms of the flavor SU (2) group at

the quark level, represented by the two components of the u and d quarks. The crucial point is

that isospin is always conserved in strong interactions, making it a particularly useful quantum

number for classifying hadrons.

Then, by adding the next lightest quark, the s-quark, the quark model was extended to SU (3)

symmetry, as proposed by M. Gell-Mann [10–12]. His model successfully classified many baryons
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and mesons that had been discovered up to that time. Furthermore, its validity was confirmed

in 1964 by the discovery of the Ω− baryon, which had a strangeness of S = −3 [13].

Now, consider the composition of mesons as described by the quark model. Each quark and

antiquark has a spin of J = 1
2 , and a pair of these can form either a spin-0 or spin-1 state. When

one considers the case where the relative orbital angular momentum L = 0 between the quark

and antiquark, one finds that the spin-parity of the meson can be either 0− or 1+. The former

is known as a pseudoscalar meson, which includes the ground states of mesons such as the π,

K, η and η′ mesons. On the other hand, the latter is known as a vector meson, which includes

mesons such as the ρ, ω and ϕ. The tensor product of the quark-antiquark pair, expressed by

the fundamental representation of SU (3) symmetry, decomposes as follows:

3⊗ 3̄ = 8 + 1. (1.6)

The weight diagram in the following Fig. 1.1 and Fig. 1.2 plots the pseudoscalar and vector

meson 8+1 multiplets in the Iz-Y plane (Y represents hypercharge Y = B+S. For mesons, the

baryon number is always 0, so the hypercharge Y always matches the strangeness S.). For each

case, there are three overlapping states with Iz = 0 and Y = 0. Focusing on the pseudoscalar

mesons, one of these three states has a total isospin I = 1 and is distinguished from the other

two. This is the previously mentioned π0 meson, whose quark composition is:

π0 =
1√
2

(
dd̄− uū

)
. (1.7)

The remaining two states both have total isospin I = 0, and are labeled as η1 and η8 depending

on whether they belong to the octet or singlet of qq̄ combinations:

η8 =
1√
6

(
uū+ dd̄− 2ss̄

)
(1.8)

η1 =
1√
3

(
uū+ dd̄+ ss̄

)
. (1.9)

These η1 and η8 states are distinguished as independent states in a theory where flavor SU (3)

symmetry holds completely. However, in reality, this flavor SU (3) symmetry is broken due to

differences in the intrinsic masses of the quarks, causing mixing between η1 and η8. As a result,

the two eigenstates of mass, η and η′, can be expressed in terms of η1, η8, and the mixing angle

θ as follows: [
η
η′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
η8
η1

]
(1.10)

And this η′ meson is the protagonist of the present thesis. The mixing angle θ here has been

discussed by various theoretical and experimental research groups. According to the latest

summary from the PDG [9], this angle is relatively small, approximately between −20 and −10

degrees. Therefore, η and η′ are essentially composed mostly of the contributions from the octet

component η8 and the singlet component η1, respectively.

The η′ meson was independently discovered in 1964 (the same year as the discovery of the

Ω− baryon!) by G.R. Kalbfleisch et al. [14] and M. Goldberg et al. [15], in a hydrogen bubble
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Y

Iz

1

-1

0

K0 K+

K0K-

π+π-

π0

η1 η8

-1/2 1/2 1-1

Fig. 1.1: The classification of pseudoscalar

mesons on the weight diagram.

Y

I3

1

-1

0

K*0 K*+

K*0K*-

ρ+ρ-

ρ0

ω1 ω8

-1/2 1/2 1-1

Fig. 1.2: The classification of vector mesons

on the weight diagram.

chamber exposed to a K− beam. The author speculates that the reason for this discovery’s

historical delay compared to other mesons and baryons, including scalar mesons, was solely due

to the difficulty arising from its large mass. The unique mass of η′ has attracted the attention of

physicists for many years, and efforts have been made to understand it. As mentioned earlier, the

mass of η′ is mη′ = 957.78 MeV/c2, which is exceptionally heavy compared to its brothers and

sisters (mπ ≈ 140 MeV/c2, mK ≈ mη ≈ 500 MeV/c2). The mechanism by which η′ acquires this

large mass is closely related to the symmetrical structure of QCD and is currently thought to be

caused by the explicit breaking of the axial UA (1) symmetry in the Lagrangian [16–19]. Recently,

the mass of η′ has become a topic of more active discussion. This renewed interest originated

from several theoretical groups suggesting that, in a finite density medium, partial restoration

of chiral symmetry breaking could lead to a reduction in the η′ mass. The mass reduction

of the η′ meson at nuclear density could be interpreted as an attraction between the nucleus

and η′ [20–23]. Furthermore, numerical simulations conducted by multiple groups have led to

the intriguing conclusion that this attraction is strong enough to form bound states between η′

and nuclei, namely, η′-mesic nuclei. Attempts to experimentally observe this interesting state,

have been conducted since the beginning of this century at GSI in Germany [24] and SPring-8

in Japan [25]. So far, these experiments have not succeeded in discovering a definitive peak

indicating the existence of such a bound state. However, both collaborations have planned

upgrades to improve experimental data and acquire additional data. In this way, the latest

developments in research on the mass of η′ have generated great anticipation, as they could

potentially lead to a deeper understanding of the mass acquisition mechanism of hadrons.

1.3 Elementary process of the η′ meson production off a nucleon
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1.3.1 Overview

In the 1950s, R. Hofstadter et al. conducted elastic scattering experiments off protons and

atomic nuclei using an electron beam [26, 27]. This series of experiments achieved two major

accomplishments: first, it measured the Wood-Saxon-form charge distribution of various nuclear

targets, leading to the discovery of the saturation of nuclear density. Second, it revealed that the

proton itself has a finite charge distribution with a radius of approximately 0.8 fm, suggesting

that the proton is a composite particle formed by intrinsic particles. This marked the beginning

of hadron physics research using electron scattering.

Then, with the remarkable advances in accelerator technology scince the late 1960s, it became

possible to perform inelastic scattering from protons, namely the e + p → e + p + X reaction,

using GeV-order electron beams. The reaction probability for the inelastic scattering, i.e., the

cross section, was found to exhibit different behaviors depending on energy levels. Just above

the energy threshold and in regions relatively close to it, the cross section forms several peaks

with specific widths at certain energy values. Each of these peaks corresponds to short-lived

nucleon excited states (known as ∆ and N∗ baryon resonances) that appear in the intermediate

state of the reaction. In other words, a proton receives energy from electron scattering and

changes into a nucleon resonance which promptly decays into a final-state proton and meson.

Thus, one can understand the energy spectrum of baryon resonances by measuring the cross

section, and can determine their spin and parity by measuring its angular distributions (this

is true not only for reactions using electron scattering but also for experiments using photon

and hadron beams). On the other hand, as the energy transferred to the proton increases, the

peak structure of the cross section disappears, leaving only a smooth distribution. This non-

resonant behavior can be understood, from the perspective of hadron excitation, as an overlap

of many states with much shorter lifetimes. However, at the same time, it was found that as

the four-momentum transfer Q2 = − (pe − pe′)
2
from electron scattering reaches regions above

several GeV, the cross section asymptotically approaches quasi-free scattering with point-like

particles—known as partons inside the proton. In other words, by increasing the energy of

the electron beam, the scattering target becomes not the nucleon itself but more microscopic

particles, such as quarks and gluons. This scattering phenomenon is known as Deep Inelastic

Scattering (DIS) of the proton, and provided direct evidence for the quark model. The three

physicists, J.I. Friedman, H.W. Kendall, and R.E. Taylor, who made significant contributions

to establishing this experiment, were awarded the Nobel Prize in Physics in 1990 [28, 29].

The electroproduction of mesons near threshold energy using an electron beam closely re-

sembles the production using a photon beam, i.e., photoproduction. This resemblance arises

not only because both processes involve electromagnetic interactions mediated by QED but also

because, in the low Q2 region of electroproduction, the One-Photon-Exchange Approximation

(OPEA)—in which only a single virtual photon is exchanged between the electron and the

target proton—holds sufficiently well. In other words, electroproduction in the relatively low-
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energy region can essentially be described as virtual-photoproduction, and this description takes

a mathematical form very similar to that of real-photoproduction. The kinematic description

using OPEA, which is necessary for the present thesis, is presented in Sec. 2.1 and, in more

detail, in Appendix A. Here, the author wishes to emphasize that both photoproduction and

electroproduction of mesons in the resonant region serve as valuable probes for exploring the ex-

cited states of nucleons coupled to the reaction vertex. In particular, not all resonances predicted

by the quark model have been experimentally verified. Such undiscovered states are referred

to as “missing resonances.” Experimental searches for these states are ongoing, and theoretical

discussions are also being conducted based on the framework of couplings between hadrons and

real- or virtual-photons to identify the resonances necessary to explain the obtained data. For

the author, taking an experimental perspective, the mission of providing reliable data covering

various reaction channels, angular dependencies, and energy ranges is crucial for uncovering the

energy structure of nucleons, which are composed of quarks and gluons.

In the present thesis, the author discusses the electroproduction experiment of the η′ me-

son. The final state consisting of η′ + p measured in the experiment exhibits several unique

characteristics. First and needless to say, due to the significantly large mass of η′ compared to

other pseudoscalar mesons, the energy threshold is high at Eth = 1986 MeV. Consequently, the

experiment is sensitive to higher energy resonances, specifically those around 1900 to 2200 MeV,

among which there are several resonances whose existence remains under discussion. Addition-

ally, focusing on the isospin of the η′ + p final state, the proton has an isospin of Ip = 1
2 , and η′

has an isospin of Iη′ = 0, resulting in a total isospin of Itotal =
1
2 . This constrains the isospin

of the intermediate state in the reaction to Ires =
1
2 . In other words, ∆ resonances with isospin

I∆ = 3
2 are excluded from coupling with the η′ + p final state, and only N∗ resonances with

isospin IN∗ = 1
2 can decay into the η′ + p final state. This important property reduces the

number of resonances that need to be investigated, simplifying the analysis of the experimental

results by decreasing the number of free parameters in theoretical calculations. (This property of

isospin applies equally to the η+ p reaction channel because η and η′ possess identical quantum

numbers. However, it is distinguished from the production of isovector π mesons.)

To date, while multiple experimental datasets exist for the photoproduction of η′ mesons,

there are no reported datasets for the cross section of η′ electroproduction. The author spec-

ulates that this lack of experimental data might be attributed to the technical demands of

simultaneously measuring high-energy scattered electrons and protons, as well as the significant

background events inherent in high-energy reactions. Furthermore, likely due to the absence of

experimental data, there are no theoretical calculations describing η′ electroproduction. On the

other hand, a large collection of research exists for η′ photoproduction in both theory and exper-

iment. Since electroproduction and photoproduction are reactions with considerable similarities

in their descriptions, examining the behavior of η′ photoproduction serves as a valuable reference

for understanding the expected results of η′ electroproduction in the preset study. In Fig. 1.3, a

summary from the EtaMAID theoretical group compares the photoproduction databases of (a)
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Fig. 1.3: The W dependence of the total cross-section of ηN (a) and η′N (b) photoproduction

measured so far [30]. The red-solid and blue-dashed lines represent the calculations by the

calculations with the EtaMAID model for ηp/η′p and ηn/η′n channels, respectively.

η mesons and (b) η′ mesons with the theoretical calculation using the model EtaMAID2018 [30].

In the graphs, the horizontal axis represents the energy W in the center-of-mass (CM) frame

of the final state, and the vertical axis shows the total cross section σ. Additionally, Fig. 1.3

includes data and theoretical calculations for η + p and η′ + p production using a hydrogen

target, as well as η+n and η′+n production using a deuterium target. Looking first at η photo-

production, a characteristic energy dependence is observed, beginning just above the threshold

Eth = 1486 MeV with a prominent peak around 1500 MeV. This dominant peak, primarily

formed by the presence of the nuclear resonance N (1535) 1
2

−
(formerly denoted as S11 (1535)),

located 49 MeV above the threshold, has been explained by theoretical partial-wave analysis

and strongly supports the existence of this resonance. In contrast, η′ photoproduction lacks

such a dominant peak structure, instead showing a more gradual, hill-like pattern (though data

on η′ + n production remains sparse and uncertain). This is because the high energy thresh-

old allows for a larger number of N∗ resonances to couple and overlap. Thus, referencing past

experimental data and calculations (although in photoproduction) underscores the importance,

at a point of view of experiment, of accurately measuring the elementary process of η′ meson

production, which may contain information on uncertain resonances. Specifically, it is crucial

to obtain angular dependence data to identify the spin-parity of these candidates.

1.3.2 Past experiments with the real photon beam

Here, the author introduce a more detailed summary of individual experiments on η′ produc-

tion with a real photon beam conducted so far. In these experiments, the real photon beam—also

referred to as a γ beam—is generated by inducing bremsstrahlung or backward Compton scat-

tering on electrons accelerated by an accelerator, and it is then directed at a stationary proton

target within the laboratory. Although the methods for measuring the final states vary across

these experiments, they all capture the decay products from the η′.
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The earliest measurements of the η′p final state were performed by analyzing the trajectory

of particles. As previously mentioned, the discovery of the η′ meson itself was made in 1964 by

G.R. Kalbfleisch et al. [14] and M. Goldberg et al. [15] with the hadronic reactions. Just four

years later, in 1968, R. Erbe et al. (ABBHHM collaboration) conducted a measurement of the

η′ meson using a photon beam, and reported 11 events of η′ production [31]. This was the first

experiment to measure the cross section of the γp → η′p reaction. In 1976, W. Struczinski et al.

(AHHM collaboration) reported 7 events of η′ photoproduction using a streamer chamber [32].

In this experiment, photon beams were tagged for each event by capturing the electrons after

the scattering.

The first measurement of η′ photoproduction with advanced accelerator and counter tech-

niques was reported in 1998 by R. Plötzke et al. (SAPHIR collaboration) [33]. This experiment

was conducted at the Electron Stretcher Accelerator (ELSA facility) at the University of Bonn.

They irradiated a liquid hydrogen target with a γ beam generated by bremsstrahlung and used

a magnetic spectrometer SAPPHIR covering a solid angle of 4π to detect five charged particles

in the decay chain of γp → pη′ → pπ+π−η → pπ+π+π−π−π0. As a result, an η′ peak of 330

events was successfully observed on the proton missing mass spectrum. They reported for the

first time the differential cross section in which the energy range 1.44 GeV < Eγ < 2.64 GeV

was divided into 7 bins and the angular range −1.0 < cos θCM
γη′ < 1.0 was divided into 5 bins

(see Fig. 1.4). It was found by this experiment that the cos θCM
γη′ dependence with cross section

monotonically increases toward the forward angles. They applied linear functions for the data

fitting and then discussed the possibility of coherent generation of S11 and P11 partial waves

based on this behavior.

In the 21st century, the CLAS collaboration reported experimental results with significantly

higher precision twice, in 2006 and 2009 [34, 35]. In the present thesis, these two experimen-

tal datasets are labeled as “CLAS06” and “CLAS09” to distinguish them. The CEBAF Large

Acceptance Spectrometer (CLAS) is an experimental collaboration conducted at the Thomas

Jefferson National Accelerator Facility (JLab) Hall-B, and it is also the name of the detector

system used in the experiment. A photon beam was extracted by bremsstrahlung from a con-

tinuous electron beam and then irradiated onto a liquid hydrogen target to induce a reaction.

Charged particles in their final state were detected using a group of particle detectors installed

in a toroidal magnetic field. In CLAS06 and CLAS09, 2× 105 and more events of η′ were mea-

sured. This large statistical data provides the measurement of angle-dependent cross section

with significantly improved statistical errors. The solid angle of the CLAS detector is in the

range −0.8 < cos θCM
γη′ < 0.8, but they also report the total cross section, which was obtained by

applying acceptance correction based on simulation. Another advantage of the measurements

is the wide energy range of 1.505 GeV < Eγ < 3.694 GeV in CLAS09 (which corresponds to

1.925 GeV < W < 2.795 GeV). This is why the author states that the CLAS collaboration pro-

vides highly reliable data about η′ photoproduction. In 2017, they also reported measurements

of the photon beam asymmetry Σ using a linear polarized photon beam [36].
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Fig. 1.4: Angular dependence of η′ photoproduction measured by SAPHIR [33].

A measurement by the CBELSA/TAPS collaboration was also reported at exactly the same

time as CLAS09 [37]. This experiment was conducted at the ELSA facility and was unique in

that it used a series of electromagnetic calorimeters. In this experiment, the Crystal Barrel (CB)

calorimeter made of CsI crystal, covering 30 degrees < θLabγp < 168 degrees around the target,

and the TAPS calorimeter made of BaF2 crystal, covering 5 degrees < θLabγp < 30 degrees at

forward angles, were used. These calorimeters covered 99 % of the solid angle and measured the

η′ → π0π0η → 6γ decay mode from the γp → η′p reaction. As well, a photon beam generated

by bremsstrahlung was irradiated onto a liquid hydrogen target. They identified 5.1×103 events

of η′ to report the cross section in the photon energy range of 1.5 GeV < Eγ < 2.5 GeV. It
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should also be noted that they measured the cross section of the quasi-free γn → η′n reaction

using a deuteron target (reported in 2011) [38].

The data reported by the A2 collaboration at MAMI in 2017 is the most accurate measure-

ment of the η′ photoproduction cross section near the threshold, specifically in the lower W

region [39]. The Crystal Ball (CB) calorimeter made of NaI(Tl) scintillator and the TAPS

calorimeter were combined and installed in the Mainz Microtron (MAMI) A2 tagged photon fa-

cility at Mainz University, surrounding the hydrogen target which was irradiated with γ beams

from bremsstrahlung radiation. The neutral decay modes of η′ → γγ and η′ → π0π0η → 6γ

after the γp → η′p reaction were measured. The cross section close to the energy threshold

W = 1896 GeV was investigated in detail by the present measurement, and the results strongly

support the existence of the N (1895) 1
2

−
resonance just below the threshold.

The experiment reported in 2015 by the LEPS collaboration is unique among other experi-

ments mentioned above due to its focus on measuring η′ at ultra-backward angles [40]. Although

reactions at forward or backward angles relative to the beam axis are sensitive to the presence

of high spin resonances, experimental data are very limited due to the difficulty in setting up

measurements. They applied a deep-UV 257 nm laser to the 8 GeV electron beam provided

by the SPring-8 facility and generated a photon beam by backward Compton scattering with

energy up to Eγ < 3.0 GeV [41, 42] to irradiate it onto a liquid hydrogen target. Scattered

protons were detected using the LEPS forward magnetic spectrometer, and at the same time,

emitted charged pions were detected by a time projection chamber surrounding the target. This

experiment reported the differential cross section of η′ photoproduction in the angular range

of −1.0 < cos θCM
γη′ < −0.8, which shows an up-and-down dependence for changes in W [40].

Fig. 1.5 shows the W -dependence of the backward differential cross section as reported by the

LEPS collaboration. They pointed out that there might be a bump structure around 2.35 GeV.

Additionally, they observed subtle ups and downs across other W regions. A theoretical calcu-

lation that fully explains this behavior has not yet been achieved.

1.3.3 Theoretical background

Since this reaction channel has not been experimentally measured until now, no theoretical

calculations currently exist to describe η′ electroproduction with finite Q2 > 0. However, vari-

ous calculations have been developed to describe photoproduction, which ensures Q2 = 0. The

earliest theories seem to have been designed in the 1990s, matching the improvement of experi-

mental accuracy of that time [44, 45]. The η and η′ mesons share the same quantum numbers

except for mass, which theoretically allows to be described within a unified framework. Among

such theoretical calculations, one can find some models based on the quark model in Refs. [46,

47]. However, the most widely referenced and useful theories are those by EtaMAID [30, 45, 48],

BnGa [49, 50], and Nakayama et al. [43, 51], which are constructed using a framework known

as the “isobar model.” The isobar model is a framework for describing the electro- and photo-

production of mesons, using an effective Lagrangian that operates within the degrees of freedom
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Fig. 1.5: Differential cross section of η′ photoproduction at ultra-backward angles measured

by LEPS (Fig. from ref. [40]. Data of CBELSA/TAPS [37] and isobar model calculation by

F. Huang et. al. [43] are also shown.

of hadrons, meaning it does not get into the quark level. In many models, only the lowest-order

perturbations in the s, t, and u-channels, known as “tree-level” diagrams as shown in Fig. 1.6,

are considered without taking loops into account (see also Fig. 1.6). Various nucleon excited

states are assumed as intermediate states that couple to the initial and final states, in addition

to the ground state of the nucleon. The strength of the coupling with each state represents an

uncertain parameter in theoretical calculations, and these parameters are determined by fitting

them to databases of experiment. Therefore, each model differs in its characteristics depending

on which resonances are assumed as intermediate states and which resonances have the strongest

coupling that predominantly influences the cross section, even among theoretical calculations

based on similar isobar models.

On the other hand, when one focuses on other meson production channels, theoretical mod-

els for electroproduction of π and K mesons have already been developed and are currently

available [52–56]. In particular, the calculations for the elementary process of kaon electropro-

duction also plays a fundamental role in hypernuclear spectroscopy experiments, giving a crucial

foundation for understanding the cross section of hypernuclei. Theoretical descriptions of meson

electroproduction with finite Q2 > 0 have been systematically organized based on OPEA in con-

structing these models, and photoproduction can be generalized as a special case where Q2 → 0.

Therefore, if this unified framework can be extrapolated to the case of η′ electroproduction, a

new theoretical calculation could be constructed, providing useful comparisons for interpreting

the experimental results obtained in the present study. Of course, for experimental physicists

like the author, such a development is by no means an easy task. Fortunately, however, the au-

thor has been able to discuss some aspects of this work with experts in theoretical physics who

are developing kaon electroproduction models known as BS models [57, 58]. In particular, the

differential cross section of η′ electroproduction, measured for the first time in the present study,

adds the new degree of freedom of the Q2 dependence to past photoproduction experiments. It
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Fig. 1.6: Tree-level Feynman diagrams depicting s-, u-, and t-channel exchanges for η′ real-

or virtual-photoproduction as an example of an isobar model. The first and third terms (s-

and u-channel coupling respectively) contain not only ground state nucleon couplings but also

resonance couplings.

is worth examining whether the theoretical framework that successfully describes finite Q2 > 0

scattering processes for other mesons, such as π and K mesons, can also be applied to η′ produc-

tion. Furthermore, the quenching of the cross section at finite Q2 > 0 exhibits different behavior

corresponding to the spin-parity of each resonance. By measuring these subtle differences by an

experimental measurement, the author hope to give new theoretical constraints in the context

of study of meson and baryon resonances.

1.4 Purpose of the present research

As mentioned several times in the previous sections, the purpose of the present study is to

measure the differential cross section of the electroproduction of the η′ meson. The present

thesis reports the first experimental measurements of η′ electro-induced production at finite

Q2 > 0. Additionally, the author aims to analyze the behavior of η′ production by comparing

the results of the present study with newly constructed theoretical calculations based on the

One-Photon-Exchange Approximation (OPEA) and the isobar model.

