極小の世界を見る巨大な顕微鏡、加速器

助教金田雅司

東北大学大学院理学研究科物理学専攻

2015/8/5

今日の予定

- 講義
 - 加速器について
 - 電子光理学研究センターについて

- 見学会
 - センターが保有する加速器

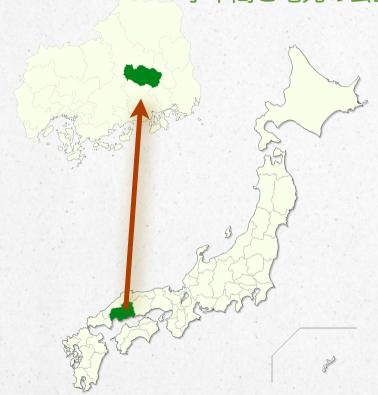
講義の前に

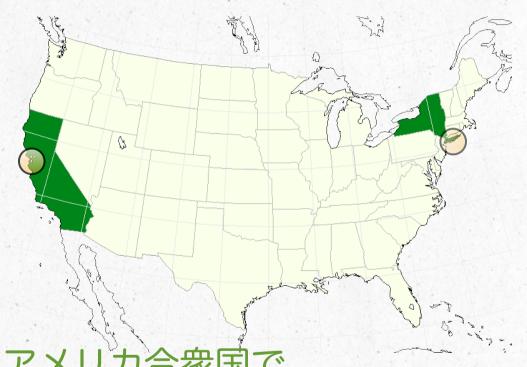
自己紹介

何してる人?

專門

素粒子·原子核物理


(実験)


経歴

出身:広島県世羅郡

小中高と地元の公立

広島大学 教育学部 教科教育学科 広島大学大学院 理学研究科 物理学専攻

アメリカ合衆国でポスドク研究員(6年弱)

ローレンス・バークレイ国立研究所 ブルックヘブン国立研究所

東北大学大学院理学研究科物理学専攻 原子核物理研究室 助教

研究と教育に従事

大学院生時代

CERN

(欧州合同原子核研究所) の加速器SPSを用いた 高エネルギー原子核衝突実験

国際共同実験

アメリカ、スェーデン、 デンマーク、フランス、日本 から11の大学・研究所、約40名 に参加

宇宙初期にあったと考えられる、クォーク・グルーオン・ プラズマ探索実験

大学院生時代


CERN

(欧州合同原子核研究所) の加速器SPSを用いた 高エネルギー原子核衝突実験

国際共同実験

アメリカ、スェーデン、 デンマーク、フランス、日本 から11の大学・研究所、約40名 に参加

宇宙初期にあったと考えられる、クォーク・グルーオン・ プラズマ探索実験

ポスドク研究員時代

ブルックへブン国立研究所の加速器RHICを用いた 高エネルギー原子核衝突実験

STAR PHENIX

に参加 (それぞれ400名程度)

現在

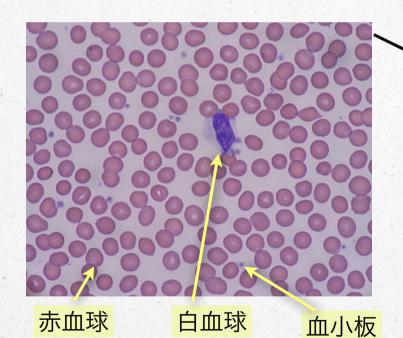
電子ビームを用いたストレンジネス核物理

加速器

について

小さな世界を見たい

拡大して見る道具


小さな世界を見たい

拡大して見る道具

小さな世界を見たい

拡大して見る道具

http://en.wikipedia.org/wiki/File:Optical_microscope_nikon_alphaphot_%2B.jpg

光学顕微鏡

赤血球の写真: http://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Reactive_lymph.JPG

レンズを使った拡大

光の向きを変えることで 拡大した像を見る

どんどん 拡大していくと?

いくらでも拡大出来るが、、、

像がぼけて 細かい画像が見えない

何故見えない?