However, the present experiment, JLab E12-17-003 conducted in 2018, was not originally de-

signed or dedicated for η′ production. The author and collaborators initially planned to measure

the 3H(e, e′K+)nnΛ reaction as part of the experimental campaign with a tritium target at that

time. The nnΛ state, which the author does not discuss in detail here, is a hypernucleus with

atomic number Z = 0 and mass number A = 3. It has been a subject of debate regarding

its existence since the HypHI collaboration reported a controversial enhancement in the t+ π−

invariant mass spectrum in 2013 [59]. The principal goal of JLab E12-17-003, at least in the

experimental proposal, was to clarify the existence of this nnΛ state through the (e, e′K+) reac-

tion missing mass spectroscopy, using a cooled tritium target and two high-resolution magnetic

spectrometers. During the experiment, the authors and collaborators also collected a substantial

amount of 1H target data for energy scale calibration. This method is commonly used in hy-

pernuclear spectroscopy experiments with electromagnetic production, where the energy scale

of the missing mass is calibrated using two peaks from the 1H(e, e′K+) Λ/Σ0 reactions, and
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its approarch was adopted also for the present experiment. The 1H data, which was collected

without any particle identification at the online trigger level, naturally includes scattered pions

and protons in addition to kaons. Then one can obtain the spectrum of η′ electroproduction by

selecting the 1H(e, e′p) η′ reaction channel with this data. As the author will mention later, the

pe′ -ppscat correlation in η′ production kinematics lies between the pe′ -pK+ correlation in Λ and

Σ0 production kinematics, allowing η′ events to naturally mix into the data acceptance of the

hypernuclear experiment, and making it possible to analyze them. If such valuable data on η′

production can be obtained simultaneously as a byproduct of the Λ hypernuclear spectroscopy,

this new attempt is interesting. In the present experiment, only the scattered electron and

proton were measured, with the η′ identified solely by the peak in the missing mass spectrum.

Such measurements typically contain a large number of background events, and indeed, in the

data from the present experiment, numerous broad multi-meson production events are present

under the η′ peak. Nevertheless, thanks to the high momentum resolution of the spectrometers

used in the present experiment, the author was able to successfully identify a significant number

of η′ production events. As seen in the previous section, all past photoproduction experiments

derived production cross sections by selecting a specific decay chain of the η′ meson and dividing

by its branching ratio. This method might involve unexpected systematic errors. The present

experiment, however, provides the first semi-inclusive measurement independent of decay parti-

cles from the η′, which the author believes offers highly reliable data. Moreover, It should also be

noted that the angular region covered in the present experiment is mostly cos θCM
γη′ ≈ −1, which

corresponds to very backward angles. This extreme angular setting was designed based on the

physical characteristic that the differential cross section of hypernuclei, the intended research

thema of the present experiment, increases for forward-scattered K+ mesons. Applied to the

(e, e′p) reaction, this setting means that the proton is detected in the very forward direction,

and the generated η′ is scattered almost 180 degrees backward in the CM frame. Generally,

the angular dependence of the differential cross section at forward and backward angles is sig-

nificantly influenced by underlying resonances with high spin. Therefore, the author expect

that, by providing the cross section data at such unique angles—where past databases are lim-

ited, the present experiment may yield new information or constraints for theories regarding N∗

resonances strongly coupled to the η′p channel.
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Chapter 2

Experiment

2.1 Principle

The η′ mesons are produced with the e+p → e+p+η′ reactions in the present measurement. A

schematic diagram based on the One-Photon-Exchange Approximation (OPEA) of the reaction

is shown in Fig. 2.1. A high-energy electron hits a fixed proton target and is scattered with some

probability of virtual photon emission. The virtual photon (γ∗) with the energy and momentum

q = (ω, q) = (Ee − Ee′ ,pe − pe′) reacts with a proton to produce a η′ meson. The momenta of

scattered electrons (e′) and recoil protons (pscat) are measured by two magnetic spectrometers.

The mass of the missing particle, i.e. the missing mass, is obtained using the following equation

deduced from the energy and momentum conservation,

mX =

√
{(Ee − Ee′) +mp − Epscat}

2 − {(pe − pe′)− ppscat}
2
. (2.1)

Events with the η′ productions are observed as a peak on the missing mass spectrum.

In the One-Photon-Exchange Approximation, the triple differential cross section of the elec-

troproduction of meson X is written as

d3σ

dEe′dΩe′dΩCM
X

= Γ

(
dσγ∗

dΩCM
X

)
, (2.2)

where Γ and
dσγ∗

dΩCM
X

are the flux of the virtual photons and the differential cross section in

the center of mass (CM) frame of the hadron production by the virtual photon, respectively

[60]. Conventionally, quantities for hadrons are described in the CM frame, whereas those for

leptons are described in the laboratory frame. An important benefit of OPEA is that, as in

this expression, the triple differential cross section can be separated into two parts: electron

scattering accompanied by virtual photon emission and the virtual photoproduction of mesons.

Then one can understand the reactions with virtual photons (Q2 > 0) by analogy from the

reactions with real photons (Q2 = 0) and compare them with each other. Here, Q2 is the

four-momentum transfer with the electron scattering described as

Q2 = −q2 = 2EeEe′ − 2me
2 − 2 |pe| |pe′ | cos θee′ . (2.3)
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Fig. 2.1: A schematic diagram based on OPEA of the e+ p → e+ p+ η′ reaction.

It is worth to be noted that, in the present measurement, the author and collaborators measured

the recoil protons instead of the generated η′ mesons. The observable is therefore d3σ
dEe′dΩe′dΩ

CM
p

(or
(

dσγ∗

dΩCM
p

)
γ∗p→pη′

). However, this cross section is equivalent to the above equation since the

recoil angle in a two-body reaction in the CM frame is back-to-back. The virtual photon flux Γ is

calculated by the following formula using the momentum of the incident and scattered electrons:

Γ =
α

2π2Q2

Eγ

1− ϵ

Ee′

Ee
(2.4)

Q2 = −q2 = 2EeEe′ − 2me
2 − 2 |pe| |pe′ | cos θee′ (2.5)

ϵ =

[
1 + 2

|q|2

Q2
tan2

(
θee′

2

)]−1

(2.6)

Eγ = ω +
q2

2mp
, (2.7)

where ϵ denotes the transverse polarization of the virtual photons, respectively. One can de-

termine the total number of virtual photons by integrating Γ with the total charge of the

beam electrons and the acceptance of the electron spectrometer. Then, the cross section of

the γ∗ + p → p+ η′ reaction,
dσγ∗

dΩCM
η′

, is obtained.

The cross section for virtual photoproduction
dσγ∗

dΩCM
η′

can be expanded as follows depending on

the polarization of the virtual photons,

dσγ∗

dΩCM
η′

=
dσT

dΩCM
η′

+ ϵ
dσL

dΩCM
η′

+
√

2ϵ (1 + ϵ)
dσLT

dΩCM
η′

cosϕη′ + ϵ
dσTT

dΩCM
η′

cos 2ϕη′ , (2.8)

where, the particular contributions of dσT

dΩCM
η′

, dσL

dΩCM
η′

, dσLT

dΩCM
η′

, and dσTT

dΩCM
η′

correspond to the trans-

verse, longitudinal, transverse-longitudinal interference and transverse-transverse interference

modes of the virtual photon [60]. The terms ”L” and ”LT” appear only in reactions with virtual
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photons since real photons have only transverse wave components. In the case of Q2 → 0,
dσγ∗

dΩCM
η′

agrees with that for real photons. Therefore, measuring meson electroproduction in the region

of relatively small Q2, where the cross section approaches that of real photons but is not exactly

the same due to the non-zero longitudinal wave component, is quite important for developing

theoretical models extended from photoproduction. Moreover, the use of an electron beam al-

lows us to detect protons emitted at approximately 0 degrees relative to the virtual photons

and to observe the η′ mesons at backward angles. This is another unique characteristic in the

present measurement.

A more detailed theoretical description of meson electroproduction can be found in Ap-

pendix A.

2.2 Thomas Jefferson National Accelerator Facility (JLab)

The present experiment was performed in an experimental hall, Hall-A at the Thomas Jef-

ferson National Accelerator Facility (JLab). JLab is a national laboratory located in Newport

News, Virginia, the United States. It features an accelerator that provides high-luminosity

electron beams and includes four experimental halls: Hall-A, B, C, and D (Fig. 2.2).

2.2.1 Continuous Electron Beam Accelerator Facility (CEBAF)

The Continuous Electron Beam Accelerator Facility (CEBAF) at JLab consists of two super-

conducting linear accelerators (linacs), an electron injector, and arcs for bending the beam. The

electron beam can be accelerated up to 12 GeV by circulating through two linacs up to 5.5 times

and can be simultaneously supplied to each experimental hall. The maximum beam current and

duty cycle are approximately 85 µA and nearly 100 %, respectively. Such a high-current contin-

uous beam is suitable for coincidence experiments that measure reactions on the order of 10 nb,

such as the production of hypernuclei. Additionally, due to the RF frequency of 499 MHz at

400 m

Fig. 2.2: Aerial photograph of JLab [61] and CEBAF’s schematic view [62].
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Table 2.1: Specifications of CEBAF [63].

Contents Values

Maximum beam energy (Hall-A,B,C) 11 GeV

Maximum beam energy (Hall-D) 12 GeV

Maximum beam current (Hall-A,C/B) 85 µA/5 µA

Emittance at max. energy (horizontal/vertical) 10 nmrad/2 nmrad

Energy spread at max. energy (Hall-A,B,C) 5× 10−4

Energy spread at max. energy (Hall-D) 50× 10−4

Bunch length (rms) ∼ 1 ps

Maximum Polarization 80 %

the beam switching yard, the beam has a 2 ns bunch structure at the hall. Table 2.1 shows the

typical specifications of CEBAF.

2.2.2 Hall-A beamline

The electron beam is distributed from CEBAF to Hall-A and directed onto the target. In the

present experiment, a two-pass beam (having circulated CEBAF twice) was used. The layout

inside Hall-A is shown in Fig. 2.3. The Hall-A beamline includes various devices to measure the

position, energy, and current of the beam electrons upstream of the target, as well as the High

Resolution Spectrometer (HRS) to measure the scattered particles downstream of the target.

The position and direction of the electron beam irradiated onto the target were measured

by two Beam-Position Monitors (BPMs) [65]. Each BPM is installed 7.524 m and 1.286 m

upstream of the target position. It consists of a cavity with four antennas perpendicular to

the beam axis and can measure the direction and relative position of the passing electron by

detecting the distance from each antenna to the beam moment by moment. The beam position

at the target can be determined within 100 µm, and corresponding magnification at the reference

plane is comparable to the positional resolution of tracking detectors. Hence, it is reasonable to

assume that the reaction occurred at a single point. Beam measurement by the BPM is non-

destructive, but it uses wire scanners called “superharps” for calibration [65]. Superharps are

installed adjacent to each BPM and can measure the absolute position of the beam before using

the BPM. In the present experiment, the author and collaborators rastered the electron beam

to avoid damaging the target system from the heat generated by the beam’s energy deposition.

The beam can be swung vertically and horizontally by dipole magnets placed 23 m upstream

from the target. The frequency and the size of the beam raster were 25 kHz and 2 mm × 2 mm,

respectively. The change in the reaction position perpendicular to the beam axis due to the

raster can be calibrated by the BPMs.

The beam energy was determined by a technique called the arc method. Fig. 2.4 shows the

outline of the arc method. In this method, the beam energy is obtained from the relationship
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Fig. 2.3: A schematic drawing of the JLab Hall-A beamline [64]. This is a top view of the

entire hall. The experimental hall has a diameter of 174 ft. The electron beam is supplied

from left to right. The BCM and BPM are the Beam Current Monitor and Beam Position

Monitor described in detail in the main text. The Q1, Q2, DIPORE, and Q3, located from

the center of the experimental hall downstream, are electromagnets for the two High Resolution

Spectrometers (HRSs).

between the beam position passing through the arc section from CEBAF to Hall-A and the

magnetic field in the dipole magnets. It is represented by the following formula:

|pe| = k

∫
B · dl
θbend

, (2.9)

where k = 0.299792 (GeV/c) rad T−1 m−1. The arc section consists of nine dipoles with

a total length of 40 m. The bending angle of the eight dipoles connected to Hall-A is θbend =

24.3 degrees, as measured by the superharps. Although the magnetic field traversed by the beam

cannot be directly measured during the experiment, the beam momentum can be determined

by measuring the magnetic field of the ninth dipole, which is identical to and powered in series

with the other dipoles with NMR ports.

The electron beam charge was measured by Beam Current Monitors (BCMs). Each BCM is lo-

cated 25 m upstream of the target and consists of a Parametric Current Transformer (PCT) and

two resonant-RF cavities enclosed in thermally and magnetically shielded boxes (see Fig. 2.5).

The PCT toroid also called Unser monitor [66], and is sensitive against the DC component

of the magnetic field by the passing electrons. The advantage of a PCT monitor is that it is

self-calibrating. An absolute value calibration between the beam current and the frequency of

the PCT toroid can be achieved by passing a known current through a wire inside the beam

pipe. However, it is not suitable for long-term continuous measurement, as the offset value of

the frequency drifts on the timescale of several minutes. On the other hand, the two RF cavities
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Fig. 2.4: A schematic view of the arc section [62]. The length of this beamline is approximately

40 m. There are nine arc dipoles, each identical, with a bending angle of 34.3 degrees per dipole.

The ninth dipole is placed separately from the other eight for magnetic field measurement.

Fig. 2.5: A schematic drawing of the Beam Current Monitor (BCM) [67]. The PCT troid is

thermally and electrically isolated and sandwiched by two RF cavities.

sandwiching the PCT have much more stable output, maintaining a precision of ±5 % for a few

months, although they require an external calibration source. Therefore, the RF cavity is cal-

ibrated using the information from the simultaneously self-calibrated PCT monitor. The total

amount of electric charge irradiated to the target can be obtained by integrating the measured

current over the duration of the beamtime.

2.3 JLab E12-17-003 experiment
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JLab E12-17-003 experiment was conducted in 2018 with the motivation of advancing hyper-

nuclear physics. The titled purpose in the submitted proposal was to measure the missing mass

spectrum of the 3H(e, e′K+)X reaction and to search for the nnΛ state, which has been contro-

versial since the HypHI Collaboration reported in 2013 that some events appeared to be a bound

state in the t+ π− invariant mass distribution [59]. In the present experiment, the author and

collaborators irradiated a tritium gas target with a primary electron beam and measured both

the scattered electrons and associated hadrons using two magnetic spectrometers called HRSs

(High Resolution Spectrometers). Fig. 2.6 is a schematic of the experimental setup. Fig. 2.7

gives a photograoh at the present experiment.

In hypernuclear spectroscopy, protons detected in the hadron spectrometer are essentially

considered background particles because K+ identification is crucial to tag hypernuclear events.

Particle identification (PID) is performed using threshold type Cerenkov detectors placed behind

the reference plane of the spectrometer, as well as through momentum analysis by the spectrom-

eter. However, the data of E12-17-003 experiment includs not only the (e, e′K+) reaction but

also the (e, e′p) reaction without any rejection by the PID detectors, as they did not participate

in the data acquisition trigger. Additionally, the production of the η′ mesons falls within the

kinematic acceptance of the experiment. Therefore, by analyzing the (e, e′p) reaction instead of

the (e, e′K+) reaction with the same dataset, one can investigate the electroproduction of the

η′ meson.

The author and collaborators collected data using a hydrogen gas target in addition to the

tritium target, originally for the purpose of energy calibration of the missing mass spectrum.

Consequently, one can obtain the cross section of the elementary process of the 1H(e, e′p) η′

reaction by analyzing the hydrogen data.

2.4 Target

The cryogenic gas target system used in the present experiment is shown in Fig. 2.8. The

target gases (3H, 1H, and 3He) were sealed in a cell unit and installed into a vacuum chamber.

Table 2.3 summarizes the thickness of each target used in E12-17-003 experiment. This target

module was developed to safely handle radioactive 3H as an experimental target. The target

gas is completely enclosed in the aluminum cell for safety reasons. During the experiment, the

gas temperature was cooled down to 40 K using a 15 K liquid helium circulation system and

a copper heat sink, and was maintained stably. The cell is made of aluminum alloy (ASTM

B209 aluminum 7075-T651) and is 25 cm long with a 12.7 mm diameter. The thickness of

the aluminum wall surrounding the cylindrical gas space, measured at 8 locations on each cell,

is approximately 400 µm (see Table 2.2 and Fig. 2.9). Gas targets other than 3H, which are

naturally non-radioactive, were also enclosed in identical cells and irradiated with the beam in

order to properly calibrate the effect of particles passing through the target cell.
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Fig. 2.6: A schematic of the experimental setup of E12-17-003. The electron beam was directed

from left to right. A target was placed at the center of experimental Hall-A, and the scattered

electrons and positively charged hadrons were measured using the HRS-Left and HRS-Right,

respectively. The central scattering angles are θHRS-L = θHRS-R = 13.2 degrees.
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Fig. 2.7: A photograph of the experimental setup of E12-17-003.
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Empty

Multi Carbon Foils

Heat sink

Fig. 2.8: A photograph of the cryogenic gas target system in the experiment. Each gas is

enclosed in a cigar-shaped aluminum cell. By moving the entire system vertically, the target

irradiated by the beam can be switched.

Table 2.3: List of targets and their thicknesses.

State Target Thickness
[
mg/cm2

]
Gas 1H 70.8± 0.4

Gas 3H 85.1± 0.8

Gas 3He 53.4± 0.6

Solid Multi carbon foils 883

At the bottom of the cells, 10 solid carbon targets, called multi-foils, are placed along the

beam axis. Each foil is 2 mm thick and 25 mm apart from the next target. The role of this

carbon multi-foils array is to calibrate the reaction position along the beam axis (called the

Z-vertex). In the present experiment, the author and collaborators used two arms of the HRS,

which bend the scattered particles vertically (as described in Sec. 2.6), to ensure the resolution

for gas targets spread out and distributed along the beam direction. The Z-vertex resolution

of a single HRS arm is approximately 5 mm in σ. Therefore, the Z-vertex distribution can be

well calibrated by the positions of each foil, separated by 25 mm. One position was left vacant

to prevent confusion between the front and back positions.

2.5 Sieve slit
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Fig. 2.9: A schematic drawing of the aluminum target cell. The target cell has a cigar-like shape,

and the electron beam travels from left to right. The aluminum cell has a length of 25 cm and an

outer diameter of 12.7 mm. The thickness of the aluminum walls is measured at eight locations

on the cell (see also Table 1).

Table 2.2: A list of aluminum wall thicknesses at each position of the target cell [68]. Measure-

ments were performed for all four cells, but the values presented here are for the cell containing
1H.

Location 1H Cell thickness (mm)

Entrance 0.311± 0.001

Exit 0.330± 0.063

Exit left 0.240± 0.019

Exit right 0.519± 0.009

Mid left 0.374± 0.004

Mid right 0.503± 0.005

Entrance left 0.456± 0.010

Entrance right 0.457± 0.006

Sieve slits are metal plates with many through holes, installed in front of the spectrometers’

entrance on both sides. A drawing and a photo of the sieve slits is given in Fig. 2.10 and

Fig. 2.11, respectively. During the optics calibration run, the author and collaborators calibrated

the scattering angle by reconstructing images of particles that passed through the holes. The

sieve slits were made of lead and were 2.04 cm thick. Each plate contains 140 holes with a

diameter of 4 mm and two holes with a diameter of 6 mm. The larger holes serve the purpose

of identifying whether the coordinate axes are positive or negative.

2.6 High Resolution Spectrometer (HRS)
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Fig. 2.10: A schematic drawing of the sieve slit. The unit is inch (1 inch = 2.54 cm).
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Fig. 2.11: A photograph of the sieve slits.
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(o). For Dy ¼ 760 mrad; o ¼ 40 cm; and
D=M ¼ �5; the above expression gives a ¼
41�; close to the chosen value of 45�: The
expression assumes a parallel beam in a uni-
form-field dipole. The radial focussing provided
by the indexed dipole necessitates a slightly
larger bend angle.

* The pole-face rotation angles have been fixed at
�30� as a practical limit. The field of Q1 and
the dipole field index provide the remaining
radial focussing. In the absence of the field
index an excessively large rotation angle (B43�)
would have been needed.

* The overall optical length was constrained to fit
with 24 m:

2.3. Spectrometer Mechanical Support System

A schematic view of one of the Hall A High
Resolution Spectrometers (HRS) is shown in Fig.
5. The structural system of each spectrometer arm
must rigidly support the spectrometer magnet and
detector elements in their 45� vertical bending
configuration, while providing almost full azi-
muthal positioning of the spectrometer about the
central pivot. All three quadrupoles and the drift
chamber detector elements are hung from or
mounted on a box beam, which is rigidly mounted
on the top of the dipole. Once these elements are
surveyed in place, their relative positions remain

constant regardless of the spectrometer azimuthal
position. The box beam itself is an B80 Mg
welded steel structure. The back of the box beam
extends into the shield house. The detector
package and the box beam holding it are
surrounded by the shield house, but free to move
within it (see Fig. 2).
The 450 Mg concrete shield hut required for the

detectors is independently supported and posi-
tioned from a structural steel gantry. The bulk of
its mass is transmitted from the structural leg to a
20:7 m radius steel floor track through a series of
bogie-mounted conical wheels (see Section 2.8).
The rest of its weight is supported on the back end
of the transporter cradle. The total mass of each
spectrometer including the shielding hut is over
1000 Mg:

2.4. Cryogenics and magnet cooling system

The two spectrometers contain a total of eight
superconducting magnets, two dipoles and 6
quadrupoles. These magnets each have indepen-
dent cryogenic controls and reservoirs. The
cryogenic system that maintains these magnet
systems is common to all eight magnets and the
cryo-target. The cryogenic system is fed from an
1800 W helium refrigerator, the End Station
Refrigerator (ESR), dedicated to the cooling of
the magnets and targets in all JLab end stations.
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Fig. 5. Schematic layout of a HRS device, showing the geometrical configuration of the three quadrupole and the dipole magnets. Also

shown is the location of the first VDC tracking detector.
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Fig. 2.12: The design of HRS [64]. This is side view. A beam comes from left to upper right.

Table 2.4: The numerical design and specifications of HRS [64].

Magnet configuration QQDQ vertical bend

Benging angle 45 degrees

Optical length 23.4 m

Momentum range 0.3–4.0 GeV/c

Momentum accpentance ∆p/p 4.5 %

Momentum resolution (FWHM) 1.0× 104

Angular range (HRS-L) 12.5–150 degrees

Angular range (HRS-R) 12.5–150 degrees

Angular acceptance (horizontal) ±30 mrad

Angular acceptance (vertical) ±60 mrad

Angular resolution (horizontal) 0.5 mrad

Angular resolution (vertical) 1.0 mrad

HRS is the standard pair of magnetic spectrometers at JLab Hall-A. In the present experiment,

the author and collaborators measured scattered electrons using HRS-Left and positive hadrons

using HRS-Right. A schematic view of HRS can be seen in Fig. 2.12. HRS has a magnet

configuration of QQDQ and a detector package downstream of it. The numerical design and

specifications of HRS are shown in Table 2.4. The dipole magnets of HRS bend the particles

vertically, which allows decoupling the momentum dispersion and the Z-vertex dispersion on the

focal plane. The typical resolutions achieved are ∆p/p ∼ 1× 10−4 (FWHM) and ∆z ∼ 0.5 cm

(RMS), respectively.
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Fig. 2.13: The momentum correlation between scattered electrons and hadrons. The blue,

magenta, and green lines indicate the relationship at the 1H(e, e′K+) Λ, 1H(e, e′K+)Σ0, and
3H(e, e′K+)nnΛ reactions, respectively. These calculations assume the central angle of the

measurement, θLabee′ = θLabeK+ = 13.2 [degrees] and ϕLab
ee′ = ϕLab

eK+ = 0 [degrees]. The areas shaded

by pink vertical lines and orange diagonal lines are the momentum acceptance of the hydrogen

kinematics and the tritium kinematics, respectively. Also, the black plot is the correlation of

both momentums in the 1H(e, e′p) η′ reaction.

There is a pivot in the center of the experimental hall allowing the spectrometers to rotate

on rails around the target. In E12-17-003 experiment, which originally aimed at searching for

nnΛ states, the measurement of forward-scattered electrons and kaons was important for gaining

the yield. Therefore, Two spectrometers were set to measure forward-angle particles without

interfering with each other. The angular setup in the present measurement was θLabee′ = θLabep =

13.2 degrees.

There were two momentum settings for the present experiment. The central momentum

was adjusted to (pe, phadron) = (2.1, 1.8) [GeV/c] for 20.3 % of the total beam charge and

(pe, phadron) = (2.2, 1.8) [GeV/c] for the remaining 79.7%. The former setting is called “hy-

drogen kinematics” and was used for optics calibration, including 1H data. The latter is called

“tritium kinematics” and corresponded to the tritium run. The reason for setting these two

kinematics was that the momentum acceptance of HRS was not large enough to simultaneously

acquire the 1H(e, e′K+) Λ/Σ0 and the 3H(e, e′K+)nnΛ reactions. Fig. 2.13 shows the kinematic

correlation of pe and phadron for each reaction. The pink-shaded region represents the momentum

coverage of “hydrogen kinematics,” while the orange-shaded region represents the momentum
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coverage of “tritium kinematics.” Overlaid on these regions are the kinematically calculated

momentum correlations for p → K+Λ production (blue), p → K+Σ0 production (purple), and
3H → K+nnΛ production (green). These kinematic calculations assume the central angle of

the spectrometer. The settings for hydrogen kinematics and tritium kinematics are designed

such that the calibration processes with Λ/Σ0 production and search for nnΛ production are

well within the spectrometer acceptance. Additionally, the black crosses plotted in the figure

represent the momentum correlations for p → η′p production, which are positioned between the

curves for Λ and Σ0 production. Therefore, the hydrogen kinematics of the present experiment

naturally include the production of η′ mesons within the spectrometer acceptance.

2.7 Detectors

At the end of the spectrometer, the detector packages, as shown in Fig. 2.14, are located around

the focal plane. All the detectors are standard units used in HRS. In the present experiment,

the author and collaborators used the following detectors:

• Drift chambers (VDC1 and VDC2) for tracking measurements

• Scintillation hodoscopes (S0 and S2) for timing measurements

• Aerogel Cherenkov detectors (AC1 and AC2, used only for the momentum calibration in

the present analysis) for hadron identification.

2.7.1 Vertical drift chambers (VDC)

The vertical drift chambers (VDC) measure the particle’s trajectory in both HRS-L and

HRS-R. Fig. 2.15 shows the schematic drawing of the VDC. While the incoming angle of

particles on the detector plane is 45 degrees diagonally upward, two VDCs are placed hori-

zontally at the entrance of the detector plane. Both HRS-L and HRS-R have two identical

VDCs each, with a distance of 33.5 cm between VDC1 and VDC2. Each VDC has a sensitive

area of 28.8 cm× 211.8 cm, containing 368 sense wires oriented in two directions (U, V ) tilted

±45 degrees with respect to the outer frame of VDC (also see Fig. 2.15). As particles pass

through, the electric field between the wires ionizes the chamber gas (a mixture of 62 % argon

and 38 % ethane), and the timing of the electrical signal induced in the sense wires is recorded.

The distance from the track to the wire can be calculated using the hit timing and drift ve-

locity. The coordinates of the cross point in the wire plane, (U1, V1) for VDC1 and (U2, V2)

for VDC2, are derived by linear fitting (see Fig. 2.16). The positional resolution per plane is

235 µm (FWHM).

The reconstruction of the momentum vector and reaction point at the target position is

performed using the position and angle on the intermediate plane between VDC1 and VDC2

(referred to as the “reference plane” from this section), which can be calculated with (U1, V1)

and (U2, V2). Details of the reconstruction are described in Sec. 3.2.
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Fig. 2.14: The detector package of HRS [64]. This is side view. The external dimensions of the

detector hut are identical on both the left and right sides. Although many instruments were

included, only VDC, S0, S2, AC1 and AC2 were used in the present measurement. The other

regions were vacant in the present experiment.

2.7.2 Scintillation hodoscopes

Two scintillation hodoscopes were used in both HRS-L and HRS-R in the present experiment.

They are named as “S0” and “S2” in order from the upstream side. These hodoscopes are

responsible for the data acquisition trigger and time-of-flight measurements.

S0 is a single-segment scintillation counter placed just behind VDC2. It has a simple structure

with two 3-inch photomultiplier tubes (Photonic XP2312) attached to both ends of a plastic

scintillator plate (BICRON408) with an effective area of 170 mm × 250 mm and a thickness of

10 mm. The time resolution of S0 is about σS0 ≈ 0.2 ns.
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Fig. 2.15: The schematic drawing of VDC [69]. Two VDCs were installed at an angle of

45 degrees to the flight direction of the particles. The wire directions (U, V ) are set at

±45 degrees from the VDC frame.
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Fig. 2.16: Tracking detection by VDC (side view) [69]. The slanted arrow represents particle’s

trajectory. The electrons produced by the ionization are drifted longitudinally towards the wires

labeled 1 to 5 in this figure. The intersection point Qi in the wire plane can be obtained by

fitting the distance between each wire and the track, calculated from the detection time and the

drift time for each wire. The angle θQi between the particle trajectory and the wire direction is

obtained from the hit positions in the two VDCs, (U1, V1) and (U2, V2).

S2 is a 16-segmented hodoscope placed 2 m downstream from S0. The total active area is

17 in× 88 in = 432 mm× 2235 mm, made of a 50 mm thick plastic scintillator (ES-230) with

two 2-inch photomultiplier tubes (Photonis XP2282) attached to each segment (see Fig. 2.17).

The time resolution of S2 is about σS2 ≈ 0.1 ns.

2.7.3 Cherenkov detectors

Cherenkov radiation is an electromagnetic radiation phenomenon in which light is emitted in

a cone-shaped direction at an angle θ = arccos (1/nβ) with respect to the traveling direction of
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Fig. 2.17: The schematic drawing of the S2 hodoscope [70]. S2 consists of a group of scintillation

counters divided into 16 segments, each measuring 17 in×5.5 in = 432 mm×140 mm. A 60 lbs

lateral load is applied to eliminate gaps between the segments.

a charged particle moving at a speed exceeding the speed of light in the material (c/n, where n

is the refractive index). The number of emitted photons per thickness of the radiator x and the

wavelength of light λ is written as follows:

d2N

dxdλ
=

2παz2

λ2

(
1− 1

β2n2 (λ)

)
when

c

n
< β, (2.10)

N : Number of Photons,

x: Path length in the radiator,

λ: Wavelength of Cherenkov light,

α: Fine structure constant,

z: Charge of the particle,

β: speed of the particle,

n: refractive index of the material.

A threshold-type Cherenkov detector discriminates differences in the speed of particles,

β
(
= p/

√
p2 +m2

)
, at a given momentum p, corresponding to differences in mass m, by the

presence or amount of emitted photons.

Two types of threshold-type Cherenkov detectors (AC1 and AC2) were installed on the HRS-

R side to identify hadrons. They use silica aerogel with different refractive indices as radiators,

with photomultiplier tubes attached to both ends of each segment. AC1 and AC2 identify
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π+/K+ and K+/p, respectively, around the spectrometer’s central momentum of 1.8 GeV/c by

using the information on the number of photoelectrons. For the analysis of the (e, e′p) reactions,

information from AC1 and AC2 was not used because particle identification with a method

called “coincidence time,” which uses the timing information from scintillation hodoscopes, was

sufficient for proton selection (described in Sec. 3.4). However, for momentum calibration, where

K+ event selection was necessary (the number of kaons is only about 3% of protons and about

2% of pions), event selection by AC1 and AC2 was performed in addition to the coincidence

time analysis.

The layout of a single segment of AC1 and AC2 is shown in Fig. 2.18. Table 2.5 summarizes

the specifications of AC1 and AC2. The radiators of AC1 and AC2 are silica aerogels with

refractive indices of n = 1.015 for AC1 and n = 1.055 for AC2, manufactured by Matsushita

Electric Works Ltd. (now Panasonic Electric Works, Co. Ltd). The relationship between the

momentum and the number of photons in AC1 and AC2, calculated by eq. (2.10), is shown in

Fig. 2.19 and Fig. 2.20. The shaded area in the figures represents the momentum acceptance of

HRS-R. In AC1, π+ can be removed from protons and K+ by excluding events with Cherenkov

photons, and in AC2, kaons and pions can be separated by selecting events with photon numbers

over a suitable threshold. Therefore, it is possible to properly identify pions, kaons, and protons

by combining AC1 and AC2 with different refractive indices, even when selecting kaons.

Typical numbers of photoelectrons for β = 1 particles are approximately 8 p.e. for AC1 and

approximately 30 p.e. for AC2.

Table 2.5: Specifications of AC1 and AC2. The unit of size is cm.

Name Radiator Model Index Tile Size Radiator Size Num. of PMTs PMT Model

AC1 SP15 1.015 10× 10× 1 170× 32× 9 24 RCA 8854

AC2 SP50 1.055 10× 10× 1 192× 30× 5 26 XP 2572B

2.8 Data taking trigger and data aquisition system (DAQ)

Data acquisition was carried out when hits on both arms of HRS-L and HRS-R coincided.

(Coincidence Trigger) = (HRS-L Trigger) ⊗ (HRS-R Trigger).

The trigger signal for each single arm was generated by simultaneous hits of S0 and S2, as shown

in the following equations:

(HRS-L Trigger) = (S0⊗ S2)HRS-L

(HRS-R Trigger) = (S0⊗ S2)HRS-R.

S0 consists of a single segment counter, so a simultaneous hit on both PMTs mounted on its two

sides forms the S0 logical signal. On the other hand, S1 is a hodoscope consisting of 16 segments,
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Fig. 2.18: Configuration of AC1/AC2 (not in scale). This is cross-section lateral view of single

segment. It consists of 2 PMTs (Burle RCA 8854 for AC1 and Photonix XP 4572B for AC2),

a radiator of aerogel tiles (Matsushita SP15 for AC1 and SP50 for AC2) and light reflectors

(Millipore filter paper GSWP0010 and Enhanced Specular Reflector (ESR)).
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momentum and number of Cherenkov pho-

tons at AC1. Refractive index is n = 1.015.
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Fig. 2.21: Relationship between HRS-L and HRS-R trigger timing.

where the logical OR of simultaneous detections by the upper and lower PMTs attached to each

segment forms the S1 logical signal. The logical AND of the S0 and S1 signals constitutes the

spectrometer’s individual triggers, namely HRS-L trigger and HRS-R trigger. Then the data

acquisition trigger required the coincidence of these two triggers. Typical counting rates for

the 1H target of 70.8 mg/cm2 and a beam current of 20 µA were 11 kHz for HRS-L, 11 kHz

for HRS-R, and 60 Hz for the coincidence trigger. Fig.2.21 shows the timing of the coincidence

trigger. The signal widths of HRS-L and HRS-R were set to 50 ns and 150 ns, respectively, with

the timing adjusted so that the signal from HRS-L came later. Therefore, the HRS-L trigger

determined the trigger timing.

For signal processing from each detector, various types of NIM modules were used. For data

acquisition (DAQ), hardware digitization devices, such as ADCs, TDCs, and scalers, based on the

Fastbus and VME standards were employed. An integrated system called “CODA” (CEBAF

On-line Data Acquisition System) [71], which was developed for experiments in JLab Hall-A

operates these devices and components cohesively.

2.9 Summary of beamtime and kinematics

The beamtime for E12-17-003 experiment was conducted from October to November 2018.

The beam irradiation on the 1H target was allocated approximately 25 % of the total beamtime,

with data acquisition conducted during both the first and second halves of the beamtime. The

run numbers for the 1H runs are from 111141 to 111220 and from 111480 to 111542. The energy of

the electron beam was 4.318 GeV, and the beam current was 22.5 µA. The central values of the

momentum and angle for scattered particles, as well as the energy of the incoming electron beam,

were summarized in Table 2.6. Each kinematical parameters in the 1H(e, e′p) η′ reaction are

listed in Table 2.7. It enumerates the values for the central ray obtained using Table 2.6 as well

as the mean values of the distribution of acquired data, and Monte Carlo simulations. Fig. 2.22

and Fig. 2.23 show the run dependence of the beam energy and beam current, respectively. As
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Fig. 2.22: Run dependence of the beam energy during the beamtime. Black indicates the 3H

target, red indicates the 1H target (hydrogen kinematics), pink indicates 1H (tritium kinematics),

purple indicates 3He, green indicates empty, and light blue indicates the calibration run.
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Fig. 2.23: Run dependence of the beam current during the beamtime. The color legend is the

same as in Fig. 2.22.

is evident from these figures, data acquisition was generally stable throughout the beamtime.

The total charge irradiated on the 1H target was 4.6 C, which corresponds to Ne = 2.9 × 1019

electrons.
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Table 2.6: Central values of energy, momenta and angles of incoming/scattered beams adjusted

in the present measurement. These values are for the hydrogen kinematics. Zenith angles are

the angle from the incoming electron beam.

Item Explanation Value

Ee Energy of electron beam (e) 4.326 GeV

pe′ Momentum of scattered electron (e′) 2.1 GeV/c

pp Momentum of scattered proton (p) 1.8 GeV/c

θee′ Zenith angle between e and e′ 13.2 degrees

ϕee′ Azimuthal angle between e and e′ 90 degrees

θep Zenith angle between e and p 13.2 degrees

ϕep Azimuthal angle between e and p 270 degrees

Table 2.7: Kinematical parameters of the 1H(e, e′p) η′ reaction in the present setup. See Fig. 2.1

and eq. (2.2)–(2.8) for variable definitions. Values in the lines with the labels of “Central Ray,”

“Data Mean” and “Sim. Mean” are representing central values in the experimental setup, mean

values of the distributions acquired data and mean values of the distribution by a Monte Carlo

simulation (SIMC), respectively. The data also includes background events from multi-meson

production, and on the other hand, the simulation include pure-η′ production.

Item Central Ray Data Mean Sim. Mean

ω [GeV] 2.22 2.19 2.20

Eγ [GeV] 1.96 1.94 1.93

Q2
[
(GeV/c)

2
]

0.479 0.467 0.497

W [GeV] 2.14 2.13 2.13

θCM
γη′ [degrees] 175 169 169

ϕCM
γη′ [degrees] 0 −5.55 −1.58

ϵ 0.768 0.774 0.773(
dσ
dΩ

)
Lab

/
(
dσ
dΩ

)
CM

0.0647 0.0679 0.0682





39

Chapter 3

Analysis

3.1 Overview

Fig. 3.1 shows the analysis procedure of the present work. In the missing mass formula,

MX =

√
{(Ee − Ee′) +Mp − Epscat

}2 − {(pe − pe′)− ppscat
}2, (3.1)

pe′ and ppscat are both momentum vectors at the target position, which are reconstructed from

the hit information at the focal planes of the spectrometers. Therefore, the calibration neces-

sary for calculating the missing mass must be performed first (described in Sec. 3.2). This is

followed by event selection for the Z-vertex at the reaction point and the identification of scat-

tered protons (Sec. 3.3 and 3.4, respectively). Then the count-based missing mass spectrum is

derived (Sec. 3.5). After that, various variables necessary for the derivation of the cross section—

background distribution on the missing mass (Sec. 3.6), spectrometers’ acceptance (Sec. 3.7),

number of targets (Sec. 3.8), number of virtual photon beam (Sec. 3.10), and various efficien-

cies (Sec. 3.12)—are evaluated. Some of them use a Monte Carlo simulation that models the

- Scattering angle

- Zvertex

- momentum

Particle ID

by coincidence time

Calibration

Analysis of the (e,e’p) reaction

Target ID by Zvertex

Reconstruction of

missing mass

Background Estimation

- Accidental coincidence

- pion/kaon contamination

- Target cell contamination

Cross section of

the 1H(γ*,p)X reaction

Values required for CS derivation

- Spectrometer’s acceptance

- Number of target

- Number of virtual photon beam

- Efficiency

Fig. 3.1: An analysis flowchart.
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experimental setup. Various conditions of the simulation are also described in Sec. 3.7. Then,

Sec. 3.13 discusses the derivation of the cross section and its results, including the error.

3.2 Calibration

The role of magnets in nuclear physics experiments is often compared to optical elements.

This is because dipole magnets with uniform magnetic fields bend beam particles at angles

dependent on their momentum, behaving like prisms, while quadrupole magnets focus or diverge

beam particles toward a focal point, acting like convex or concave lenses. Thus, when particles

emitted from a specific reaction point reach the reference plane after deflection by dipole magnets,

focusing by quadrupole magnets, and drifts between these magnets, the positions, angles, and

momenta at two points can be expressed as a first-order transformation in matrix form:
xrp

x′
rp

yrp
y′rp
prp

 = M


xtar

x′
tar

ytar
y′tar
ptar

 . (3.2)

Here, xtar, ytar, x
′
tar, y

′
tar and ptar represents the horizontal position, vertical position, horizontal

angle, vertical angle and momentum at the target, while xrp, yrp, x
′
rp, y

′
rp and prp represents

the corresponding quantities at the reference plane. The matrix M is referred to as the beam

transport matrix. This relationship is a critical consequence of beam optics, and all beamlines

for experiments handling charged particles are designed based on this equation to optimize

resolution. Writing the equation in reverse implies that the information at the target can be

expressed in terms of the information at the reference plane:
xtar

x′
tar

ytar
y′tar
ptar

 = M−1


xrp

x′
rp

yrp
y′rp
prp

 . (3.3)

Here, M−1 is the inverse of M , and it is called the backward transfer matrix.

In the preset experiment, the magnitude of momenta and angles at the reaction point in the

target is required in order to calculate the missing mass. These quantities are reconstructed

from the hit positions and angles at the reference plane. The setup of the present experiment,

specifically the backward transfer matrices in HRS-L and HRS-R, describes this relationship.

Calibration in the present study involves tuning the elements of the backward transfer matrix to

reproduce reference values using data obtained for calibration purposes. These reference values

are defined as the hole patterns in the sieve slit for angles and the peaks in the missing mass

distribution from the 1H(e, e′K+) Λ/Σ0 reaction for momentum.

There are a few points to note here. First, the backward transfer matrix in eq. (3.3) rep-

resents the simplest expression under ideal conditions. In reality, however, the magnetic field
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generated in the electromagnets is not perfectly uniform, and magnetic field leakage outside the

electromagnet distort the relationship between the target position and the reference plane. The

present study and previous research describe these effects by adding second-order and higher-

order correction terms, such as in a Taylor expansion. As a result, the reconstruction from the

reference plane to the target position is no longer a first-order linear combination represented by

a square matrix, but rather a higher-order polynomial. The authors and collaborators refer to

the coefficients of these polynomials also as the “backward transfer matrix.” The second point

to mention concerns the ztar. In the present study, a target stretched in the beam axis direction

(the z-direction) was used, and a spectrometer bending particles in the vertical direction was

employed. This causes differences in ztar to disperse in the direction orthogonal to momentum

on the reference plane. Thus, the ztar can also be reconstructed using the backward transfer ma-

trix. Moreover, the matrix used to reconstruct other kinematic parameters (xtar, ytar, x
′
tar, y

′
tar

and ptar) explicitly incorporates the reconstructed ztar. Specifically, ztar is reconstructed using

a matrix Mz:

ztar = Mz



xrp

x′
rp

yrp
y′rp
xrp

2

xrpx
′
rp

...


. (3.4)

Other quantities are expressed using the matrix Mo:


xtar

x′
tar

ytar
y′tar
ptar

 = Mo



xrp

x′
rp

yrp
y′rp
ztar
xrp

2

xrpx
′
rp

...


. (3.5)

These equations can also be expanded using the individual matrix elements Cz, Cx′ , Cy′ , and

Cp:

ztar =
∑

i+j+k+l≤n

Cz (i, j, k, l)x
i
rpy

j
rpx

′k
rpy

′l
rp (3.6)

x′
tar =

∑
i+j+k+l+m≤n

Cx′ (i, j, k, l,m)xi
rpy

j
rpx

′k
rpy

′l
rpz

m
tar (3.7)

y′tar =
∑

i+j+k+l+m≤n

Cy′ (i, j, k, l,m)xi
rpyrpjx

′k
rpy

′l
rpz

m
tar (3.8)

ptar =
∑

i+j+k+l+m≤n

Cp (i, j, k, l,m)xi
rpy

j
rpx

′k
rpy

′l
rpz

m
tar. (3.9)

The tuning of matrix elements for z, angles, and momentum will be described in the following

subsections.
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Fig. 3.2: Zvertex distribution using multi-

foil target in HRS-L.
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Fig. 3.3: Zvertex distribution using multi-

foil target in HRS-R.

3.2.1 Z-vertex calibration

The Z-vertex (ztar), which was expressed by eq. (3.6), is calibrated using the carbon multi-foil

target. A description of the target can be found in Sec.2.4. The origin of the scattered particles

can be identified from each foil since the thin (0.25 mm thick) solid targets are placed at exactly

25 mm intervals. Matrix tuning was done by minimizing the following χ2
z,

χ2
z =

10∑
j=1

χ2
zj (3.10)

χ2
zj =

N∑
i=1

(
zrefj − zi

)2
σ2
zj

(3.11)

where, j is the label for the carbon foil and i is the label for events when the j-th foil region

(
∣∣zrefj − zi

∣∣ < 2.5 cm) was selected. Also, σ2
zj is the standard deviation for the peak of j-th foil.

Fig. 3.2 and Fig. 3.3 show the Z-vertex distributions on HRS-L and HRS-R in the calibration

run after tuning. Clear peaks corresponding to carbon multi-foil are seen in the distributions.

3.2.2 Angle calibration

x′
tar and y′tar are reconstructed by eq. (3.7) and (3.8). They were calibrated using sieve slits

placed in front of both spectrometers. Particles passing through a hole in the sieve slit reach

the reference plane, making it possible to use the hole posittion as a reference to calibrate the

scattering angles. The angle (x′
tar, y

′
tar) at the reaction point and the position (xSS, ySS) on the

sieve slit can be described by the following relations:

ySS = (l0 − ztar cos θ0) y
′
tar − ztar sin θ0 (3.12)

xSS = (l0 − ztar cos θ0)x
′
tar (3.13)

where, θ0 = 13.2 degrees is the central scattering angle of the spectrometer, and also, l0 represent

the lengths from the center of the sieve slits to the center of the target (ztar = 0). Matrix tuning
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for x′
tar and y′tar was done by minimizing χ2

ss (where “ss” represents either x′ or y′) as follows:

χ2
ss =

10∑
k=1

Nhole∑
j=1

χ2
ssj,k (3.14)

χ2
ssj,k =

N∑
i=1

(
ssrefj − ssi

)2
σ2
j,k

(3.15)

where k, j, and i are the labels for each foil, each hole, and the events around the hole when

choosing foil and hole in (j, k). Also, ssrefj represents a known hole position. The holes of the

sieve slit can be successfully seen as shown in Fig. 3.4 and Fig. 3.5 by tuning in this way.

3.2.3 Momentum calibration

Optimization of the matrix elements Cp of eq. (3.9), which is involved in the momentum

reconstruction of scattered electrons and hadrons, was performed using the missing mass spec-

trum of the 1H(e, e′K+) Λ/Σ0 reaction with a 1H target. The masses of Λ and Σ0 hyperons

are well known with an accuracy of better than 0.1 MeV/c (mΛ = 1115.683± 0.006 MeV/c2,

mΣ0 = 1192.642± 0.024 MeV/c2 [9]), so the author and collaborators optimized the matrix el-

ement Cp of both arms using the positions of these two mass peaks as references. The following

χ2 was defined and minimized for events near the two peaks:

χ2
Λ,Σ0 =

N∑
j=1

(
mΛ,Σ0 −mi

)2
σ2
Λ,Σ0

, (3.16)

where mi is the missing mass value in the event of the calibration data, and σ2
Λ,Σ0 is the standard

deviation of the corresponding peak for each hyperon.

For the identification of K+ in HRS-R, event selections by Cherenkov light intensity of AC1

and AC2 (AC1 separates π+/K+ with a refractive index n = 1.015 and AC2 separates K+/p

with index n = 1.055) as well as event cuts by coincidence time (explained in Sec. 3.4) were

applied.