その波長より小さいものと 光は反射しない

可視光より波長の短いものを 使えば良い

こで量子力学の応用が登場

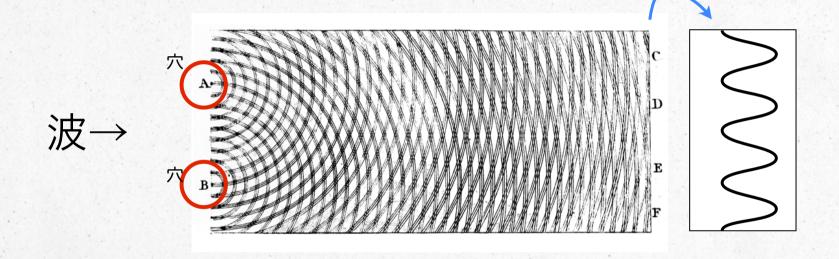
量子力学

• 特徵

- 光は波長が短くなると粒子の性質も持つ
 - 同時に粒子も波の性質も持つ:屈折・干渉
- 運動について
 - 位置と運動量を同時に正確に決定できない
- 現象は確率で表される
 - 納得できなかったアインシュタイン「神はサイコロを振らない」

量子力学

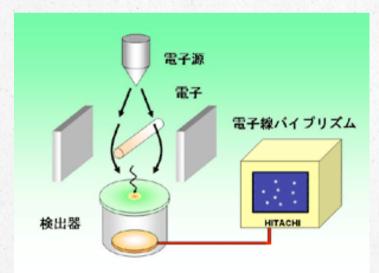
•特徵

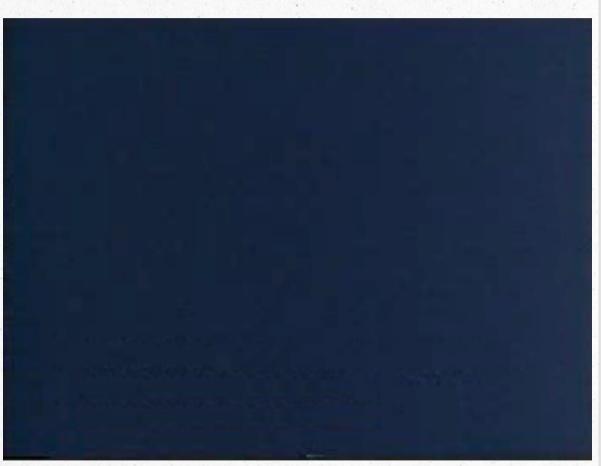

- 光は波長が短くなると粒子の性質も持つ
 - ・同時に粒子も波の性質も持つ:屈折・干渉
- 運動について
 - 位置と運動量を同時に正確に決定できない
- 現象は確率で表される
 - 納得できなかったアインシュタイン「神はサイコロを振らない」

波の性質を示す実験

・ヤングの干渉実験

この面での波の形


二つの穴を通った波が 重ね合う = 干渉


波の性質を示す実験

• 電子の干渉実験

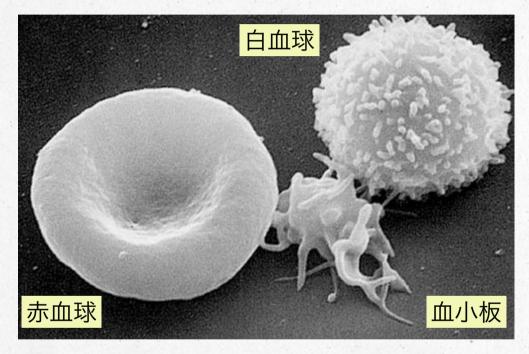
• 外村彰氏((株)日立製作所) の研究グループ

電子はワイヤーと電極の間 二カ所のどちらかを通る

http://rdg.ext.hitachi.co.jp/rd/moviej/doubleslite-n.mpeg

http://www.hitachi.co.jp/rd/portal/research/em/doubleslit.html

粒子が波の性質を持つ


ド・ブロイ波 (物質波)

粒子の速さが大きくなればなるほど 波長が短くなる

可視光の代わりに電子を使った顕微鏡

電子顕微鏡

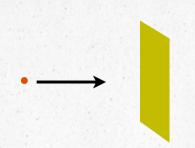
http://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Red_White_Blood_cells.jpg

http://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Elektronenmikroskop.jpg

さらに小さな世界 を見るには?