Besides, in the momentum calibration, it is necessary to take into account the beam’s energy

loss within the target cell. For example, focusing on the incident electron beam, if an electron

beam with an initial energy Ee is directed at the target, it deposits energy δEe in the gas

target and the materials of the target cell before a reaction occurs. Therefore, the energy

at the reaction vertex becomes Ee − δEe. The effect of such energy loss similarly applies to

the scattered electrons and hadrons. At the reaction vertex, their energy is reconstructed as

Ee′ + δEe′ or EK,p + δEK,p, where δEe′ and δEK,p is the energy loss within the target added

to the energy Ee′ and EK,p reconstructed by the spectrometer. The energy loss of the incident

electrons is assumed to be the most probable value of 0.29 MeV derived from the thickness of the

entrance wall of the aluminum target cell (measurement values summarized in Table 2.2). For

the scattered particles, due to the cigar-shaped target cell structure, the effective thickness of the

aluminum wall depends on the Z-vertex. This is because if a reaction occurs relatively upstream
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Fig. 3.4: Hole pattern of the sieve slit reconstructed from the reference plane in HRS-L. The red

cross markers indicate the positions of the holes.
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Fig. 3.5: Hole pattern of the sieve slit reconstructed from the reference plane in HRS-R.

in the target cell, particles traverse the side wall of the target cell at an angle of approximately

θLabee′ ≈ θLabeK,ep ≈ 13.2 degrees. On the other hand, if the reaction occurs downstream, particles

hit the rounded exit wall of the target cell almost perpendicularly. The threshold of Z-vertex that

distinguishes these cases is determined geometrically to be ztar = 9.2 cm. When a particle passes

through the side wall of the cell, the effective thickness it traverses is approximately 1
sin θ ≈ 4.4

times greater than in the case of the rear wall, but this value depends on the emission angle θLabee′

and θLabeK,ep (corresponding to the parameter y′tar to be calibrated) in each event. Fig. 3.6 and

Fig. 3.7 illustrate the y′tar-dependence of the energy loss δE in the target for HRS-L and HRS-R,
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Fig. 3.6: Correlation between energy loss in the target cell and angle y′tar in HRS-L (obtained

by Monte Carlo simulations).
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Fig. 3.7: Correlation between energy loss in the target cell and angle y′tar in HRS-R (obtained

by Monte Carlo simulations).

respectively, as estimated by Monte Carlo simulations. The explanation of the simulation itself

is provided in Sec. 3.7.1 but it assume a target structure modeled after the actual target cell.

Events where electrons and hadrons are generated inside the target and accepted within the

solid angles of both spectrometers are filled into these two-dimensional distributions.

In Fig. 3.6 and Fig. 3.7, the cluster of events with the largest count represents events where

particles passed through the side wall of the target cell. Smaller clusters at lower energy losses

represent events where particles passed through the rear wall of the target cell. To describe
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and correct for the energy loss of scattered particles in the target cell, the author assumed the

following functional form:

δE (y′tar) =

{
p0 sin (−p1δHRSy

′) + p2 (ztar < 9.2 cm)
p3δHRSy

′
tar + p4 (ztar ≥ 9.2 cm)

, (3.17)

where, δHRS = −1 for HRS-L and δHRS = +1 for HRS-R, respectively. By fitting the δE - y′tar

correlation of the two event groups in Fig. 3.6 and Fig. 3.7 to this function, each parameters in

eq. (3.17) were determined. The values of parameters obtained from the fitting are summarized

in Table 3.1. In Fig. 3.6 and Fig. 3.7, the overlaid pink and orange curves represent the functions

for particles passing through the side wall and rear wall of the target cell, respectively.

Table 3.1: Results of fittins of the energy loss function. Refer also to eq. (3.17).

Parameters Values for e′ Values for K+ Values for p

p0/MeV −1.70± 0.01 −1.74± 0.01 −1.86± 0.02

p1 −5.00± 0.02 −4.96± 0.02 −4.81± 0.03

p2/MeV 2.57± 0.01 2.57± 0.01 2.78± 0.02

p3/MeV 0.02± 0.02 0.03± 0.01 −0.01± 0.02

p4/MeV 0.42± 0.01 0.35± 0.01 0.38± 0.01

Fig. 3.8 shows the missing mass spectrum of 1H(e, e′K+) Λ/Σ0 after matrix tuning and energy

loss correction. It must be noted that the tail component on the right side of each peak is mainly

due to the radiation of scattered electrons in the target cell, and therefore these events are also

truly Λ/Σ0 production events.

3.3 Target selection by the Z-vertex cut

As discussed in Sec. 2.4, the present experiment used a gas target enclosed in an aluminum

cell. Events with reactions in the aluminum walls in front of and behind the gas region become

background events for the analysis of the 1H(e, e′p) η′ reaction. These events can be removed

using the Z-vertex distribution calibrated in Sec. 3.2.1. The following Fig. 3.9 shows the 2D

distribution of the Z-vertex reconstructed with both the left and right arms. One can clearly

find the region of the hydrogen gas (an area of positive correlation with a length of 25 cm), the

region of the aluminum wall (located at ±12.5 cm), and the area of accidental events (other

areas). The area enclosed by the violet dashed line is the gate for selecting events used for

analysis based on the Z-vertex. The cut conditions are as follows:

−2.5 cm < zHRS-R − zHRS-L < +2.5 cm (3.18)

−20 cm < zHRS-R + zHRS-L < +20 cm. (3.19)

The former condition is set to exclude accidental coincidence events, that is, events where parti-

cles from different reactions are observed in both arms. On the other hand, the latter condition
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Fig. 3.8: Mising mass spectrum of the 1H(e, e′K+) Λ/Σ0 reactions after the matrix tuning. The

red dashed lines represent the mass of the Λ and Σ0 hyperons (mΛ = 1115.683± 0.006 MeV/c2,

mΣ0 = 1192.642± 0.024 MeV/c2 [9]).
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Fig. 3.9: 2D distribution of the Z-vertex reconstructed with both the HRS-L and HRS-R. The

regions of hydrogen gas and aluminum cells are clearly seen among the accidental background

event. The violet dashed lines represent the gate of the target position selection for analysis.
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Fig. 3.10: The zHRS-R − zHRS-L distribution. The pink histogram represents the distribution

from the experimental data, and the black plots represent the distribution from a simulation.

Accidental background events have been subtracted. The blue dashed lines represents the gate

for accepting events.

is set to eliminate contamination from the aluminum cell.

Consider the Z-vertex selection efficiency. The total efficiency εz for the cuts applied in

eq. (3.18) and eq. (3.19) is expressed as:

εZ = εZdiff × εZave, (3.20)

Here, εZdiff represents the efficiency of the cut described by eq. (3.18), and εZave corresponds to the

efficiency of the cut described by eq. (3.18). First, εZdiff , which involves the difference between the

Z-vertices reconstructed in the left and right arms, reflects the extent to which pairs of electrons

and hadrons originating from the same true reaction survive the cut. Fig. 3.10 shows the one-

dimensional distribution of zHRS-R − zHRS-L. The accidental background has been subtracted.

As the distance from the center of the distribution increases, it indicates that Z-vertex was

not reconstructed correctly due to interactions with the target or other materials. The region

enclosed by the blue dashed lines represents the gate for accepting events. The ratio of accepted

events to the total number of events corresponds to εZdiff , and its value was found as follows:

εZdiff = 0.757± 0.002 (stat). (3.21)

On the other hand, εavez , which involves the average value of the Z-vertices reconstructed in

both arms (described by eq. (3.19)), indicates the extent to which events truely occurring in the
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hydrogen gas target survive the cut. This efficiency is defined for events where a cut is applied

based on the difference in Z-vertex reconstructed from the left and right arms. The author

estimated εavez by fitting the distribution of the averaged Z-vertex:

zave =
zHRS-R + zHRS-L

2
. (3.22)

Fig. 3.11 shows the distribution of the averaged Z-vertex, and overlaid blue curve represents the

fitting function applied to the distribution. The response function is expressed as:

F (x) := f (µ = −12.5 cm;x)

+ f (µ = +12.5 cm;x)

+

∫ +∞

−∞
g (t) f (µ = 0;x− t) dt, (3.23)

where,

f (σ1, σ2, µ2, C2;µ,C;x) := C

[
e
−
(

x−µ
2σ1

)2

+ C2e
−
(

x−µ+µ2
2σ2

)2
]

(3.24)

g (a, b, c;x) :=

{
0 (|x| > 12.5 cm)

a (x− b)
2
+ c (|x| < 12.5 cm) .

(3.25)

It consists of a double-Gaussian function f (x) with shared parameters representing the walls

of the two aluminum cells, and a function g (x) of a polynomial convoluted with the double-

Gaussian, which represents the gas region. The black and orange dashed lines in Fig. 3.11

represent the components of the function corresponding to the aluminum cell regions and the

gas region, respectively. The cut condition of eq. (3.19) corresponds to a cut on zave such that:

|zave| < 10 cm. (3.26)

The reason for imposing a somewhat tighter cut condition compared to the gas region

[12.5 cm,+12.5 cm] is to reduce the contamination of events originating from the aluminum

cell, due to the Z-vertex resolution of the spectrometer. The efficiency of this cut was estimated

using the fitting function by calculating the ratio of the events remaining after the cut to the

total events in the gas region component. The value obtained was:

εZave = 0.835± 0.001(stat). (3.27)

Moreover, the number of events originating from the aluminum cell that remain even after

applying this cut can also be estimated using the fitting function. The fraction of events from

the cell walls relative to the total number of events after the cut was estimated as:

εAl = 0.0007± 0.0002(stat)+0.0046
−0 (sys). (3.28)

In addition to statistical errors, systematic errors are also presented. These were determined

by considering the surplus events observed at left- and right-ends of Fig. 3.11. Fig. 3.12 and

Fig. 3.13 illustrate the changes in εavez and εAl as the cut range |zave| < X is varied. Taking the
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Fig. 3.11: The average Z-vertex distribution of both arms. The histogram was fitted by a

function of eq. (3.23)–(3.25). The blue line represents the entire fitting function, the black

dotted line represents the peak components of the aluminum cell, and the orange dotted line

represents the continuous components of the gas region.
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two efficiencies of εdiffz and εavez into consideration, the total cut efficiency εz for the Z-vertex

was estimated as:

εZ = 0.654± 0.002 (stat), (3.29)

with the associated uncertainties included.

3.4 Particle identification (PID)

The matching of protons and electrons emitted from the (e, e′p) reaction was performed using

the distribution called “coincidence time.” The coincidence time Tcoin is defined as the timing

difference between reaction times at the target position reconstructed in both the left and right

arms,

Tcoin := tHRS-L (Target)− tHRS-R (Target) . (3.30)

Time at the target t (Target) can be calculated from the time at the trigger counter S2 (t (S2)),

path length from the target to S2 (lpath = 27.3m), and the particle’s velocity β,

t (Target) := t (S2)− lpath
βc

(3.31)

= t (S2)−

√
p2c2 +m2

pc
4 × lpath

pc2
. (3.32)

Here, β can be calculated by assuming the proton mass mp and the momentum p reconstructed

by the backward transfer matrix. Fig. 3.14 shows the coincidence time distribution when the
1H gas region is selected in the Z-vertex distribution. Since scattered electrons and protons in

the (e, e′p) reaction are emitted from the target position at the same time, the coincidence time

calculated by eq.(3.30) should be 0. In Fig. 3.14, one can clearly find a peak at 0 ns, which

corresponds to the correct combination of e′ and proton. On the other hand, as in eq. (3.32),

the proton mass was assumed when calculating β, so different hadrons such as π+ and K+ make

peaks at different timings corresponding to the mass difference. Proton events were selected by

applying a timing gate indicated by two dashed lines in Fig. 3.14. The gate adopted for the

analysis is |Tcoin| < 2 ns. Events that lie across the coincidence time distribution are accidental

coincidences that mismatch e′ with hadrons produced in different reactions. Such events are also

inside the timing gate for cuts. Not only the proton cut efficiency but also the contamination

ratio of other hadrons such as pions and kaons were estimated by fitting the coincidence time

distribution. Functions obtained by fitting are also overlaid in Fig. 3.15. The black line is the

total fit, the blue line is the proton peak, the green line is the pion peak, and the orange line is

the kaon peak. Fitting to the three main peaks was performed with a double-Gaussian function

expressed by the following equations:

fDG (σ1, σ2, µ, C,C2;x) := C

[
e
−
(

x−µ
2σ1

)2

+ C2e
−
(

x−µ
2σ2

)2
]
. (3.33)
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Fig. 3.14: Coincidence time distribution (in linear scale). The Z-vertex cut (see Sec. 3.3) and

the focal plane cut (see Sec.3.9.1) were applied. The peaks located at 0 ns, ∼ 7.8 ns, ∼ 11.1 ns

correspond to proton, kaon, and pion, respectively. Accidental coincidence events are distributed

uniformly beneath the three peaks. The two blue dashed-lines represent the timing gate for

proton selection.
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Fig. 3.15: Coincidence time distribution (in log scale). The overlaid black curve represents the

total fit result. The blue, orange and green curves represent a single component of double-

Gaussian function corresponding to protons, kaons and pions, respectively.
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The shape of the accidental coincidence was reproduced by scaling the height of the double-

Gaussian functions of the main peaks, shifting them laterally to form a 2 ns bunch structure,

and superimposing them. Using the fitting results, it is possible to estimate the efficiency of

selecting protons within a 2 ns coincidence time gate, as well as the ratio of other hadrons that

may contaminate the gate. First, the fraction εCT of protons remaining after applying the gate,

relative to the number of protons before applying the coincidence time gate, can be determined

by taking the ratio of the integral of the double-Gaussian function component corresponding to

protons over the range [−∞,+∞] to the integral over the range [−1 ns,+1 ns]. This yields:

εCT = 0.965± 0.005. (3.34)

Next, the ratio of π+ and K+ mesons that contaminate the coincidence time gate can also be

determined by numerically calculating the integral of the double-Gaussian function components

corresponding to each particle over the range [−1 ns,+1 ns]. The estimated values are small as,

εK , επ < 10−5. (3.35)

Thus, these contributions are so small that one can neglect when determining the differential

cross section for η′ production.

3.5 Missing mass spectrum of the p (e, e′p)X reaction

The missing mass in the 1H(e, e′p)X reaction can be calculated by the following formula:

MX =

√
{(Ee − Ee′) +Mp − Epscat

}2 − {(pe − pe′)− ppscat
}2. (3.36)

The momentum vectors of scattered particles are written as follows using p, x′ (:= px/pz), and

y′ (:= py/pz) reconstructed with the backward matrix explained in eq. (3.7) to eq. (3.9):

p =

px
py
pz

 =
p√

1 + x′2 + y′2

x′

y′

1

 . (3.37)

Fig. 3.16 is the histogram of the missing mass calculated by eq. (3.36). The dashed line represents

the mass of the η′ meson, 0.95778 GeV/c2 cited from PDG [9]. A peak is clearly seen at the mass

of the η′, which corresponds to the event from the 1H(e, e′p) η′ reaction. On the other hand,

a large number of background events are broadly distributed beneath the η′ peak. It must be

emphasized that, as previously mentioned, the ratio of other hadrons such as π+ and K+, and

accidental coincidence events is very small, thus most of the background events in Fig. 3.16 are

the correct coincidence events of the (e, e′p) reaction. These background events are presumed

to be multi-meson production (2π, 3π, · · · ). The shape of the distributions will be studied using

simulation in a later section.
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Fig. 3.16: Missing mass distribution of the 1H(e, e′p)X reaction (count-based). The dashed-line

represents the mass of η′ (mη′ = 957.78 MeV/c2 [9]).

3.6 Subtractable background

The primary background caused by multi-pion production aside, the following three back-

ground sources can be considered:

1. Accidental coincidence events

2. Events from reactions involving the aluminum target cell

3. Events from the (e, e′K+) and (e, e′π+) reactions.

Although the total contributions from these sources are small, their distributions and total

amounts can be accurately determined using experimental data. Thus, they can be subtracted

from the missing mass distribution of the (e, e′p) reaction. Among these, the contamination from

the third item, (e, e′K+) and (e, e′π+) reactions, has been found to be negligibly small based on

the discussions in the previous section. On the other hand, a precise understanding regarding

the first and second items has been achieved using the methods employed by the collaborators

in prior studies [72–76].

3.6.1 Accidental coincidence

An accidental coincidence event (or accidental background) refers to an event in which com-

pletely unrelated scattered electrons and hadrons are detected in the spectrometers of both the

left and right arms. Such events are distributed almost uniformly within the timing gate of

the coincidence trigger. In Fig. 3.15 background events are distributed constantly across all
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Fig. 3.17: Missing mass spectrum of the accidental coincidence events. The pink histogram

represents a spectrum befor the event mixing while the blue plot represents a spectrum after

the event mixing.

coincidence times, with a certain amount also comtaminated into the timing gate for selecting

protons. First, the author obtained the missing mass distribution generated by accidental co-

incidence events by gating specific regions in coincidence time where the true three peaks are

excluded, specifically [−9 ns,−5 ns], [1 ns, 5 ns], and [15 ns, 19 ns]. The spectrum is shown as

the pink histogram (labeled STEP 1) in Fig. 3.17. The spectrum is roughly hill-shaped but

exhibits statistical fluctuations per bin. To address this, the author proceeded to the next step,

which involved event mixing—a deliberate mixing up an event ID that linking electrons and

hadrons. Since accidental coincidence events essentially mean detecting uncorrelated electron-

hadron pairs separated in time and space, the newly generated events through the event mixing

behave exactly same. Repeating the event mixing thus extremely increases the statistical size of

the sample. The distribution of accidental coincidences obtained from 1,000 iterations of event

mixing is shown as the blue plot (labeled STEP 2) in Fig. 3.17. As can be seen, the statistical

error is now so small that it is no longer visible. Therefore, when subtracting the accidental

background distribution from the missing mass of protons, the error propagation due to sample

size can be minimized to zero. The scaling factor for the subtraction is simply the reciprocal

of the ratio between the proton gate width of 2 ns in the coincidence time distribution and the

gate width of 12 ns used to sample the accidental background, which is 1
6 .
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3.6.2 Contamination from the target cell

The contamination of scattered electrons and hadrons caused by reactions in the aluminum

target cell is significantly suppressed by the Z-vertex cut described in Sec. 3.3. The survival

ratio after the cut is calculated using eq. (3.28) and although the value is very small, it is finite

when considering the associated errors. Based on this ratio, the author derived the distribution

originating from the aluminum target cell that should be subtracted from the missing mass

spectrum of the proton. In Fig. 3.18, the blue-shaded region represents the gate selecting the

aluminum cell within the averaged Z-vertex distribution. The missing mass spectrum obtained

based on eq. (3.1) which assumes the target mass of the proton, is shown in Fig. 3.19. The

author scales this distribution according to the aluminum survival rate given in eq. (3.28) and

subtracts it from the proton’s missing mass distribution.

3.7 Acceptance

The acceptance in high-energy experiments is broadly refered to the ratio of the number of

particles actually detected to that of emitted particles. Generally, this encompasses measure-

ment efficiency due to the detector’s response, the effects of particle decay, energy loss due to

interactions with matter, and secondary reactions outside the target. Here, the author esti-

mates the acceptance in the narrow sence by extracting the effective solid angle encompassing

the geometrical coverage of the spectrometer and the interactions between particles and mate-

rials. Due to the unique target shape used in the present experiment, whether particles emitted

from the target reach the detection plane of the HRS depends not only on their momentum

and emission angle but also on the Z-vertex of the reaction point. The author estimates the

acceptance of HRSs by Monte Carlo simulations that model the experimental setup, including

the real spectrometer and target. Specifically, the simulation implements physical interactions

such as particle ionization and radiation, converting the effects of energy loss into an effective

solid angle distribution.

3.7.1 SIMC

SIMC is a program code widely used to simulate GeV-order experiments at JLab Hall-A

and Hall-C. The original code was written by T.G. O’Neill and N.C. Makins to study the

A (e, e′p) quasi-elastic scattering, and has since been developed to accommodate various reactions

and experimental conditions [77, 78]. SIMC implements realistic materials and geometries for

the various spectrometers used in Hall-A and Hall-C (e.g., HMS, SOS, SHMS, HRS, etc.).

Therefore, instead of calculating particle trajectories and secondary interactions in small steps

and accumulating them as in Geant4 [79, 80], the advantage of SIMC lies in its implementation

of an accurate description of the magnetic transport matrices for each spectrometer. SIMC also

realistically reproduces interactions between a beam and a material, such as radiative effects,

multiple scattering, ionization energy loss, and particle decay, by means of practical empirical
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Fig. 3.18: Z-vertex cut for selecting the aluminum target cell (blue-shaded region).
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Fig. 3.19: Missing mass spectrum of the events from the aluminum cell.

rules and Monte Carlo methods. In order to accurately estimate the acceptance and the influence

of interactions under the present experimental conditions, the cigar-like-shaped aluminum target

cell was modeled and newly implemented in the SIMC code.

3.7.2 Estimation of acceptance by SIMC

One can estimate the single-arm acceptance of HRS by the following procedure:
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1. Generate particles from the position of the target in the simulation. The particle’s mo-

mentum was uniformly generated within a range of ±2.5 % around the central momentum

of the spectrometer. The emission angles were generated uniformly across the entire solid

angle. The Z-vertex was uniformly generated within the range of [−10 cm,+10 cm]. All

these ranges sufficiently cover the acceptance of the HRS.

2. Record the total number of generated particles Ngen and the number of accepted particles

in the detector plane Nacc. Then, using these values and the solid angle where the particles

were generated (∆Ωgen), the solid angle of the spectrometer can be determined by the

following formula:

∆Ωacc =
Nacc

Ngen
∆Ωgen (3.38)

The following Fig. 3.20 and 3.21 show the two-dimensional dependence of the solid angle on

momentum and Z-vertex for HRS-L and HRS-R, respectively.

3.8 Number of target atoms

The number of target atoms is obtained according to the following equation using the mass

thickness described in Table 2.3,

NTarget =
Thickness

[
g/cm2

]
Molecular Mass [g/mol]

·NA [/mol] ·Np · Fdecrease (I) . (3.39)

where NTarget is the number of target atoms, and Np represents the number of protons in a single

molecule and Np = 2 in the case of hydrogen. Also, Fdecrease is the factor of density decrease

depending on the beam current. When irradiating a cryo-gas target, the high-current electron

beam heats the gas around the beam path by its energy loss, and locally reduces the gas density.

The current dependence of this effect was measured by detecting the yield of electron scattering

with the same setup as in the present experiment [68]. Fig. 3.22 represents the quantity called

charge normalized yield (corresponding to Fdecrease), which is the yield of electrons normalized

with the total charge of the electron beam and the detection efficiency:

Fdecrease =
PS ·N

Q · ε · LT
, (3.40)

where,

PS = Prescale faccor of DAQ,

N = Number of detected electrons,

Q = Integrated charge of electron beam,

ε = Detector efficiency,

LT = Live time.

This variable reach 1.0 in the limit of weak current of beam. In ref. [68], the measured data of
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Fig. 3.20: The two-dimensional dependence of the solid angle on momentum and Z-vertex for

HRS-L.
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Fig. 3.21: The two-dimensional dependence of the solid angle on momentum and Z-vertex for

HRS-R.

Fdecrease was fitted with the following quadratic function:

Fdecrease (I) = aI2 + bI + c, (3.41)

the parameters a, b and c for the 1H taraget was obtained by the fitting. The values of the

parameters are shown in Table 3.23. At the beam current of the experiment I = 22.5 [µA], the

value of Fdecrease is
Fdecrease (I = 22.5 [µA]) = 0.884± 0.01. (3.42)
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Fig. 3.22: The relationship between the normalized density of 1H and beam current [68].

Fig. 3.23: Parameters of Fdecrease [68].

Target Parameter Value

1H a (1.70± 0.47)× 10−4

b (−9± 0.12)× 10−3

c 1.± 0.006

Therefore, the number of target atoms in the present experiment is calculated as

NTarget = 0.0375± 0.00014
[
b−1

]
. (3.43)

3.9 Additional event selection

3.9.1 Reference plane cut

The author applied additional event cuts on the correlation of the position and the angle on

the reference plane of the HRS. Fig. 3.24 and Fig. 3.25 represent the distribution of xrp versus

x′
rp at the focal plane. The two quantitiess of xrp and x′

rp have a positive correlation because

the reference plane of the HRS (in other words, the plane where the two parallel VDCs measure

particles) is angled at 45 degrees relative to the particle trajectory. However, in the measured

data in Fig. 3.24 and Fig. 3.25, there are some events that deviate from the correlation possibly

due to incorrect tracking in the VDC. Such unexpected events from somewhere were eliminated

according to the following cut condition, and the events with correct correlation were selected
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Fig. 3.24: Distribution of x′
rp v.s xrp at the

reference plane in HRS-L.
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Fig. 3.25: Distribution of x′
rp v.s xrp at the

reference plane in HRS-R.
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Fig. 3.26: Distribution of x′
rp v.s xrp after

the focal plane cut in HRS-L
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Fig. 3.27: Distribution of x′
rp v.s xrp after

the focal plane cut in HRS-R

for further analysis:

x′
rp [rad] < 0.17xrp [m] + 0.025, (3.44)

x′
rp [rad] > 0.17xrp [m] + 0.035, (3.45)

x′
rp [rad] < 0.40xrp [m] + 0.130. (3.46)

The distribution after the cut is shown in Fig .3.26 and Fig .3.27. The cut condition is identical

in both HRS-L and HRS-R. This selection left a total of 88.63± 0.05 (stat.) % of events in both

the left and right arms.

3.9.2 Cut for track multiplicity

Multi-track events, which refer to a series of events where multiple particles are recorded at a

single trigger timing, are excluded on the HRS-L. In principle, the timing information recorded

for each track can be used to calculate the coincidence time explained in Sec. 3.4, However,

during the beamtime, there were periods when the TDC on the HRS-L side could not record

correctly due to failure of an electronic circuit modules. To address this problem, the author

used the trigger timing as the timing for t (S2)HRS-L. This method cannot be applied to multi-
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Fig. 3.28: Distributions of number of tracks

for HRS-L.
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Fig. 3.29: Distributions of number of tracks

for HRS-R.

track events, and the coincidence time can be correctly calculated only for the particle that hits

first in each event. Fig. 3.28 and Fig. 3.29 show the number of tracks in HRS-L and HRS-R.

For the reasons above, only events with one track in HRS-L were selected for analysis, and the

selected events account for 97.00± 0.04 (stat.) % of all coincidence events. On the other hand,

the HRS-R side was not filtered by the number of tracks, and all events with more than or equal

to one track were used for analysis.

3.9.3 Cut for momenta at the acceptance edge

Although SIMC has been dedicatedly developed with significant effort, it does not perfectly

reproduce all the details of reality. Users must carefully evaluate the extent of how accurately

a simulation can replicate the real setup when using the simulation. Generally, it is expected

that the degree of mismatch will increase at the edges of the acceptance. The author set the

following event selection for particle’s momentum to exclude events located at the edges of the

acceptance:

2.002 [GeV/c] <pe′< 2.176 [GeV/c], (3.47)

1.758 [GeV/c] <pp< 1.902 [GeV/c]. (3.48)

The following Fig. 3.30 and Fig. 3.31 show the momentum distributions of scattered electrons

and protons obtained from the experimental data. The region between the red dashed lines in

the figures represents the accept region for momentum as defined by eq. (3.47) and eq. (3.48).

3.9.4 Kinematical cut

The production of η′ is not necessarily observed across the entire range of all momentum

acceptance. This is because the momentum of the scattered electron and proton involved

in the η′ production are correlated, and when the curve crosses the edges of the momen-

tum acceptance, η′ cannot be observed in regions beyond those limits. Fig. 3.32 shows the

momentum-momentum correlation of scattered electrons and protons from the simulation of the
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Fig. 3.30: Momentum distribution of HRS-L in the experimental data. The blue dashed lines

represent the region of momentum selection for analysis given in eq. (3.47).
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Fig. 3.31: Momentum distribution of HRS-R in the experimental data. The blue dashed lines

represent the region of momentum selection for analysis given in eq. (3.48).
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Fig. 3.32: Corralation of pe′ v.s pp in the 1H(e, e′p) η′ reaction (simulation). Three black and

gray lines represents the kinematical calculation at the central ray and the edges of acceptance,

respectively. Pink lines shows the momentum range for analysis (eq. (3.47) and eq. (3.48)). Cyan

line indicates the energy threshold of scattered electrons to invoke the η′ production within the

experimental acceptance.

1H(e, e′p) η′ reaction. The overlaid solid black line represents the kinematic correlation assum-

ing the central angles of the spectrometer,
(
θLabee′ , θ

Lab
ep

)
= (13.2 degrees, 13.2 degrees). The colid

gray lines represent the kinematic correlation assuming the edges of the angular acceptance,(
θLabee′ , θ

Lab
ep

)
= (15.2 degrees, 15.2 degrees) and

(
θLabee′ , θ

Lab
ep

)
= (11.5 degrees, 11.5 degrees). Most

of the events generated in the simulation are distributed within this angular range. On the

other hand, there are also events that are faintly distributed outside this region. These are

attributed to energy loss due to radiation between the beam or scattered electrons and the

material (primarily the aluminum cell). Such events appear in the missing mass distribution

as a long-tailed component on the higher energy side (also refer to Fig. 3.8 shown during cal-

ibration). The acceptance range for momentum determined in the previous subsection is also

indicated by the pink dashed line. The kinematic correlation curve for the 1H(e, e′p) η′ reaction

intersects the lower boundary of the hadron momentum range, where the electron momentum is

pe′ = 2.060 GeV/c represented by the cyan dashed line in Fig. 3.32. In other words, the present

experiment does not have sensitivity to the η′ production for electrons with momentum below

this threshold. Excluding this region essentially reduces the multi-pion background without af-

fecting the observed η′ count. Therefore, the author imposes a tighter event selection criterion

for the pe′ momentum than the range mentioned in the previous section:

2.060 [GeV/c] <pe′< 2.176 [GeV/c]. (3.49)
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3.10 Number of virtual photons

The number of virtual photons emitted by electron scattering is calculated by integrating the

virtual photon flux Γ > 0 with the number of electrons and within the spectrometer’s acceptance,

Nγ∗ = Ne

∫
ΓdωdΩ. (3.50)

As discussed in Sec. 2.1, the virtual photon flux Γ is described by the following formula:

Γ =
α

2π2Q2

Eγ

1− ϵ

Ee′

Ee
(3.51)

ϵ =

[
1 + 2

|q|2

Q2
tan2

(
θee′

2

)]−1

(3.52)

Eγ = ω +
q2

2mp
, (3.53)

The integral of eq. (3.50) is estimated by Monte Carlo integration using SIMC. After gen-

erating four parameters (cos θe′ , ϕe′ , Ee′ ,Γ) uniformly and randomly in HRS-L, one can ob-

tain the integrated virtual photon flux (IVFP) from the ratio of detected events satisfying

Γ < Γ (θe′ , ϕe′ , Ee′), ∫
ΓdωdΩ ∼ Nacc

Ngen
∆Ωgen∆Egen∆Γgen. (3.54)

IVPF within the momentum range of eq. (3.49) is∫
ΓdωdΩ = (2.458± 0.005 (stat.))× 10−6 [/electron] , (3.55)

that is converted to the number of virtual photons by substituting into eq. (3.50),

Nγ∗ = (7.132± 0.001 (stat.))× 1013. (3.56)

3.11 Number of η′ mesons

Fig. 3.33 represents the missing mass distribution after applying the event selection. The

overlaid black histogram shows the accidental coincidences, and the blue histogram represents

the distribution originating from reactions in the aluminum cell. Fig. 3.34–Fig. 3.37 show the

distributions divided into two regions by Q2 and W . The coverage of Q2 and W as well as the

boundary dividing the data are shown in Fig. 3.38. The central values of Q2 and W coverage are

0.47 (GeV/c)
2
and 2.13 GeV, respectively. These values divide the acceptance range of Q2 and

W into two equal parts. The number of η′ mesons will be obtained by fitting these distributions.
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Fig. 3.33: Missing mass spectrum after applying the event selection (for all data).
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Fig. 3.34: Missing mass spectrum for Q2 < 0.47 (GeV/c)
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Fig. 3.36: Missing mass spectrum for W < 2.13 GeV.
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Fig. 3.37: Missing mass spectrum for W ≥ 2.13 GeV.
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the data into two regions.

3.11.1 Function for the η′ peak

As seen in the missing mass spectrum for the 1H(e, e′K+) Λ/Σ0 reaction (Fig. 3.8), the peak on

the missing mass spectrum has a long high-energy tail component. The present thesis will refer

to it as the “radiative tail.” The radiative tail is generated due to the bremsstrahlung radiation

occurring between the incoming and scattered electrons and the target system, resulting in a

greater energy loss. In the present experiment, a thick aluminum target cell was used to handle

a gaseous target, which significantly contributed to the prominence of this tail component in

the missing mass spectrum. It is crucial to note that the radiative tail is not background noise

but part of the true signal for the η′ production reaction to be analyzed. Therefore, using a

function that accurately describes the shape of the peak including the tail component is essential

for estimating the total number of η′ mesons and their differential cross section. As previously

seen, the η′ peak in the actual data is buried in the background events of multi-pion production,

making it difficult to estimate the shape of the peak from here. Therefore, the author determines

the appropriate function shape for spectral fitting through simulation. SIMC is also applicable

for studied incorporating the effects of radiation with matter, as well as multiple Coulomb

scattering, ionization through Monte Carlo manner. The reproducibility of the radiative tail

when compared to actual experimental spectra has been discussed in detail in previous research

in Λ/Σ0 production channels, and it is highly regarded for its reliability [81].

There are two main types of radiation reactions implemented in SIMC. One, referred to by the

authors as “external radiation,” is the ordinal bremsstrahlung radiation between the material

and the beam patricle, which is described in many textbooks on experimental particle physics. It

was first formalized by Y-S. Tsai [82, 83], who derived a famous empirical formula representing
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the probability that an electron beam with incident energy E loses energy ∆E when it enters a

material with atomic number Z and thickness t:

Iext (E,∆E, t) =
bt

∆E

(
∆E

E

)bt

(3.57)

b =
4

3

[
1 +

1

9

(
Z + 1

Z + η

)(
ln
(
183Z−1/3

))−1
]

(3.58)

η = ln

(
1440Z−2/3

183Z−1/3

)
. (3.59)

SIMC also implements a different type of radiation reaction. This is caused by the scattering

of the beam particles by the electric field of the target nucleus itself, which induces meson

production reactions. The author refers to this as “internal radiation,” which was formalized in

a paper by M. Vanderhaeghen [84]. The reaction probability for internal radiation is represented

by the following formula:

Iint (E,∆E, t) =
a

∆E

(
∆E

E

)a

(3.60)

a =
α

π

[
ln

(
Q2

m2
e

)
− 1

]
. (3.61)

When comparing eq.(3.60) with eq.(3.57), they both depend identically on the incident energy

E and energy loss ∆E. In other words, the internal radiation represented by eq.(3.60) can be

considered equivalent to the external radiation with an effective thickness tr = a
b . For this

reason, in SIMC implementations, both internal and external radiation reactions are calculated

as if external radiation with thickness (t+ tr) is occurring (see also Fig. 3.39).

Then, the author determines the function shape for the η′ peak on the missing mass. The

missing mass distribution of η′ production events simulated by SIMC is shown in Fig. 3.40. As

clearly seen in the figure, the peak has a long tail component on the high-energy side. The author

conducted a fitting of this simulation distribution by assuming a certain response function. It is

represented by the sum of two Gaussians sharing a peak position and an exponentially decaying

function that is smeared by them:

FPeak (x) := FDG (x) +

∫ +∞

−∞
FDG (x− t)FExp (t) dt (3.62)

FDG (x) := A (1− C)

[
Re

− (x−µ)2

2σ2
1 + (1−R) e

− (x−µ)2

2σ2
2

]
(3.63)

FExp (x) :=

{
0 (x < µ+ µ′)

ACτe−
x−(µ′+µ)

τ (µ+ µ′ ≤ x)
. (3.64)

Here, µ is the center of the Gaussian peak, σ is the width of the Gaussian, and τ is the decay

constant of the exponential function, and A, C and R is scaling factors related to the area

of the function. The fitting result using this function shape is overlaid on the spectrum in

Fig. 3.40. The black curve represents the total function F (x) as per eq.(3.62), while the blue

line represents the double-Gaussian peak component (FDG (x)) and the orange line represents
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Fig. 3.40: η′ peak generated by SIMC (with fitting).

the component of the smeared exponential function (FExp (x)). In the next to next subsection,

the author will estimate the total number of produced η′ mesons by fitting the experimental

spectrum, and during the procerude, the parameters of the fitting function will be fixed to the

values determined by the current simulation fit to reduce the degrees of freedom in the fit.

3.11.2 Function for the background

Case 1: polynomial function

The simplest method to estimate the background shape is to assume a polynomial of an ap-

propriate degree. In other words, a background function FBg := A0 + A1x + A2x
2 + · · · is
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assumed, and along with the peak function F peak defined in the previous section, the total func-

tion FPeak (x)+FBg (x) is used to fit the missing mass distribution. The number of parameters

determined through the fitting is the sum of the coefficients Aj (j = 0, 1, 2, · · · ) of the polyno-

mial and the total area A of the peak function, resulting in (n + 1) parameters in total. The

degree n of the polynomial should be sufficient to describe the rise and fall of the background

while being kept as small as possible to maintain the degrees of freedom in the fitting. As shown

in later fitting plots, a polynomial of up to the 3rd degree (n = 3) is sufficient to describe the

background distribution within an appropriate fitting range. The results of this fitting will be

collectively described in later sections.

Case 2: function determined by simulation

Here, the author wishes to explore another slightly more sophisticated method. The reason

is that, under conditions such as Q2 > 0.47 (GeV/c)
2
or W < 2.13 GeV (refer to Fig. 3.35 and

Fig. 3.36), the enhancement of background events overlaps with the η′ peak position. In such

cases, a polynomial function determined completely freely might inherently include systematic

uncertainties in its functional shape. Additionally, the author suppose that it is beneficial to

discuss the background shape using a more advanced method for datasets divided by Q2 or

W , where the peak statistics are reduced. In the missing mass distribution, the smoothly

distributed background are assumed to be originated from reactions in which multiple pions are

simultaneously produced in a single interaction with a virtual photon, namely, γ∗+p → p+N×π

(N = 2, 3, · · · ). To investigate this, the author generated a large number of such events using

SIMC-based simulations. The overview of the procedure for generating N -body particles in the

simulation is shown in Fig. 3.41.

1. First, the total energy W in the center-of-mass (CM) frame of the entire system (i.e.,

γ∗ + ptar) is determined as an input from the scattered electron detected in the left arm.

The relation is given by:

W =

√
(ω +mp)

2 − |q|2 (3.65)

=

√
(Ee − Ee′ +mp)

2 − |pe − pe′ |2 (3.66)

:=

N∑
j=1

(Mj + Tj) , (3.67)

where, Mj and Tj represent the mass and kinetic energy of the j-th particle, respectively.

The total kinetic energy is denoted as Tcm, such that:

Tcm :=

N∑
j=1

Tj (3.68)

= W −
N∑
j=1

Mj . (3.69)
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Fig. 3.41: Conceptual diagram of computational procedures of generating multi-pion production.

Refer to the main text for detailed explanations.

The author define the total momentum vector Ptotal of particles from the 1st to the

(N − 2)-th particle as:

Ptotal :=

N−2∑
j=1

Pj . (3.70)

The momentum vectors P1,P2, · · · ,PN−2 of particles from the 1st to (N−2)-th are freely

determined under the following conditions:

T1 > 0, T2 > 0, · · · , TN−2 > 0 (3.71)

0 < T1 + T2 + · · ·+ TN−2 < Tcm. (3.72)

2. If the kinetic energy TN−1 (or equivalently, the magnitude of the momentum vector PN−1)

of the (N − 1)-th particle is freely determined, the kinetic energy TN (or equivalently, the

magnitude of the momentum vector PN ) of the remaining N -th particle will be automat-

ically determined to satisfy energy conservation. Meanwhile, the angle θ between Ptotal

and PN−1 is expressed using the law of momentum conservation, or the cosine rule as

follows:

cos θPtotal→PN−1
=

(EN +MN ) (EN −MN )− P 2
N−1 − P 2

total

2 |Ptotal| |PN−1|
. (3.73)

The cosine must satisfy:

−1 < cos θPtotal→PN−1
< +1. (3.74)
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Fig. 3.42: pe′ v.s pp distribution for data and multi-pi simulation.

This condition ensures the existence of momentum vectors PN−1 and PN that satisfy

the momentum conservation law Ptotal + PN−1 + PN = 0. In the programming, if this

condition is not met, the event is rejected and the procedure restarts from the beginning.

3. If all momenta P1,P2, · · · ,PN of the N -particles are successfully determined under this

condition, a Lorentz transformation is applied to these momenta to obtain that in the

laboratory frame, where the target proton is at rest.

For the cases of N = 2, 3, 4, 5 and 6 are assumed, Fig. 3.42 shows the pe′ v.s pp correlation

obtained from the simulation of multi-pion generation, as well as the same correlation observed

in the experimental data. The distributions from each simulation are scaled such that their

total areas match the number of events in the data. Firstly, when comparing the simulations

for different N , it is evident that as N increases, the momentum carried away by the pions

becomes larger. This results in a tendency for the momenta of the scattered electron and

proton to decrease. Next, when comparing the simulations with the experimental data, the

case of N = 5 appears to better match the distribution observed in the data. This suggests
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Table 3.2: Summary of number of η′ obtained by data fitting.

Data Background Function Num. of η′ χ2/n.d.f

All polynomial 520± 86 (stat.) 1.11

multi-pi simulation 467± 85 (stat.) 1.51

Q2 < 0.47 (GeV/c)
2

polynomial 306± 61 (stat.) 1.16

multi-pi simulation 306± 60 (stat.) 0.96

Q2 ≥ 0.47 (GeV/c)
2

polynomial 231± 62 (stat.) 0.95

multi-pi simulation 197± 61 (stat.) 1.29

W < 2.13 GeV/c2 polynomial 223± 67 (stat.) 0.90

multi-pi simulation 196± 66 (stat.) 1.20

W ≥ 2.13 GeV/c2 polynomial 334± 57 (stat.) 0.92

multi-pi simulation 331± 55 (stat.) 1.15

that, in multi-pion production events included in the experimental data, the averaged number

of pions is estimated to be approximately five. The author then generated the missing mass

spectrum for the 1H (e, e′p)N × π reaction based on the accepted events in the simulation.

This spectrum was fitted using the sum of four Gaussian functions with free parameters to

derive the spectral response function. For the fitting of the missing mass spectrum of the

experimental data, the background distribution was described using the superposition of all 2π–

6π production processes. The ratios of each distribution were determined by minimizing χ2 to

best reproduce the experimental two-dimensional distribution of pe′ v.s pp. Indeed, even with

the determined ratios, the 5π production was found to be the most dominant component, with

a small contribution from the 2π distribution included. The averaged number of pions implies

4.86, obtained in the χ2 minimization. Then, the response function obtained from the simulation

was used with its parameters (except for the total area) fixed, as well as the peak function of η′

described in Sec. 3.11.1.

3.11.3 Fitting

Fitting of the missing mass spectra using the different types of functions described in the

previous subsections is shown in Fig. 3.43 and Fig. 3.44. Additionally, the fitting results for the

data divided into two regions of Q2 and W are presented in Fig. B.2 to Fig. B.10 in Appendix B.

The counts of the η′ peak obtained from these fittings are summarized in Table 3.2. The

differences between the two fitting functions are comparable to or smaller than the statistical

uncertainty.
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Fig. 3.43: Fitting of the missing mass spectrum with using a polynomial function for background.

The spectrum includes all data.
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Fig. 3.44: Fitting of the missing mass spectrum with using a simulation-based function for

background. The spectrum includes all data.
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3.12 Efficiency

3.12.1 Z-vertex cut

The author applied an event cut based on the Z-vertex when selecting the gas region of the

target (for details, see Sec. 3.3). A correction must be made in deriving the differential cross

section by considering what fraction of the target 1H atoms survive this cut. The efficiency of

the Z-vertex cut was already estimated in Sec. 3.3.

εZ = 0.654± 0.002 (stat.) (3.75)

3.12.2 Coincidence time cut

Event cut on the coincidence time distibution was applied to select scattered protons (for

details, see Sec. 3.4). The efficiency of the coincidence time cut was already estimated,

εCT = 0.965± 0.005 (stat.) (3.76)

3.12.3 Reference plane cut

Consider the efficiency of the cut based on the hit distribution in the focal plane discussed in

Sec. 3.9.1, which can be determined by taking the ratio of the number of events after the cut to

the total number of events,
εRP = 0.886. (3.77)

3.12.4 Track multiplicity cut

The calculation of the coincidence time is only possible for events where the number of tracks

in HRS-L is one (for detailed description, see Sec. 3.9.2). Therefore, the ratio of single-track

events to the total number of events represents the fraction of analyzable events,

εSingle = 0.970, (3.78)

as described in Sec. 3.9.2.

3.12.5 Tracking

Here, the author refers to the trajectory of particles reconstructed from hits on numerous

wires in the VDC of the HRS as “tracks,” and describes the tracking efficiency, which indicates

how many of the particles passing through the reference plane can be recognized as tracks during

the analysis process. As mentioned in Sec. 2.7.1, the VDC consists of four planes: U1, V1, U2

and V2. Typically, electrical signals are detected on about five wires for each plane the particle

passes through, and the timing information is recorded. Each of these sense wires has a finite

(and very high) detection efficiency, meaning that there is a certain probability that a hit is not
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Table 3.3: VDC plane efficiency and tracking efficiency [85].

HRS-L [%] HRS-R [%]

U1 plane efficiency εTrackU1 plane 99.72 99.78

V1 plane efficiency εTrackV1 plane 99.65 99.64

U2 plane efficiency εTrackU2 plane 99.80 99.78

V2 plane efficiency εTrackV2 plane 99.73 99.80

Tracking efficiency εTrackL,R 98.90+0.12
−0.18 99.18+0.09

−0.19

recorded even though the particle passed nearby. This quantity is called “wire efficiency.” It is

defined by the following equation:

εwire :=
Σiδi (j − 1) δi (j) δi (j + 1)

Σiδi (j − 1) δi (j + 1)
. (3.79)

Here, δi (j) represents the i-th hit on the j-th sense wire,

δi (j) =

{
1 (i-th event hit on the j-th sense wire)
0 (otherwise).

(3.80)

In other words, the above equation expresses the efficiency of the third sense wire when there

are hits on two sense wires with the third sense wire in between. K.G. Fissum et al. reported an

evaluation of wire efficiency based on the above equation in ref. [69]. Fig. 3.45 below shows the

wire efficiency of the U1 plane obtained during this evaluation. As can be seen from the figure,

the value of the efficiency is very high, exceeding 99.9 %.

Prior research conducted by a collaborator estimated the efficiency of each layer of the VDC,

i.e., the ratio at which tracks can be reconstructed in a single plane when particles pass through,

based on each wire efficiency, using Monte Carlo calculations [85]. The author of the present

thesis cites the values as the tracking efficiency. First, he generated hit wires for an event using

the number of hits distribution of all wires (Fig. 3.46 left) and the cluster size distribution for a

single particle (Fig. 3.46 right) obtained from the present experiment as input for the simulation.

Next, he invalidated some of the wire hits based on wire efficiency and observed whether the

cluster generation in the analysis process was disrupted. The estimated plane efficiencies of all

layers are summarized in Table 3.3. In the end, the efficiency in the coincidence analysis of

HRS-L and HRS-R is expressed as the product of all efficiencies obtained here,

εTrackL,R := εTrackU1 plane × εTrackV1 plane × εTrackU2 plane × εTrackV2 plane (3.81)

εTrack := εTrackL × εTrackR (3.82)

=
(
98.90+0.12

−0.18 %
)
×
(
99.18+0.09

−0.19 %
)
= 98.09+0.21

−0.37 %. (3.83)

It was determined with an error of less than 0.1 %.