たとえば、原子の中がどうなっているか知りたい

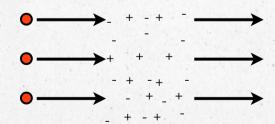
原子構造のモデル


1903年 J.J. Thomson (電子の発見者)の模型 プラム・プディング・モデル:+-が均等に散らばっている

日本語では、葡萄パンと翻訳されている

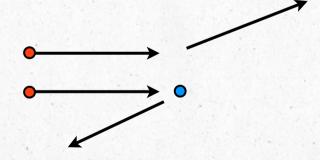
1904年 長岡半太郎の土星型原子模型中心部分に+が固まってあり、周りを電子が回っている

ラザフォード散乱



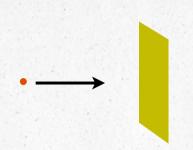
 α 線(4 Heの原子核)を金の薄膜に当てる実験 ($^{\alpha}$ 線はプラスの電荷を持っている)

1911年 アーネスト・ラザフォードの助手ハンス・ガイガーと 学生のアーネスト・マースデンがおこなった


プラム・プディング・モデル

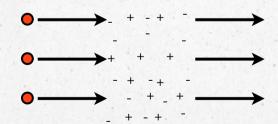
α線はそのまま通り抜ける

+と-が均等に散らばっていると 電荷が打ち消し合って何も無いように見える


土星型原子模型

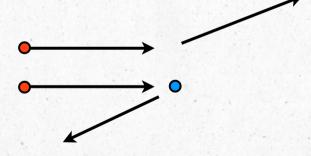
+が一カ所に固まっている場合 近くを通過しようとすると 大きな角度で散乱することがある

ラザフォード散乱


 α 線(4 Heの原子核)を金の薄膜に当てる実験 ($^{\alpha}$ 線はプラスの電荷を持っている)

1911年 アーネスト・ラザフォードの助手ハンス・ガイガーと 学生のアーネスト・マースデンがおこなった

実験結果はこちらのようになった

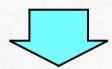

プラム・プディング・モデル

α線はそのまま通り抜ける

+と-が均等に散らばっていると 電荷が打ち消し合って何も無いように見える

土星型原子模型

+が一カ所に固まっている場合 近くを通過しようとすると 大きな角度で散乱することがある



内部の構造を仮定する

仮説A, 仮説B, 仮説C,

色々なエネルギー種類の粒子をぶつける

散乱された粒子の分布から

どの仮説が正しかったか検証

原子核・素粒子の研究

- 物は何から出来ているか、の興味から
- 構造を調べる
 - 粒子をぶつけると
 - 散乱された粒子
 - 新たに作られた粒子
 - 粒子と粒子で別の粒子が作られる
 - ・エネルギーが粒子と反粒子になる: $E=m c^2$

がどの方向にどの運動量(質量x速さ)を持って出てくるか?

• より小さな世界を見るには、より速い粒子に加速

原子核・素粒子の研究

加速器

粒子を加速する

検出器

粒子を衝突させた物から 出てくる粒子を測定する

の両方が必要

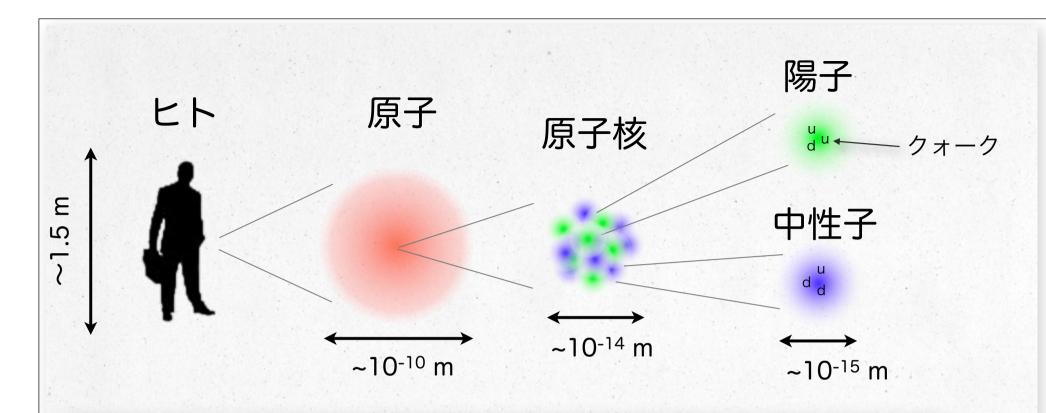
極小の世界について

物質の最小単位は?哲学者の考え

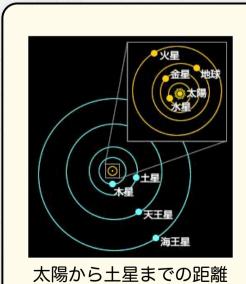
ギリシャ哲学

レウキッポス デモクリトス

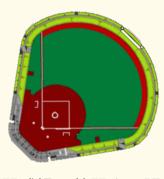
これ以上 "分解できないもの" ἄτομος (atomos) がある

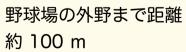

近代哲学

デカルト



どんなに細かくしても さらに分割出来る





同じくらいの比率のもの

1,400,000,000 [km]