3.12.6 DAQ

The DAQ efficiency was given by the ratio of DAQ dead time in every run. Fig. 3.47 represents

DAQ efficiency for all runs during the beamtime. These values are applied to the cross section
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Fig. 3.45: Wire efficiency of VDC on HRS (U1 plane) [69].

Fig. 3.46: left: Hit position distribution on VDC, right: cluster size distribution of typical

run [85].

calculation by run. The average DAQ efficiency gives,

εDAQ
ave = 0.96. (3.84)

3.12.7 Proton absorption

The protons after the reaction can be absorbed with a certain probability through nuclear

reactions mainly in the target cell. The proportion of such events was estimated through sim-

ulations using Geant4 [79, 80]. In the simulation, the author placed an aluminum plate with a

thickness of 400 µm/ sin θep and irradiate protons with a momentum of 1.8 GeV/c, counting the

number of protons that passed through. By excluding electromagnetic interactions and register-

ing only the physical processes of hadronic interactions, the contribution from nuclear reactions



80 Chapter 3 Analysis

111200 111400 111600 111800
Run Number

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

D
A

Q
 E

ffi
ci

en
cy

Fig. 3.47: Run dependence of DAQ efficiency. Black indicates the 3H target, red indicates the
1H target (hydrogen kinematics), pink indicates 1H (tritium kinematics), purple indicates 3He,

green indicates empty, and light blue indicates the calibration run.

alone could be considered. The protons lost in the aluminum wall were estimated to be 0.6 %,

corresponding to a transmission efficiency of

εAbs = 0.994± 0.001 (stat) +0.001
−0.002 (sys) . (3.85)

The systematic error reflects the change in the effective thickness of the aluminum wall caused

by the variation in θep.

3.12.8 Detector

The detector efficiency needs to be considered only for the scintillation hodoscopes, since

only the S0 and S2 hodoscopes participated in the data-taking trigger. Both S0 and S2 have a

sufficient number of photoelectrons, and the efficiency is

εDetector > 0.999. (3.86)

3.13 Differential cross section
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3.13.1 Calculation

The differential cross section of the 1H(γ∗, p)X reaction was calculated for the accepted events

as follows,(
dσγ∗p→Xp

dΩp

)Lab

=
1

NTarget
· 1
ε

NEvent∑
i=1

1

Nγ∗ (pe′ , z) · εDAQ
i ·∆ΩHRS-R (pp, z)

(3.87)

(
dσγ∗p→Xp

dΩp

)CM

=
1

NTarget
· 1
ε

NEvent∑
i=1

fLab→CM

Nγ∗ (pe′ , z) · εDAQ
i ·∆ΩHRS-R (pp, z)

(3.88)

ε = εZ · εCT · εRP · εSingle · εTrack · εAbs · εDetector. (3.89)

The value of ε means the product of all the efficiencies except for the DAQ estimated in the

previous sections. Of the DAQ efficiency, different values by run are applied for the calculation.

An acceptance map ∆ΩHRS-R (p, z) binned by momentum and Z-vertex is used for the calculation

since the solid angle ∆ΩHRS−R has momentum and Z-vertex dependence (as mentioned in

Sec. 3.7). Similarly, Nγ∗ is applied by using a map that depends on momentum and Z-vertex,

reflecting the acceptance of HRS-L. The value of fLab→CM is a relativistic factor to convert the

cross section from the laboratory frame to the center of mass frame, and is given event-by-event.

fLab→CM =
γ
(
pCM
p

)2 (
pCM
p cos θCM

γp + βECM
p

)[(
pCM
p

)2
sin2 θCM

γp + γ2
(
pCM
p cos θCM

γp + βECM
p

)2]3/2 (3.90)

β =
|q|

ω +mp
(3.91)

γ =
1√

1− β2
=

ω +mp

W
. (3.92)

3.13.2 Fitting

Fig. 3.48 represents the missing mass spectrum converted into the differential cross section of

the 1H(γ∗, p)X reaction. The overlaid cyan curve represents the fitting of the histograms by

the η′-peak function of eq. (3.62)–eq. (3.64) combined with a simulation-based function for the

background events. Thus, the integral of the fitting function gives the differential cross section

of the η′ virtual-photoproduction for all data,(
dσγ∗p→η′p

dΩη′

)CM

= 4.4± 0.8 (stat.) [nb/sr] . (3.93)

Fig. 3.49–Fig. 3.52 show the spectra divided into two regions by Q2 and W . These spectra

represents the data divided by the boundaries of Q2 and W shown in Fig. 3.38 of the previous

section, while the spectra in Fig. 3.48 represent the averaged differential cross section over

the entire region covered by the data. Two histograms, divided by Q2, were simultaneously

fitted with a constraint ensuring that the average area of the background function matches
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Fig. 3.48: Fitting of the differential cross section on the missing mass with using a simulation-

based function for background. The spectrum includes all data.

the background of the all data, namely 0.5 ×
(
SQ2low + SQ2high

)
= SAll, where SQ2low and

SQ2high represented the background areas determined by the heights of the corresponding two

fitting functions, and they were variable parameters determined by the fit. The same procedure

was applied for W as well. Additionally, apart from this result, the fitting results using a

third-order polynomial function as the background function, as well as the fitting results where

a simulation-based function for multi-pion production was used as the background function

but with the background area treated as a free parameter without applying any constraints

on the region, are presented in Fig. B.11–Fig. B.15 and Fig. B.16–Fig. B.20 in Appendix B,

respectively. The primary result of the present thesis adopts the values from constraint fittings

using the simulation-based function, treating the differences arising from other functions and

fitting methods as systematic errors. The statistical uncertainty of the background area of all

data used in the constrain fit results in only a small uncertainty compared to the systematic errors

arising from the dependence on such fit functions and fitting methods, and it is encompassed

within them. Results of fitting for all W - and Q2-binned spectra are summarized in Table 3.4.

3.13.3 Systematic error

The author estimates the systematic error of the differential cross section as an uncertainty

propagated several variables. Each error component can be considered independent of the others.

The systematic uncertainty of the differential cross-section is given by:

∆
(
dσ
dΩ

)
sys.(

dσ
dΩ

) =

(∆
(
dσ
dΩ

)
fit(

dσ
dΩ

) )2

+

(
∆NTarget

NTarget

)2

+

(
∆ε

ε

)2

+

(
∆
(
dσ
dΩ

)
acc(

dσ
dΩ

) )2
 1

2

. (3.94)
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Fig. 3.49: Missing mass spectrum (in differential cross section) for Q2 < (0.47 GeV/c)
2
with a

fitting using a simulation-based function for background. The background area was fitted with

a constraint applied so that its average with the background area in Fig. 3.50 is equal to the

background area of the all data.
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Fig. 3.50: Missing mass spectrum (in differential cross section) for Q2 ≥ (0.47 GeV/c)
2
with a

fitting using a simulation-based function for background. The background area was fitted with

a constraint applied so that its average with the background area in Fig. 3.49 is equal to the

background area of the all data.
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Fig. 3.51: Missing mass spectrum (in differential cross section) for W < 2.13 GeV with a

fitting using a simulation-based function for background. The background area was fitted with

a constraint applied so that its average with the background area in Fig. 3.52 is equal to the

background area of the all data.
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Fig. 3.52: Missing mass spectrum (in differential cross section) for W ≥ 2.13 GeV with a

fitting using a simulation-based function for background. The background area was fitted with

a constraint applied so that its average with the background area in Fig. 3.51 is equal to the

background area of the all data.
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Table 3.4: Summary of differential cross section obtained by data fitting. The term “free” in

parentheses indicates a case where the background area is treated as a free parameter when

fitting. On the other hand, “constraint” refers to a case where a constraint is applied during

fitting so that the average background area of the two divided datasets is equal to the background

area of all data.

Data Background Function Differential Cross Section [nb/sr] χ2/n.d.f

All polynomial 4.7± 0.8 (stat.) 1.07

multi-pi 4.4± 0.8 (stat.) 1.49

Q2 < 0.47 (GeV/c)
2

polynomial 5.6± 1.2 (stat.) 0.93

multi-pi (free) 5.4± 1.2 (stat.) 0.92

multi-pi (constraint) 5.9± 1.1 (stat.) 1.24

Q2 ≥ 0.47 (GeV/c)
2

polynomial 4.1± 1.2 (stat.) 1.00

multi-pi (free) 3.7± 1.2 (stat.) 1.51

multi-pi (constraint) 4.3± 1.1 (stat.) 1.24

W < 2.13 GeV/c2 polynomial 3.8± 1.3 (stat.) 0.97

multi-pi (free) 3.1± 1.2 (stat.) 1.25

multi-pi (constraint) 3.7± 1.2 (stat.) 1.23

W ≥ 2.13 GeV/c2 polynomial 5.8± 1.1 (stat.) 0.96

multi-pi (free) 6.2± 1.1 (stat.) 1.18

multi-pi (constraint) 6.5± 1.0 (stat.) 1.23

It should be noted that ∆
(
dσ
dΩ

)
fit

represents the systematic error arising from differences in

the fitting functions as described in Sec. 3.11.3 and Sec. 3.13.2. Also, ∆
(
dσ
dΩ

)
acc

represents

the systematic error arising from error of acceptance. This contribution is estimated from the

variation in the differential cross section caused by changing the momentum cut range defined in

Sec. 3.9.3. In addition to the cut conditions adopted in the present analysis, the author applied

tighter cuts:

2.064 [GeV/c] <pe′< 2.160 [GeV/c] (3.95)

1.777 [GeV/c] <pp< 1.890 [GeV/c] (3.96)

and looser cuts:

2.040 [GeV/c] <pe′< 2.200 [GeV/c] (3.97)

1.740 [GeV/c] <pp< 1.920 [GeV/c] (3.98)

(also see Fig. 3.53 and Fig. 3.54). Using the same analysis procedure, the differential cross

section was derived under these conditions. The differential cross sections determined by the

three types of momentum cuts are summarized in Table 3.5. Additionally, the fitting of the

missing mass spectra for the tighter cut and looser cut is shown in Fig. B.21 and Fig. B.22 in

Appendix B. Based on these results, it is estimated that the central value of the differential cross
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Fig. 3.53: Three types of momentum cut conditions for pe′ . The blue dashed lines represent

the default cut, while the green dashed lines represent the looser cut and the cyan dasued lines

represent the tighter cut.
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Fig. 3.53.
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section obtained from the spectrum fitting changes by 6 %. This variation is incorporated into

the systematic error as the uncertainty in the acceptance of both spectrometers determined by

the simulation. Table 3.6 summarizes the individual errors that constitute the systematic error

and their respective contributions. The total systematic error of the differential cross section

for all data corresponds to 9 %. Most of the error is due to the accuracy of the solid angle

estimation as well as the difference in fitting functions.

Table 3.5: Summary of the differential cross sections determined by the three types of momentum

cuts.

Momentum Cut Background Function Differential Cross Section [nb/sr] χ2/n.d.f

default multi-pi simulation 4.4± 0.8 (stat.) 1.49

looser multi-pi simulation 4.1± 0.7 (stat.) 1.84

tighter multi-pi simulation 4.4± 0.8 (stat.) 1.19

Table 3.6: Individual errors that constitute the systematic error of the differential cross section.

The value of ∆
(
dσ
dΩ

)
fit

/ (
dσ
dΩ

)
represents the average of five patterns: one where all the data

is analyzed, and four where the data is divided into two regions based on Q2 and W . In the

final results described in the next chapter, individual error values are applied according to each

condition.

Valuable ∆
(
dσ
dΩ

)
fit

/ (
dσ
dΩ

) ∆NTarget

NTarget

∆ε
ε ∆

(
dσ
dΩ

)
acc

/ (
dσ
dΩ

)
Error value 0.11 0.004 0.01 0.06
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Chapter 4

Result and Discussion

4.1 Results of the present measurement

The cross section of the 1H(γ∗, p) η′ reaction was obtained for the first time by fitting the

missing mass spectrum:(
dσγ∗p→η′p

dΩη′

)CM

= 4.4± 0.8 (stat.)± 0.4 (sys.) [nb/sr] . (4.1)

When the data is divided into two regions for Q2 and W , the cross section is(
dσγ∗p→η′p

dΩη′

)CM (
Q2 < (0.47 GeV/c)

2
)
= 5.9± 1.1 (stat.)± 0.6 (sys.) [nb/sr] (4.2)(

dσγ∗p→η′p

dΩη′

)CM (
Q2 ≥ (0.47 GeV/c)

2
)
= 4.3± 1.1 (stat.)± 0.6 (sys.) [nb/sr] (4.3)(

dσγ∗p→η′p

dΩη′

)CM

(W < 2.13 GeV) = 3.7± 1.2 (stat.)± 0.7 (sys.) [nb/sr] (4.4)(
dσγ∗p→η′p

dΩη′

)CM

(W ≥ 2.13 GeV) = 6.5± 1.0 (stat.)± 0.8 (sys.) [nb/sr]. (4.5)

Fig. 4.1 is a comparison of our experimental results and the existing database of the (γ, p) re-

actions at relatively nearby W . The present result at W = 2140 MeV and cos θCM
γη′ ≈ −1 is

represented by a plot with red error bars. Data points from past experiments include mea-

surements by CLAS06 [34] (W = 2143 MeV, purple), CLAS09 [35] (W = 2130 MeV, blue),

CBELSA/TAPS [37] (W = 2142 MeV, orange) and LEPS [40] (W = 2125 MeV, pink). At

backward angles, our measurements show a small cross section compared to LEPS data. This

discrepancy is thought to be due to the difference between virtual photon and real photon, that

is, the dependence on the four-momentum transfer Q2 in the amplitude.
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Fig. 4.1: Comparison between the present result of η′ electroproduction and previous research

of photoproduction.

4.2 Decomposition of differential cross section

As mentioned at the beginning of Chapter 2, the differential cross section of meson electro-

production by virtual photons is decomposed into four terms of dσT

dΩCM
η′

, σL

dΩCM
η′

, dσLT

dΩCM
η′

, and dσTT

dΩCM
η′

:

dσγ∗

dΩCM
η′

=
dσT

dΩCM
η′

+ ε
dσL

dΩCM
η′

+
√
2ε (1 + ε)

dσLT

dΩCM
η′

cosϕη′ + ε
dσTT

dΩCM
η′

cos 2ϕη′ . (4.6)

The experimental setup for the present measurement has an almost constant acceptance of

−90 [degrees] < ϕη′ < +90 [degrees] for the angle ϕη′ between the reaction plane and the

scattering plane (refer to Fig. 2.1). Averaging within this ϕη′ range cancels the dσTT

dΩCM
η′

term and

brings (
dσγ∗

dΩCM
η′

)
ave.

=
dσT

dΩCM
η′

+ ε
dσL

dΩCM
η′

+
2

π

√
2ε (1 + ε)

dσLT

dΩCM
η′

. (4.7)

This

(
dσγ∗

dΩCM
η′

)
ave.

corresponds to the results observed in the present experiment.

The author discuss the comparison between the present results and calculations based on the

isobar model from the next section. In calculations, it is possible to directly calculate dσT

dΩCM
η′

,

dσL

dΩCM
η′

, dσLT

dΩCM
η′

, and dσTT

dΩCM
η′

in the specific kinematics. The author composes

(
dσγ∗

dΩCM
η′

)
ave.

from each

term for comparison with the experimental results.
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4.3 Construction of an Isobar Model

Thanks to the collaborators, a new isobar model calculation is demonstrated to describe η′

photo- and electro-production continuously. The calculation developed for the present work

makes it possible to physically interpret the cross section of η′ electroproduction and to discuss

it in conjunction with existing the dataset of photoproduction experiments. It was made by

extending to the η′N electroproduction channel from a framework of the BS models [57, 58],

which have been established successfully by P. Bydžovský and D. Skoupil in the K+Λ channel.

As already mentioned in Chapter 1, the isobar model is an effective theory with considering the

Lagrangian on hadronic degrees of freedom, and does not discribe quarks in itself. However, the

set of resonance candidates assumed in the calculations reveals the contribution of the nucleon’s

excitation that appears in the intermediate state of the reaction. The selection of the resonance

set plays an important role in the characteristics of the theoretical model. In the isobar model,

only the first order perturbation represented by the tree-level diagram is usually incorporated,

but the rescattering effect due to the final state interaction is taken into account by the effective

coupling constant determined by data fitting.

The fitting parameter G in the calculation code is always a product of the strong coupling

constant and the electromagnetic coupling constant at two vertices:

G =
fsgem
Mnorm

. (4.8)

Adequate normalization factor Mnorm has different forms depending on the diagram [56].

• For ρ and ω meson exchanges, Mnorm is arbitrary and takes 1 GeV.

• For spin=1/2 resonance, take Mnorm = MR +Mp (MR,p is the mass of the resonance and

proton, respectively).

• For spin=3/2 resonance, two transverse coupling parameters are required based on the

Rarita-Schwinger equation [86][87],

G1 =
fsg

(1)
em

M2
RMη′ (MR +Mp)

(4.9)

G2 =
fsg

(2)
em

M2
RMη′ (MR +Mp)

. (4.10)

• Similarly, in the case of spin=5/2 resonance,

G1 =
fsg

(1)
em

16M4
η′M4

p

(4.11)

G2 =
fsg

(2)
em

32M4
η′M5

p

. (4.12)

They are parametrized to best reproduce the angular distribution database (CLAS06 [34],

CLAS09 [35], CBELSA/TAPS[37], A2MAMI [39] and LEPS [40]). It requires the minimiza-

tion of χ2 between the data points with errors and the calculated values. The author and
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Fig. 4.2: A concept of the Extended Vector Meson Dominance (EVMD) model. In a coupling

at hadron vertex, a form factor consisting of two terms is incorporated: one representing the

direct coupling with a quark within the hadron in high-Q2 region, and the other describing a

superposition of couplings with vector mesons having the same quantum number. These have an

explicit dipole-shape Q2 dependence and play an crucial role on the differential cross section of

the meson electroproduction. The ratio of each effect is parameterized by the theoretical model.

collaborators constructed a least-squares fitting procedure in the calculation code using the

MINUIT [88].

Also, a different type of form factor for description of the internal structure of hadrons is

applied with each of the two vertices. The electromagnetic form factor is based on the Ex-

tended Vector Meson Dominance (EVMD) model, that is proposed to describe hadronic photo-

coupling as a sum of a direct coupling term with a quark inside hadrons and a term of exclusive

coupling terms with vector mesons (ρ, ω, and ϕ) having same quantum numbers (as shown in

Fig. 4.2) [89][90]. The electromagnetic form factor has explicit dipole Q2 dependence, and it

makes a crucial contribution to the Q2 dependence in electroproduction cross section. The

present calculation uses the parametlization by R.A. Williams et. al. [91] for t-channel meson

coupling and the GKex(02S) model by E.L. Lomon [92] for baryon. On the other hand, hadronic

form factor is introduced in the hadron vertex, and in the present calculation it is a multi-dipole

function for Mandelstam variables x = s, t and u as shown in the following expression,

Fh.f.f. =

[
Λ4

(x−M2
R)

2
+ Λ4

]JR+1/2

, (4.13)

where JR is the resonance spin. The introduction of the hadronic form factor has importance

for consistency with photoproduction data. Cutoff parameters Λ for resonance and background

channels are also determined by data fitting.

The author adopted three patterns of resonance set, named as Model I, II and III, for the con-

sidering calculations. Table 4.1 lists the resonances introduced in each model. Model I selected

four essential resonances that have been reported to couple with η′p production (according

to PDG’s summarization [9]). In addition to these, Model II includes more two resonances

N (1880) 1
2

+
and N (2060) 5

2

−
that are rated three stars (***) by PDG [9]. Model III selected

six resonances that significantly contributed to total cross section of EtaMAID2018 [30], that

has been developed for calculation of η and η′ photoproduction.
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Table 4.1: Summary of resonance sets incorporated into the isobar model calculation Model I–

III. All three models have ρ (770) and ω (782) meson coupling in t-channel. Model I includes

four essential resonances for the η′p channel in s- and u-channels. A pair of three-star (***)

resonances is also given into Model II. Model III is intended for EtaMAID[30]-like calculation.

Resonance PDG status [9] Model I Model II Model III

ρ (770) ✓ ✓ ✓
ω (782) ✓ ✓ ✓

N (1860) 5
2

+
** ✓

N (1880) 1
2

+
*** ✓ ✓

N (1895) 1
2

−
**** ✓ ✓ ✓

N (1900) 3
2

+
**** ✓ ✓ ✓

N (2000) 5
2

+
** ✓

N (2060) 5
2

−
*** ✓

N (2100) 1
2

+
*** ✓ ✓

N (2120) 3
2

−
*** ✓ ✓ ✓

The values of each parameter in Model I–III determined are shown in the Table 4.2. In

addition, the angular dependence of Model I–III at energy of W = 1901–2620 MeV is shown

in Fig. 4.3. It can be found that all models well reproduce the behavior of the experimental

data. However, predictions at extremely forward and backward angles are inconsistent. This

discrepancy is an uncerteinty remaining in the models due to the lack of experimental data

or/and the resonance set dependence. χ2 between dataset and calculation is the smallest in

Model II. Note that our experimental results at W = 2140 MeV are excluded from this fitting,

but also plotted in Fig. 4.3 with red error bars. Comparing with the calculations and other

experimental data, it can be seen that electroproduction with a finite momentum transfer Q2

yields a smaller cross section.
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Table 4.2: Summary of parameters for Model I-III. Width of each resonance is according to the

listing by PDG [9]. Values of the parameters are determined by fitting with the cross section

database of photoproduction experiments.

Parameter Width (GeV/c2) Model I Model II Model III

gη′NN −0.179 −0.326 −0.549

Λbg 1.40 0.888 0.763

Λres 1.25 1.43 1.25

GV (ρ) 0.153 −0.607 6.16 13.4

GT (ρ) 0.153 −11.0 15.0 15.0

GV (ω) 0.0085 0.93 −6.58 −13.4

GT (ω) 0.0085 10.9 −15.0 −13.9

G1 (N (1860) 5
2

+
) 0.300 −1.01

G2 (N (1860) 5
2

+
) 0.300 1.36

G (N (1880) 1
2

+
) 0.300 0.813 −0.216

G (N (1895) 1
2

−
) 0.120 −0.139 0.0620 −0.0706

G1 (N (1900) 3
2

+
) 0.200 −0.0503 0.0915 −0.186

G2 (N (1900) 3
2

+
) 0.200 0.0663 0.0258 0.0306

G1 (N (2000) 5
2

+
) 0.300 0.189

G2 (N (2000) 5
2

+
) 0.300 −0.149

G1 (N (2060) 5
2

−
) 0.400 0.0195

G2 (N (2060) 5
2

−
) 0.400 0.0346

G (N (2100) 1
2

+
) 0.300 0.240 −0.532

G1 (N (2120) 3
2

−
) 0.300 −0.643 0.0454 −0.0708

G2 (N (2120) 3
2

−
) 0.300 −0.480 0.0415 −0.0642

χ2/n.d.f 2.89 1.94 2.51
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Fig. 4.3: Angular dependence of η′ photoproduction with various energy range. Plots with

different colors corresponds to data by different experiment including CLAS06 [34], CLAS09 [35],

CBELSA/TAPS [37], A2MAMI [39] and LEPS [40]. A red star with error bars represents the

result of the present result at W = 2140 MeV and cos θCM
γη′ ≈ −1. Smooth curves give the

solution of Model I–III. Note that the W s in the legends represent the energy of the theoretical

calculations, and although the experimental W is the closest, it may not match completely.
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4.4 Discussion 1: Q2 dependence

Here the author considers the cross section with finite Q2 > 0 obtained in the present experi-

ment. First, the results of the the present experiment are given on the Q2 dependence plot by

Model I–III in Fig. 4.4. Kinematics assumed in the three calculations follows the experimental

condition of W = 2140 MeV, cos θCM
γη′ = −0.95

(
θCM
γη′ = 170 degrees

)
, and ϵ = 0.7. The dashed

lines are calculations without using the electromagnetic form factor, and the solid lines are cal-

culation with it. The plots at Q2 = 0.47 (GeV/c)
2
are the result of the present experiment,

where the pink represents all data and the brown represents data divided into 2 bins. Error bars

in the plot are statistical errors in cross section, and boxes are systematic errors. The plots at

Q2 = 0 are the phoptoduction data of W = 2125 MeV and W = 2179 MeV at backward angles

of cos θCM
γη′ ≈ −1 in 2016 LEPS [40]. The cross section of the present experiment decreases to

about 1/6 of the photoproduction data with the closest W .

The calculations without the electromagnetic form factor show the purely dynamical Q2-

dependence that appears in the transition matrix describing meson electroproduction. However,

these calculations exhibit a dependence where the cross section increases at finite Q2 > 0, which

does not agree with the results of the present experiment. On the other hand, the calculations
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Model II  w/  EM form factor
Model III w/o EM form factor
Model III w/  EM form factor

W=2140 MeVPresent data (one bin) 
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Fig. 4.4: Q2 dependence of the differential cross section in electroproduction of the η′.

Solid/dashed curves correspond to calculation with/without the electromagnetic formfactor.

The pink plot with errors represents the result of the present experiment in a single bin. In

contrast, the brown plots are the results diveded into two bins. The error bars to each plot

represent statistical errors, while the boxes represent systematic errors. The green and orange

plots at Q2 = 0 (orverlapping each other) are the value of existing data at nearby W of photo-

production measured by LEPS [40].
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incorporating the EM form factor, which describes the charge distribution of hadrons with a

Lorentz-type Q2-dependence, indicates that starting from photoproduction at Q2 = 0, the cross

section quenches as Q2 increases. These theoretical models reasonably reproduce both our ex-

perimental results of the electroproduction at finite Q2 > 0 and the photoproduction at Q2 = 0.

The comparison between the theories and the experimental results highlights that the inclusion

of the EM form factor plays a crucial role in understanding meson electroproduction. This under-

standing is consistent with other meson production channels as well. The present experimental

results support the validity of the theoretical framework employed in these calculations.

4.5 Discussion 2: W dependence

Fig. 4.5 – 4.7 represents comparisons of the results of the present experiment and prediction

by Model I–III on the W dependence. The pink plot at W = 2140 MeV shows all data, and

the brown plots show data divided into two bins. The theoretical curve follows the kinematics

of the present experiment: Q2 = 0.46 (GeV/c)
2
, cos θCM

γη′ = −0.95, and ϵ = 0.7. The dashed

curves with various colors correspond to the individual contribution of each resonance.

The behavior of the W dependence predicted by the three calculations differs greatly. A

contribution of each resonance for these calculations were determined to best reproduce the

angular dependence of photoproduction by fitting in Sec. 4.3. However, the most contribu-

tiong resonances to explain the database varies each other by assumption of the resonance set.

This discrepancy is clearly visible in the W -dependent behavior at backward electroproduction.

Among the three theoretical models, Model II is the most preferred for explaining the results

of the present experiment (besides, Model II also shows the best agreement with the angular

dependence of photoproduction). Furthermore, when comparing the increase or decrease of cross

sections in the energy region of interest, Models I and II exhibit an increasing trend with W ,

whereas Model III shows a slowly decreasing trend, behaving differently from the other two mod-

els. Examining the contributions from individual resonances, N (2120) 3
2

−
is the most dominant

in Model I, while N (2100) 1
2

+
dominates in Model II. In contrast, Model III attributes the cross

section primarily to couplings with lower-energy resonances. The experimental result obtained

in the present study show an increasing trend in dependence beyond W = 2130 MeV, which also

supports Models I and II. Therefore, the present measurement suggests an important role of (a)

resonance(s) near an energy of ∼ 2100 MeV. The new data imposes additional constraints on

future resonance searches; however, more detailed discussions require experimental data with a

broader range of covering W, or, more precise statiscal errors.
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Fig. 4.5: W dependence of the differential cross section of the η′ electroproduction (compared

with Model I). The pink plot with errors represents the result of the present experiment in a

single bin. In contrast, The brown plots are the results diveded into two bins. The error bars

to each plot represent statistical errors, while the boxes represent systematic errors. The solid

curve gives the full solution of Model I at the specific kinematics, and the dashed curves give

the individual contributions of different resonances.
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Fig. 4.6: W dependence of the differential cross section of the η′ electroproduction (compared

with Model II).
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4.6 In future

As described, the present study established that it is possible to derive the differential cross

section of the 1H(e, e′p) η′ reaction at backward angles by analyzing the data obtained from

high-resolution mass spectrometry experiments of Λ hypernuclei. Additionally, with the aid of

theoretical calculations, this unique experimental data not only verified the validity of the meson

electroproduction model based on the One-Photon-Exchange Approximation but also provided

valuable information regarding the existence of nucleon excited states with slightly higher energy,

in other words, the energy structure of the nucleon. Towards the end of this discussion, The

author wished to describe the potential developments in future follow-up research according to

the own thoughts.

The JLab hypernuclear collaboration has been conducting missing mass spectrometry exper-

iments of Λ hypernuclei at JLab. Table 4.3 provides an overview of the experiments conducted

so far, the present experiment, and those planned for the future. The collaboration have been

producing and measuring Λ hypernuclei by the K+Λ electroproduction from various nuclear

targets. In all these experiments, the elementary process of Λ/Σ0 electroproduction from proton

targets has been simultaneously measured. This is because data from these reaction is indispens-

able for the energy calibration of the missing mass spectra. Therefore, by analyzing the proton

target data from other past or future hypernuclear experiments using the same procedures as the

present study, it should be possible to observe the η′ meson generated as a by-product. Notably,

despite the existence of past experimental data spanning over 20 years, no senior students or

researchers have seriously attempted to analyze the η′ production channel.

These experiments have been conducted at JLab Hall-A and Hall-C. The spectrometers used

differ for each experiment as a result of the setup being refined over time. The present ex-

periment, E12-17-003, was conducted at Hall-A in 2018, as part of a series of experimental

campaigns using tritium targets at JLab. This was somewhat irregular among the hypernuclear

Table 4.3: Summary of the spectroscopic experiments of Λ hypernuclei at JLab. The four

planned future experiments are scheduled to be conducted consecutively during a continuous

beamtime session.

Experiment Year Hall Spectrometers Ee [GeV] pe′ [GeV/c] pK+ [GeV/c] W γ∗+p [GeV] Target

E89-009 2000 C ENGE+SOS 1.864 0.283 1.2 1.96 CH2,
12C

E01-011 2004 C ENGE+HKS 1.851 0.316 1.2 1.94 CH2,
7Li, 12C, 28Si

E94-017 2004 A HRS+HRS 3.66 1.45 1.96 2.23 CH2, H2O, 12C

E05-115 2009 C HES+HKS 2.344 0.844 1.2 1.91 CH2,
7Li, 10B, 12C, 52Cr

E12-17-003 2018 A HRS+HRS 4.326 2.1 1.8 2.14 1H, 3H, 3He

E12-24-003 2026? C HES+HKS 2.344 0.844 1.2 1.91 CH2,
208Pb

E12-24-004 2026? C HES+HKS 2.344 0.844 1.2 1.91 CH2,
6 Li, 9Be, 11Be

E12-24-011 2026? C HES+HKS 2.344 0.844 1.2 1.91 CH2,
27 Al

E12-24-011 2026? C HES+HKS 2.344 0.844 1.2 1.91 CH2,
40 Ca, 48Ca
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experiments conducted solely by the collaboration. On the other hand, both the previous exper-

iment and the planned future experiment will be conducted at Hall-C. In these, HES is used on

the scattered electron side spectrometer and HKS on the hadron side spectrometer. This setup

is designed to maximize the cross section of the Λ hyperon: observing the forward scattered

electrons and K+ is common to all experiments, but the energy of the incident electrons is

about ∼ 2 GeV smaller than that of the experiment at Hall-A. Consequently, the total energy

in the p+ γ∗ system is W = 1.9 GeV, which is the energy at which the total cross section of the

p+ γ → Λ+K+ reaction make a peak. The momentum coverage of HES-HKS setup in Hall-C

experiment also contains the η′ production events (Fig. 4.8). Additionally, the solid angle of

HKS is about 12 msr, which is approximately twice that of the 5 msr HRS, making it superior

from the perspective of yield.

Analyzing the (e, e′p) reaction channel using proton target data obtained under such Hall-C

experimental conditions would provide one or two data points for the differential cross section

of the η′ electroproduction under different kinematic conditions than the present experiment.

Particularly, while data from the present experiment allowed discussion of the resonant state

around W = 2000–2100 MeV, analysis of the Hall-C experimental data would likely observe

the contribution of resonant states in different W regions. It is especially noteworthy that the

total energy W = 1900 MeV is just above the threshold of the p+ γ → p+ η′ reaction (Wth =

1896 MeV). From measurements at such energy, the strength of couplings with N (1895) 1
2

−
or
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Fig. 4.8: The phadron-pe′ corralation in the kinematics of Hall-C experiment. The blue, green

and black plots give the 1H(e, e′K+) Λ, 1H(e, e′K+)Σ0 and 1H(e, e′p) η′ reactions, respectively.

The pink dashed lines represent the momentum acceptance of HES and HKS, the spectrumeters

used in the past and future Hall-C experiment.
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N (1900) 3
2

+
, which have similar masses, could be discussed from the differential cross section,

potentially imposing new constraints on theoretical models.

On the other hand, several technical hurdles remain in the data analysis of the Hall-C exper-

iment. The author will mention those here.

One challenge is PID (Particle Identification). In the hypernuclear experiments at Hall-C,

two types of Cherenkov detectors, one with silica aerogel and the other with pure water as

radiators, are used in the hadron side spectrometer (HKS) to distinguish kaons from hypernuclei

against protons and pions. These Cherenkov detectors are part of the online trigger during data

acquisition. This is a significant difference from the present experiment, E12-17-003, where the

trigger was composed solely of the hodoscope. Therefore, if one was to analyze η′ production,

one would have to identify protons that leaked into the data where kaons were selectively chosen

by the Cherenkov detectors, and to know the proton survival ratio with those detectors precisely.

Table 4.4 shows the proton survival ratio in the online triggers using Cherenkov detectors for

E05-115 experiment and next-generation experiments. (Of particular note, the author is not very

familiar with how seriously these values were estimated during the past E05-115 experiment.) In

E05-115 experiment, approximately five times the calibration data of the present experiment was

obtained. However, the expected number of η′ mesons was reduced to ∼ 3
4 of that of the present

experiment, due to the online triggers of the Cherenkov detectors. In contrast, in the next-

generation experiment, significant improvements in event rate capacity are expected through

upgrades to high-speed FPGAs for triggering and faster DAQ systems. Moreover, particularly

for the CH2 target, which serves as the source of calibration, there is a restriction that the

target must not melt due to energy deposition from the beam. Under the condition that the

beam current itself cannot be increased, it is expected that the data acquisition system will have

vast capacity, to the extent that online PID will no longer be necessary. As a result, assuming

the same statistical amount of calibration data as E05-115 experiment is obtained, Nη′ ∼ 2100

events will be recorded as by-products, leading to a significant improvement in the observed

number of η′ mesons.

Another issue is the background distribution. In the present thesis, the author struggled

considerably to estimate the shape of the background in the missing mass distribution (refer

to Sec. 3.11.2). The Hall-C experiment data should contain a large number of background

Table 4.4: Summary of Nη′ and NΛ in the previous, present and future experiments. It should

be noted that in the new experiment, it is highly likely that online triggers using Cherenkov

detectors will not be employed for the polyethylene target.

Experiment NΛ εproton εkaon Nη′

E05-115 (previous) 5991± 135 [93] 0.12 [93] 0.92 [93] 363± 63 (estimation)

E12-17-003 (present) 1360−92
+58 [81] 1 1 467± 85

next-generation - (0.05 [94]) (0.99 [94]) 3150± 188 (estimation)
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events from multi-pion production, too. Additionally, in the case of the Hall-C experiment,

a polyethylene target is used instead to provide proton data for calibration, and the carbon

nuclei in the target generate additional background. In the present experiment, E12-17-003,

the author was able to eliminate this background source by using gaseous H2 target. However,

the Hall-C experiment using the HES-HKS configuration can only handle thin solid targets

due to poor resolution along the beam axis direction (Z-vertex). Therefore, one have to use

polyethlene target instead in the calibration run, and reactions generated by the carbon nuclei

are also mixed in. Events from carbon nuclei are likely to be almost entirely due to quasi-

free production of mesons, and they all appear as broad distributions in the spectrum of the
1H(e, e′p)X reaction. Assuming a simple calculation based on the liquid drop model, the cross

section σ ∝ A
2
3 for carbon with an atomic mass of 12.0 is estimated to be about 5.24 times

that of hydrogen nuclei. Considering the ratio of number of atoms of carbon to hydrogen is

1 : 2, it can be predicted that a background event from carbon nuclei amount approximately

equal to that from hydrogen nuclei will be newly generated. On the other hand, using a solid

polyethylene target also has a significant advantage in energy resolution. In fact, for Λ/Σ0

production, the resolution of the missing mass distribution from the proton target in E05-115

experiment was 1.5 MeV (FWHM), which is about half of the 3.3 MeV (FWHM) in E12-17-003

experiment. The largest factor for this difference is likely that, in the present experiment, a

target cell with a significant material thickness was required to contain the gas target, causing

energy straggling. In the Hall-C experiment, since the target is a thin solid, the influence of

straggling can be significantly reduced, resulting in spectra with improved energy resolution

compared to the present experiment. Thus, even if the background increases by about double,

the expectation of observing the peak of the η′ meson through higher-resolution missing mass

spectroscopy remains sufficiently high. Taking into account the improvements in resolution, the

deterioration in the signal-to-noise (S/N) ratio, the increase in statistics, and the precision of the

results in the present experiment, it appears feasible to determine the differential cross section

of η′ electroproduction with an accuracy of 6 % in the analysis of next-generation experimental

data. The author assert that this makes it worthwhile to analyze further.
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Chapter 5

Summary
The electroproduction of η′ mesons from a 1H target was observed from calibration data of the

Λ hypernuclear spectroscopy experiment at Jefferson Lab. A 4.326 GeV electron beam provided

by CEBAF was irradiated onto a hydrogen gas target cooled to 40 K. Scattered electrons with

a momentum of approximately 2.1 GeV/c and positive hadrons with a momentum of about

1.8 GeV/c, emitted at 13.2 degrees from the beam axis, were measured by two High Resolution

Spectrometers. A peak of η′ mesons consisting of 428 ± 78 events was observed in the missing

mass spectrum of the 1H(e, e′p)X reaction. The observed number of η′ mesons, when converted

to the differential cross section of the γ∗ + p → η′ + p reaction at W = 2140 MeV, Q2 =

0.47 (GeV/c)
2
, and cos θCM

γη′ ≈ −1.0 in the One-Photon-Exchange Approximation, corresponds

to
(

dσγ∗p→η′p
dΩη′

)CM

= 4.4 ± 0.8 (stat.) ± 0.4 (sys.) [nb/sr]. This value is approximately one-

sixth of that of backward photoproduction at Q2 = 0 measured by the LEPS collaboration. To

analyze the present experimental results, a theoretical calculation based on the isobar model

was demonstrated: it describes both the database of angular dependence of photoproduction

in various past experiments and the virtual photoproduction in the present experiment within

the same framework. The new calculations consistently reproduced the observed decrease in

differential cross section at finite Q2 > 0 by introducing an electromagnetic form factor at

the virtual-photocoupling vertex. Furthermore, the W dependence derived by dividing the

experimental data into two bins showed a rising behavior at the boundary of W = 2140 MeV, and

the degree of agreement with the theoretical calculations varies depending on the combination

of resonance sets introduced in each theoretical model. The new data suggests that (a) N∗

resonance(s) with energy of approximately 2000–2100 MeV might play an important role for the

coupling to the η′p final state, and imposes new constraints for a future resonance search.
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Appendix A

Theoretical description of meson
electroproduction

See also Fig. 2.1 for reference to kinematic variables.

This theoretical description is based on the theoretical model constructed by P. Bydžovský

and D. Skoupil for the electro-induced reaction of e+ p → e′ + Λ+K+. The reference is [57].

Four momentum of particles before and after the reaction is expressed by p:

e (pe) + ptar (pptar
) → e′ (pe′) + pscat (ppscat

) + η′ (pη′) . (A.1)

The cross section for this reaction is written as

dσi→f =
2me2mp

4
√
(pptar

· pe)2 −m2
em

2
p

(2π)
4
δ(4) (pe + pptar

− pe′ − ppscat
− pη′)

× |Mfi|2
me

Ee′

d3pe′

(2π)
3

mp

Epscat

d3ppscat

(2π)
3

1

2Eη′

d3pη′

(2π)
3 , (A.2)

where Mfi is a spin-dependent invariant matrix element. Averaging over spin of the initial

particles, summing over spin of the final particles, and integrating over d3ppscat
and dpη′ using

the delta function one obtains the following expression for the triple-differential cross section,

d3σ

dEe′dΩe′dΩη′
=

m2
emp

(2π)
5

|pe′ |
|pe|

1

4

∑
spin

|Mfi|2
∣∣pCM

η′

∣∣
2W

. (A.3)

Quantum electrodynamics (QED) explains the dynamics of electron scattering reactions. Since

the coupling constant α = e2

4π ≈ 1
137 ≪ 1 indicates the strength of the interaction, perturbative

extension is effective. Therefore, One Photon Exchange Approximation (OPEA) as shown in

Fig. 2.1 is justified. In OPEA, a single virtual photon with momentum

q = (ω, q) = pe − pe′ , (A.4)

mediates the meson production. The invariant matrix element is the product of the hadronic cur-

rent Jµ that is mediated by the photon propagator and the leptonic current lµ = eū (pe′) γµu (pe),

Mfi =
e2

meq2
lµJ

µ. (A.5)
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Thus,

1

4

∑
spin

|Mfi|2 =
e4

4m2
eq

4
LµνW

µν , (A.6)

where, L is the leptonic tensor and W is the hadronic tensor. As a result, the original triple

differential cross section is separated into the flux of virtual photons Γ and the cross section of

the binary process γ + p → η′ + p:

d3σ

dEe′dΩe′dΩCM
p

=
α

2π2

|pe′ |
|pe′ |

(
− 1

q2

)
Eγ

1− ϵ
× α

16π

∣∣pCM
η′

∣∣
Eγ

mη′

W

(
−2 (1− ϵ)

q2
LµνW

µν

)
(A.7)

:= Γ×

(
dσγ∗

dΩCM
η′

)
, (A.8)

where,

Γ =
α

2π2Q2

Eγ

1− ϵ

|pe′ |
|pe′ |

(A.9)

Q2 = −q2 = 2EeEe′ − 2me
2 − 2 |pe| |pe′ | cos θee′ (A.10)

ϵ =

[
1 + 2

|q|2

Q2
tan2

(
θee′

2

)]−1

(A.11)

Eγ = ω +
q2

2mp
. (A.12)

The variable ω is the photon energy in the laboratory frame, and Eγ is the effective photon

energy. This factorization of the invariant amplitude into the leptonic and hadronic parts is

an important consequence of OPEA. The virtual photon flux Γ can be calculated from the

momentum of incident and scattered electrons. A parameter ϵ mean transverse polarization of

the virtual photons. By extracting the cross section of the γ∗ + p → p + η′ reaction
dσγ∗

dΩCM
η′

,

one can understand the meson electroproduction by analogy with experiments and theoretical

calculations for photoproduction.

The author and collaborators measured the recoil protons instead of the generated η′ mesons in

the present measurement. The observable is hence d3σ
dEe′dΩe′dΩ

CM
p

(or
(

dσγ∗

dΩCM
p

)
γ∗p→pη′

). However,

these cross section is equal to the above equation since the recoil angle in two-body reaction at

the CM frame is back-to-back.

Matrix elements of the hadronic current are decomposed into six covariant gauge-invariant

contributions,

Jµεµ =

6∑
j=1

Aj ū (ppscat
) γ5Mju (pptar

) , (A.13)
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where, Mj is an explicitly gauge invariant operator as follows,

M1 =
(
/q/ε − /ε/q

)
/2 (A.14)

M2 = pptar · ε− q · pptarq · ε/q2 (A.15)

M3 = ppscat
· ε− q · ppstar

q · ε/q2 (A.16)

M4 = /εq · pptar
− /qpptar

· ε (A.17)

M5 = /εq · ppscat
− /qppstar

· ε (A.18)

M6 = /qq · ε− /εq2, (A.19)

and εµ is the polarization vector of the virtual photon. The scalar amplitude Aj in this notation

includes contributions from the Feynmann diagrams of the γ∗+p → η′+p reaction. On the other

hand, another notation describing the same matrix element as two-component spinor amplitudes,

is called Chew, Goldberger, Low, and Nambu (CGLN) amplitudes. It is in the laboratory frame,

Jµεµ = χ†
pscat

Fχptar
, (A.20)

where χpscat
and χptar

are Pauli’s spinors, and F is

F =f1σ · ε− if2σ · p̂η′σ · (q̂ × ε)

+ f3σ · q̂p̂η′ · ε+ f4σ · p̂η′ p̂η′ · ε
+ f5σ · q̂q̂ · ε+ f6σ · p̂η′ q̂ · ε, (A.21)

where q̂ = q/|q|, p̂η′ = pη′/|pη′ |, σ are the Pauli matrices and ε is the spatial component of

the virtual photon polarization vector. Using these CGLN amplitudes fj , the differential cross

section by an unpolarized virtual photon and a proton can be written down for four components,

dσγ∗

dΩCM
η′

=
dσT

dΩCM
η′

+ ϵ
dσL

dΩCM
η′

+
√

2ϵ (1 + ϵ)
dσLT

dΩCM
η′

cosϕη′ + ϵ
dσTT

dΩCM
η′

cos 2ϕη′ , (A.22)

dσT

dΩCM
η′

= CRe
{
|f1|2 + |f2|2 − 2f1f

∗
2 cos θη′

+sin2 θη′

[
1

2

(
|f3|2 + |f4|2

)
+ f1f

∗
4

]
+ f2f

∗
3 cos θη′

}
(A.23)

dσL

dΩCM
η′

=
Q2

ω2
CRe

{∣∣∣f̃5∣∣∣2 + ∣∣∣f̃6∣∣∣2 + 2f̃5f̃6
∗
cos θη′

}
(A.24)

dσLT

dΩCM
η′

=

√
Q2

ω2
CRe

{
(f1 + f4) f̃6

∗
+ (f2 + f3) f̃5

∗

+
(
f3f̃6

∗
+ f4f̃5

∗)
cos θη′

}
sin θη′ , (A.25)

dσTT

dΩCM
η′

= CRe

{
1

2

(∣∣∣f̃5∣∣∣2 + ∣∣∣f̃5∣∣∣2)+ f1f
∗
4 + f2f

∗
3 + f4f

∗
3 cos θη′

}
sin2 θη′ (A.26)

where the definitions of f̃5,6 are,

f̃5 = f1 + f3 cos θη′ + f5 (A.27)

f̃6 = f4 cos θη′ + f6, (A.28)
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and the normalization factor C is given as,

C = (ℏc)2
α

4π

mp |pη′ |
|q|W

. (A.29)

The W is the total energy in the CM frame. The particular contributions of dσT

dΩCM
η′

, dσL

dΩCM
η′

, dσLT

dΩCM
η′

,

and dσTT

dΩCM
η′

correspond to the transverse, longitudinal, transverse-longitudinal interference and

transverse-transverse interference modes of the virtual photon [60].