ビー玉 約 1 cm

ボールペンのボール 約 1 mm

指数表示

$$10^1 = 10$$

$$10^2 = 10 \times 10 = 100$$

$$10^3 = 10 \times 10 \times 10 = 1000$$

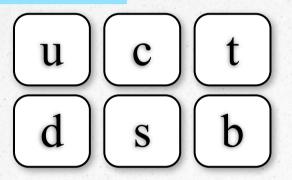
.....

$$10^{N} = 10 \times 10 \times 10 \times ... \times 10$$

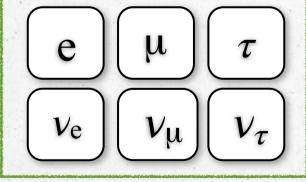
→ 10 を N 回かける

$$10^{A+B} = 10^{A} \times 10^{B}$$

桁の記号


$10^{3-1} = 10^2 = 10^3 \times 10^{-1}$	
$10^2 = 10 \times 10 \times 10 \div 10 = 10^3 \times 1$	< 1
$\rightarrow 10^{-1} = \frac{1}{}$	10
$rac{10}{10} = \frac{10}{10}$	

記号	読み方	漢数字	指数表示
Р	ペタ	千兆	1015
Т	テラ	一兆	1012
G	ギガ	十億	109
М	メガ	百万	106
k	キロ	千	10 ³
		1	10
m	ミリ	千分の一	10 ⁻³
μ	マイクロ	百万分の一	10-6
n	ナノ	十億分の一	10-9
р	ピコ	一兆分の一	10-12



現在素粒子と考えられているもの

クォーク

レプトン

クォークとレプトンには それぞれの反粒子が存在する

ゲージ粒子・

γ 光子(フォトン): 電磁気力

g グルーオン: 強い力

W⁺ W⁻

W,Zボゾン: 弱い力

G 重力子(グラビトン): 重力 未発見

H

ヒッグス粒子:素粒子に質量を与える

趣

自然界

几

を伝え

る仮

想粒子

クォークから 出来ているもの

クォーク三つ バリオン 中性子 陽子 **(**ラムダ)

クォークと反クォーク メソン (中間子)

湯川秀樹博士によって 予言。後に発見され、 1949年ノーベル 物理学賞を受賞

写真: http://www.yukawa.kyoto-u.ac.jp/contents/about_us/history.html より

 π^+

 $_{\rm s}$ $^{-}$ K^{+}

ここに挙げたよりもさらに数多くのバリオンとメソン

素粒子物理学

物質の最小単位、第一原理の追求

"標準理論"を超えた素粒子の探索

自然界の四つの力の統合

宇宙物理とのつながり

ビッグバン 消えた反物質 等々

現代の原子核物理

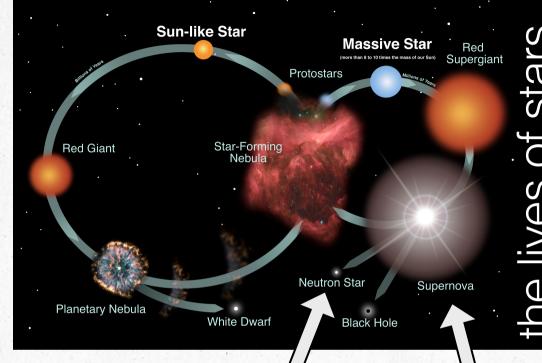
原子核そのものだけではなく クォークから出来ているもの全てが対象

第一原理の追求 (=素粒子物理) ではなく

どのようにハドロンが作られているのか?

核力の性質は?

質量の起源は?


原子核を構成している陽子・中性子の質量の源は、真空中に凝縮されている クォーク・反クォーク対による場から(カイラル対称性の破れ:南部陽一郎) ヒッグス場は、素粒子に質量を与える

宇宙における物質の進化

History of the Universe LEPTON EPOCH 10⁻¹⁰ sec.