Further, the correspondence between the CGLN amplitudes fj and the scalar amplitude Aj

is expressed as,

f1 = N∗ [− (W −mp)A1 + q · pptarA4 + q · ppscatA5 − q2A6

]
(A.30)

f2 = N∗ |q| |pη′ |(
E∗

pscat
+mp

)
(Eptar +mp)

[(W +mp)A1

+q · pptarA4 + q · ppscatA5 − q2A6

]
(A.31)

f3 = N∗ |q| |pη′ |
Eptar

+mp
[A3 + (W +mp)A5] (A.32)

f4 = N∗ |pη′ |2

Epη′ +mη′
[A3 − (W −mp)A5] (A.33)

f5 = N∗ |pη′ |2

E∗
pscat

+mp

{
A1 −

1

q2
[(
q2 − q · pptar

)
A2 + q · ppscatA3

]
− (W +mp) (A4 +A6)} (A.34)

f6 = N∗ E∗
γ |q| |pη′ |(

E∗
pscat

+mp

) (
E∗

ptar
+mp

) {A1 −mpA4

+
q · ppscat

E∗
γ

A5 +

(
E∗

pscat
+mp

)
E∗

γq
2

[(
q2 − q · pptar

)
A2 + q · ppscat

A3

]
− (W −mp)A6} , (A.35)

where E∗
ptar

, E∗
pscat

, E∗
η′ and E∗

γ are the c.m. energies of the target proton, scattered proton, η′

meson and photon, respectively. The normalization factor N∗ is

N∗ =

√(
E∗

pscat
+mp

) (
E∗

ptar
+mp

)
4m2

p

. (A.36)

The invariant amplitude is decomposed into s, t, and u-channels according to the Feynman

rules, as shown in Fig. A.1. The calculations adopted in the present thesis consider only first-

order perturbations, known as tree-level. The author presents the expressions for the invariant

amplitude corresponding to each diagram as follows.

• Born s-channel: In the case called Born terms, the ground state appears as the

intermediate state. The invariant amplitude in s-channel is described by two factors:

the electromagnetic vertex function V EM
µ , which is given by the γNN coupling, and the

strong vertex function VS , which is given by the η′NN coupling.

V EM
µ = F1

(
k2
)
γµ +

1− F1

(
k2
)

k2
kµγ · k + i

F2

(
k2
)

2mp
σµνk

ν (A.37)

VS = igη′NNγ5. (A.38)
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Here, F1

(
k2
)
and F2

(
k2
)
are the standard Dirac/Pauli electromagnetic form factors,

respectivelly, where F1 (0) = 0 and F2 (0) = κp, where κp is the anomalous magnetic

moment of the proton. Additionally, gη′NN is the coupling constant at the strong vertex

and is one of the parameters determined by fitting. Note that the momentum of the

photon has been changed from q to k. The invariant amplitude is expressed as:

MBs = ū (ppscat
)VS

/pptar
+ /kγ +mp

s−m2
p

V EM
µ εµu (pptar

) (A.39)

= ū (ppscat
) γ5

[
A1M1 +A2M2 +A4M4 +A6M6 + gη′NN

k · ε
k2

]
u (pptar

) .(A.40)

(See also eq. (A.13) – (A.18) for the expression of the hadronic matrix elements.) The

final term in the brackets in the eq. (A.40) is the gauge-invariance breaking term. The

amplitude determined by fitting to the photoproduction database corresponds to the scalar

amplitudes,

A1 =
gη′NN

s−m2
p

(
F1

(
k2
)
+ F2

(
k2
))

(A.41)

A2 = 2
gη′NN

s−m2
p

F1

(
k2
)

(A.42)

A4 = 2
gη′NN

s−m2
p

F2

(
k2
)

mp
= −2A6. (A.43)

• Born t-channel: There is no contribution from the Born t-channel term since the

electric charge of η′ is zero. However, the coupling via the non-Born t-channel involving

the ρ0 and ω mesons contributes, as the decays η′ → ρ0 + γ and η′ → ω + γ are possible

(observed). According to the latest PDG, the respective branching ratios are 29.5 % and

2.52% [9].

• Born u-channel: In the Born u-channel, both of the electromagnetic γNN vertex factor

V EM
µ and the strong vertex factor VS has same forms as that for the Born s-channel. Using

these, the invariant amplitude is expressed as:

MBu = ū (ppscat
)V EM

µ

/ppscat
− /kγ +mp

u−m2
p

VSε
µu (pptar

) (A.44)

= ū (ppscat
) γ5

[
A1M1 +A3M3 +A5M5 +A6M6 − gη′pp

k · ε
k2

]
u (pptar

) .(A.45)

p

γ η’

p

XMtotal =  Σ
X = N, N*

γ η’

p p

X+ Σ
X = ρ, ω

γ p

p η’

X+ Σ
X = N,N*

time

Fig. A.1: The total amplitude is decomposed by s, t and u-channels (same as Fig. 1.6). The

ground or excited states of hadrons are exchanged in the intermediate states.
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The last term in the brackets in eq. (A.45) breaks gauge invariance and has the opposite

sign than the gauge-invariance breaking term in the s-channel in eq. (A.40). Therefore,

the these terms the s- and u-channels cancel each other out, preserving overall gauge

invariance. The correspondence with the scalar amplitudes, using gη′NN is:

A1 =
gη′NN

u−m2
p

(
F1

(
k2
)
+ F2

(
k2
))

(A.46)

A2 = 2
gη′NN

u−m2
p

F1

(
k2
)

(A.47)

A5 = 2
gη′NN

u−m2
p

F2

(
k2
)

mp
= 2A6. (A.48)

• Non-Born s-channel with N∗
(

1
2

±
)

exchange: The amplitude for the reaction

involving the exchange of an N∗ resonance with spin 1
2

∗
in the s-channel is expressed as:

M
N∗(1/2)
NBs = iū (ppscat

) gη′NN∗γ5Γ
/pptar

+ /kγ +mR

s−m2
R + imRΓR

µpR

mp +mR
σµνkνΓεµu (pptar

) (A.49)

where, µpR gives the electromagnetic transition coupling in the vertex p+ γ∗ → N∗. It is

divided by the mass factor mp +mR for a convinience. In reactions with resonances, the

expression changes depending on the intrinsic parity of the particle; in the above equation,

the factor denoted by Γ is defined as:

Γ =

{
1 (P = +1)
γ5 (P = −1) .

(A.50)

It is worth noting that the coupling constant gη′NN∗ is a parameter determined by fitting

to the photoproduction database. The scalar amplitudes are:

A1 =
gη′NN∗

s−m2
R + imRΓR

mR ±mp

mR +mp
µpR (A.51)

A4 = ± gη′NN∗

s−m2
R + imRΓR

2µpR

mR +mp
(A.52)

A6 = −1

2
A4, (A.53)

where, the upper (lower) sign corresponds to positive (negative) parity of the resonance.

• Non-Born s-channel with N∗
(

3
2

±
)

exchange: The exchange of a resonance with

spin 3
2 is more complicated. Its amplitude is given by:

M
N∗(3/2)
NBs = ū (ppscat

) Γ
if

mRmη′
ϵµνλργ5γ

λqµpρη′
/q +mR

s−m2
R + imRΓR

×
(
gνβ − 1

3
γνγβ

)
1

mR (mR +mp)
(g1q

αFαβ

+ g2/qFβαγ
α − g2γβq

αFατγ
τ
)
Γγ5u (pptar

) , (A.54)

where, g1 and g2 are the electromagnetic coupling constants, and f is the strong coupling

constant. In this equation, q inplies the momentum of intermediate particle, i.e. of N∗,
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and q = kγ + ptar. Also, gνβ is the metric tensor with zero non diagonal elements and

diagonal ones are (+1,−1,−1,−1). Fαβ is the anti symmetric electromagnetic tensor,

Fαβ = kαεβ − εαkα, (A.55)

where, kα and εβ is the photon momentum and polarization vector, respectively. After

casting into eq. (A.13), the scalar amplitudes are expressed as:

A′
1 = −G1

3
(q · ppscat

±mRmp) q · k +
G2

3

(
2sq · ppscat

− 3sk · ppscat
+ 2sm2

p

∓mRmpq · k ± 2smRmp ± 2mpmRq · ppscat
+ 2q · ppscat

q · k) (A.56)

A′
2 = G1

[
sk · ppscat

∓mRmpk · ppscat
− 1

3
q · ppscat

k2 ∓mRmpk
2

]
+G2

[
−2sk · ppscat

∓ 1

3
mpmRk

2 +
2

3
k2q · ppscat

]
(A.57)

A′
3 = G1 (±mRmp− s) q · k +G2

(
2q · k − k2

)
s (A.58)

A′
4 = G1

[
−1

3
smp +

1

3

(
m2

pmR

)
q · ppscat ±

1

3
m2

pmR ±mRq · ppscat

]
−G2

[
−smp ∓

1

3
m2

pmR +
2

3
mpq · ppscat

]
(A.59)

A′
5 = ∓G1mRq · k +G2 (±mR +mp) s (A.60)

A′
6 = G1

[
∓1

3
m2

pmR +∓mRk · ppscat
+

1

3
mps−

1

3
q · ppscat

(mp ∓mR)

]
+G2

[
−1

3
mps∓

1

3
m2

pmR +
2

3
q · ppscat (mp ±mR)

]
, (A.61)

where, the relation between Aj and A′
j , j = 1, · · · , 6 is given by:

Aj =
1

s−m2
R + imRΓR

A′
j . (A.62)

Parameters G1 and G2 are the product of the electromagnetic coupling constant and the

strong coupling constant as given in eq. (4.8). The upper (lower) sign corresponds to

positive (negative) parity of the resonance.

• Non-Born s-channel with N∗
(

5
2

±
)
exchange: The amplitude is expressed as:

M
N∗(5/2±)
NBs =− f

4mη′
ū (ppscat) γ5Γq

2pµη′p
ν
η′

/q +mR

s−m2
R + imRΓR

× Pµν,λρ (q) q
2pλpscat

[
g1

(2mp)
4 γαF

αρ +
g2

(2mp)
5 pαF

αρ

]
Γu (pptar

) .(A.63)

In this formula, Pµν,λρ is the projection operator for the spin- 52 particles (also see eq. (A1)
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in ref. [95]). The correspondence with the scalar amplitudes is:

A′
1 = G1

{
∓Qppscatpptar

Qkppscat
± 1

5
Qppscatppscat

Qkpptar
− 1

5
Qkppscat

(B · q · pptar

+ Cmp) +
1

5
Qppscatp

[2Cmp+ (2s− q · k)B]

}
− G2

5
Qppscatpptar

Ck · pptar
,(A.64)

A′
2 = G1

{
±Qppscatpptar

(k2q · ppscat − 2sk · ppscat)±
1

5
Qppscatppscat

k2 (q · pptar + s)

−1

5

[
∓2q · ppscat

k · ppscat
q · ks± k2 (q · ppscat

)
2
(q · k + s)

+2smRmpk · ppscat
q · k −mRmpk

2q · ppscat
(q · k + s) + Cmpk

2q · ppscat

]
− 1

5
Qppscatpptar

k2B

}
+G2

{
(mR ±mp)Qppscatpptar

D

−1

5
(mR ±mp)k

2q · pptar
Qppscatppscat

+
1

5

(
sk · ppscat

− k2q · ppscat

)
(Bmpq · k − Ck · pptar

)

− 1

5
Qppscatpptar

Bmpk
2

}
, (A.65)

A′
3 = G1

{
±sQppscatpptar

(
2k · pptar + k2

)
− 1

5

[(
2k · pptarq · k − k2q · ppscat

)
B

−mpk
2C
]}

+G2

{
s (mR ±mp) k · pptar

Qppscatpptar

−1

5
sk · pptar (Bmpq · k − Ck · pptar)

}
, (A.66)

A′
4 = G1

{
1

5
(mR ∓mp) q · kQppscatppscat

−AQppscatpptar
+

1

5
{q · ppscat

[Bmpq · k

+ C
(
2k2 + k · p

)
+ 2smRk · ppscat

]
± 2k · ppscats

2mp

}
−1

5
Qppscatpptar

[mp (mRmp ∓ 3s) + (3mR ∓mp) q · ppscat ]

}
+G2
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k2q · pQppscatppscat

∓DQppscatpptar
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1
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DE
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(
k2 ∓ s
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+ q · ppscat

(
mRmp ∓ k2

)
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(
q · ppscat

−m2
p
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(A.67)

A′
5 = G1

{
s (±mR −mRi)Qppscatpptar

− 1

5
s (Bmpq · k − Ck · pptar

)

}
+G2

{
±sk · pptarQppscatpptar

+
1

5
Esk · pptar

}
, (A.68)

A′
6 = G1

{
AQppscatpptar

− 1

5
q · pptar

(±mp −mR)Qppscatppscat

−1

5
q · ppscat

(Bmpq · kCk · pptar
)

− 1

5
Qppscatpptar

[mp (±s−mRmp) +A]

}
− G2

{
±q · pptark · ppscatQppscatpptar

± 1

5
q · pptark · pptarQppscatppscat

+
1

5
q · ppscat

k · pptar
E +

1

5
Qppscatpptar

Bk · pptar
.

}
(A.69)
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In the equations, A,B,C,D and E are defined as follows:

A = q · ppscat
(±mp −mR) , (A.70)

B = ±q · ppscat
−mpmR, (A.71)

C = ±smp −mRq · ppscat
, (A.72)

D = k2q · ppscat
− sk · ppscat

, (A.73)

E = mpC − q · pptar
B, (A.74)

and additionally, the termsQppscatpptar
, Qkpptar

, Qppscatppscat
andQkpptar

is generally defined

by the following equation:

QXY = sX · Y −X · qY · q. (A.75)

Similar to the case of JP = 3
2

±
, G1 and G2 represent the product of the electromag-

netic coupling constant and the strong coupling constant, and the upper (lower) sign

corresponds to the positive (negative) parity of the resonance.

• Non-Born t-channel with ρ (770)/ω (782) exchange: The theoretical calculation

takes into account the exchange of vector mesons ρ (770) and ω (780) (both with spin-

parity of JP = 1−). The amplitude is represented as follows:

M
ρ/ω
NBt = iū (ppscat)

g

m
ϵµναβkα (ppscat − pptar)β

×
−gνσ + (pptar

− ppscat
)ν (pptar

− ppscat
)σ /m

2
ρ/ω

t−m2
ρ/ω + imρ/ωΓρ/ω

×
[
fV γ

σ +
fT
2mp

(
/ppscat

− /pptar

)
γσ

]
εµu (ppscat

) , (A.76)

where, g
m gives the strong coupling constant in the vertex proton-proton-ρ0 or proton-

proton-ω. The correspondence with the scalar amplitude Aj is as follows:

A1 =
2mpGV + GT t

(2mp)

t−m2
ρ/ω + imρ/ωΓρ/ω

(A.77)

A2 =
2k · ppscat

GT

2mp

(
t−m2

ρ/ω + imρ/ωΓρ/ω

) (A.78)

A3 =
−2k · pptarGT

2mp

(
t−m2

ρ/ω + imρ/ωΓρ/ω

) (A.79)

A4 =
GV

t−m2
ρ/ω + imρ/ωΓρ/ω

(A.80)

A5 = A4 (A.81)

where, GV,T = gfV,T /m. The mass scaling with m is arbitarily taken as 1 GeV.

• Non-Born u-channel with N∗
(

1
2

±
)

exchange: The amplitude with the exchange

of an N∗ resonance with spin 1
2 in the u-channel is expressed as:

M
N∗(1/2)
NBu = iū (ppscat

)
µpR

2mp
σµνkνΓ

/ppscat
− /kγ +mR

u−m2
R + imRΓR

gη′NN∗γ5Γεµu (pptar
) . (A.82)
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The factor denoted by Γ is defined in eq. (A.50). The scalar amplitudes are:

A1 =
gη′NN∗

u−m2
R + imRΓR

mR ±mp

mR +mp
µpR (A.83)

A4 = ± gη′NN∗

u−m2
R + imRΓR

2µpR

mR +mp
(A.84)

A6 =
1

2
A4, (A.85)

where, the upper (lower) sign corresponds to positive (negative) parity of the resonance.

• Non-Born u-channel with N∗
(

3
2

±
)

exchange: The exchange of a resonance with

spin 3
2 in the u−channel is given by:

M
N∗(3/2)
NBu = ū (ppscat

) Γγ5
1

mR (mR +mp)

[
g1q

αFαβ + g2
(
/qFβαγ

α − γβq
αFαργ

ρ
)]

× /q +mR

u−m2
R + imRΓR

(
gβν − 1

3
γβγν

)
×Γ

if

mRmη′
ϵµνλργ5γ

λqµqρη′u (pptar
) (A.86)

where, g1 and g2 are the electromagnetic coupling constants, and f is the strong coupling

constant. The scalar amplitudes are expressed as:

A′
1 = −1

3
G1q · k (±mRmp + q · pptar) +

1

3
G2 [±5mRmpq · k ± 2mRmpu

±mRmpq · pptar + 2uq · pptar + 2m2
pu+ 3pptar · k

]
(A.87)

A′
2 = G1q · k (±mRmp − u) +G2

(
2q · ku− uk2 ∓ 4mRmpq · k

)
(A.88)

A′
3 = G1

[
1

3
k2 (±mpmR + q · pptar

) + pptar
· k (u∓mRmp)

]
+G2

[
±4mRmppptar

· k ∓ 5

3
mRmpk

2 2

3
q · pptar

k2 − 2pptar
· ku

]
(A.89)

A′
4 = ∓G1mRq · k +G2 [±4mRq · k + u (±mR +mp)] (A.90)

A′
5 =

1

3

[
q · pptar

(±mR −mp)∓mRm
2
p + ump + 3mRpptar

· k
]

G2

[
±5

3
mRm

2
p ∓ 4mRpptar

· k − 1

3
ump +

2

3
mpq · pptar

∓ 4

3
mRq · pptar

]
(A.91)

A′
6 =

1

3

[
q · pptar (±mR −mp)∓mRm

2
p + ump + 3mRpptar · k

]
G2

[
±5

3
mRm

2
p ∓ 4mRpptar · k ∓ 2mRq · pptar − ump +

2

3
mpq · pptar

]
, (A.92)

where, the relation between Aj and A′
j , j = 1, · · · , 6 is given by:

Aj =
1

u−m2
R + imRΓR

A′
j . (A.93)

Parameters G1 and G2 are given in eq. (4.8), and the upper (lower) sign corresponds to

positive (negative) parity of the resonance.

It is worth to mention here that the hadron form factor is included in the strong vertex. It

is introduced in the same manner as the electromagnetic form factor; it is simply multiplied to



119

the coupling constant, G → FG, where G is the coupling constant, and F is the hadron form

factor. Note here that, with the introduction of the hadron form factor, the gauge noninvariant

terms in eq. (A.40) and (A.45) no longer cancel each other, thereby breaking gauge invariance.

A remedy to this problem is the introduction of the contact term Mcontact:

Mcontact = −gη′NN ū (ppscat
) γ5

[
2pµptar

+ /kγµ

s−m2
p

(
F̂DW − Fs

)
+

2pµpscat
− /kγµ

u−m2
p

(
F̂DW − Fu

)]
u (ppscat

) εµ, (A.94)

where, F̂DW is a notation used by R.M. Davidson and R.Workman [96], represented as:

F̂DW = Fs (s) + Fu (u)− Fs (s)Fu (u) . (A.95)

Here, the conditions Fs

(
s = m2

p

)
= Fu

(
t = m2

η′

)
= 1 and F̂DW

(
s = m2

p, u
)
= F̂DW

(
s, u = m2

η′

)
=

1 ensure that the contact term Mcontact, as represented in eq. (A.95), is prevented from reaching

the pole.
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Appendix B

Fitting
All the fittings of the missing mass spectra for both count base and cross section base methods

are shown, under the assumption of two types of background functional forms.

B.1 Count based missing mass spectrum

B.1.1 Background: polynomial

The fittings of the count based missing mass spectra with a polynomial function as the back-

ground are shown in Fig. B.1 to Fig. B.5.
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Fig. B.1: Missing mass spectrum (in count) of all data with a fitting using a polynomial function

for background (same as Fig. 3.43).
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Fig. B.2: Missing mass spectrum (in count) for Q2 < (0.47 GeV/c)
2
with a fitting using a

polynomial function for background.
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Fig. B.3: Missing mass spectrum (in count) for Q2 ≥ (0.47 GeV/c)
2
with a fitting using a

polynomial function for background.
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Fig. B.4: Missing mass spectrum (in count) for W < 2.13 GeV with a fitting using a polynomial

function for background.
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Fig. B.5: Missing mass spectrum (in count) for W ≥ 2.13 GeV with a fitting using a polynomial

function for background.



124 Appendix B Fitting

B.1.2 Background: determined by simulation

The fittings of the count based missing mass spectra with a simulation based function as the

background are shown in Fig. B.6 to Fig. B.10.
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Fig. B.6: Missing mass spectrum (in count) of all data with a fitting using a simulation-based

function for background (same as Fig. 3.44).
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Fig. B.7: Missing mass spectrum (in count) for Q2 < (0.47 GeV/c)
2
with a fitting using a

simulation-based function for background.
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Fig. B.8: Missing mass spectrum (in count) for Q2 ≥ (0.47 GeV/c)
2
with a fitting using a

simulation-based function for background.
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Fig. B.9: Missing mass spectrum (in count) for W < 2.13 GeV with a fitting using a simulation-

based function for background.
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Fig. B.10: Missing mass spectrum (in count) for W ≥ 2.13 GeV with a fitting using a simulation-

based function for background.
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B.2 Cross section based missing mass spectrum

B.2.1 Background: polynomial

The fittings of the cross section based missing mass spectra with a polynomial function as the

background are shown in Fig. B.11 to Fig. B.15.
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Fig. B.11: Missing mass spectrum (in differential cross section) of all data with a fitting using

a polynomial function for background.
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Fig. B.12: Missing mass spectrum (in differential cross section) for Q2 < (0.47 GeV/c)
2
with a

fitting using a polynomial function for background.
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Fig. B.13: Missing mass spectrum (in differential cross section) for Q2 ≥ (0.47 GeV/c)
2
with a

fitting using a polynomial function for background.
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Fig. B.14: Missing mass spectrum (in differential cross section) for W < 2.13 GeV with a fitting

using a polynomial function for background.
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Fig. B.15: Missing mass spectrum (in differential cross section) for W ≥ 2.13 GeV with a fitting

using a polynomial function for background.



130 Appendix B Fitting

B.2.2 Background: determined by simulation, with a free parameter for area

The fittings results of the cross section based missing mass spectra where a simulation based

function of multi-pion production is used for the background with the area treated as a free

parameter are shown in Fig. B.16 to Fig. B.20.
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Fig. B.16: Missing mass spectrum (in differential cross section) of all data with a fitting using

a simulation-based function for background with the area treated as a free parameter (same as

Fig. 3.44).
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Fig. B.17: Missing mass spectrum (in differential cross section) for Q2 < (0.47 GeV/c)
2
with a

fitting using a simulation-based function for background with the area treated as a free param-

eter.
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Fig. B.18: Missing mass spectrum (in differential cross section) for Q2 ≥ (0.47 GeV/c)
2
with a

fitting using a simulation-based function for background with the area treated as a free param-

eter.
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Fig. B.19: Missing mass spectrum (in differential cross section) for W < 2.13 GeV with a fitting

using a simulation-based function for background with the area treated as a free parameter.
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Fig. B.20: Missing mass spectrum (in differential cross section) for W ≥ 2.13 GeV with a fitting

using a simulation-based function for background with the area treated as a free parameter.
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B.3 Cross section for different types of momentum cuts

The fittings of the missing mass spectra for looser and tighter momentum cuts are shown in

Fig. B.21 to Fig. B.22.
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Fig. B.21: Missing mass spectrum (in differential cross section) for looser momentum cut. A

fitting using a simulation-based function for background are also presented.
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Fig. B.22: Missing mass spectrum (in differential cross section) for tighter momentum cut. A

fitting using a simulation-based function for background are also presented.
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