中性子星(高密度核物質)の生成および内部の状態

超新星爆発における 重元素の合成

クォーク-グルーオン・プラズマから ハドロンへの相転移(核子の生成)

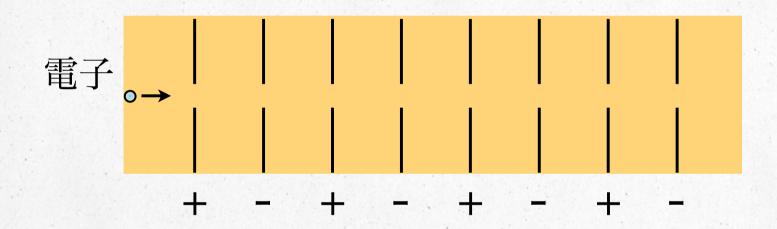
Original: poster of CERN microcosm

加速器の原理


線形加速器と円形加速器

加速部分を直列にたくさん並べる

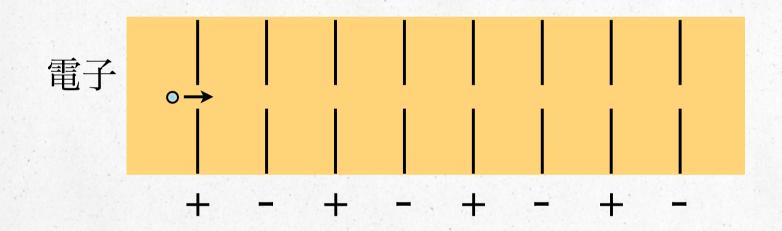
東北大学電子光理学研究センター 300MeV 電子LINAC


加速部分は一カ所 円形にビームを回すことにより 何回も加速させる

荷電粒子を加速する装置

電磁気学の応用

+と一の電荷は引き合い +同士、-同士は反発する

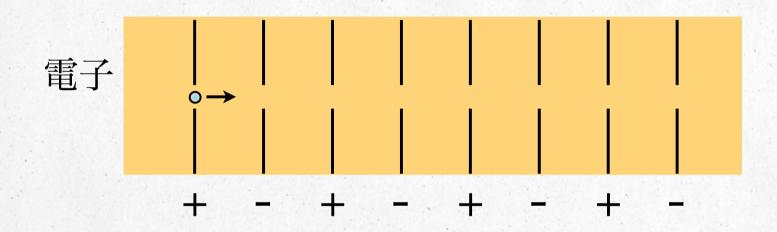


マイナスの電荷を持った電子は + に引き寄せられる

荷電粒子を加速する装置

電磁気学の応用

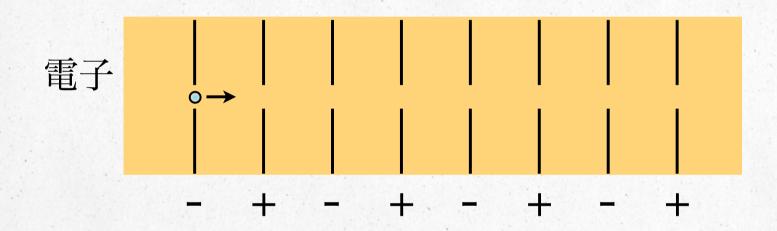
+と一の電荷は引き合い +同士、-同士は反発する


マイナスの電荷を持った電子は + に引き寄せられる

荷電粒子を加速する装置

電磁気学の応用

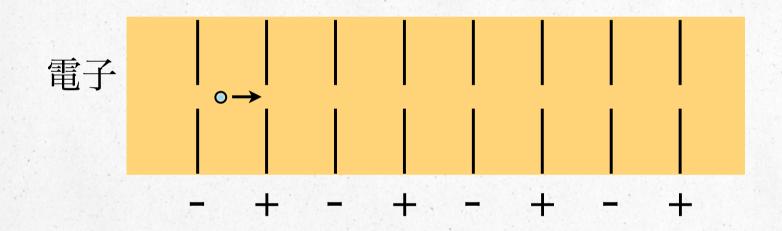
+と一の電荷は引き合い+同士、-同士は反発する


プラスの電極を通り過ぎた瞬間に 電極のプラスとマイナスを入れ替える

荷電粒子を加速する装置

電磁気学の応用

+と一の電荷は引き合い +同士、-同士は反発する

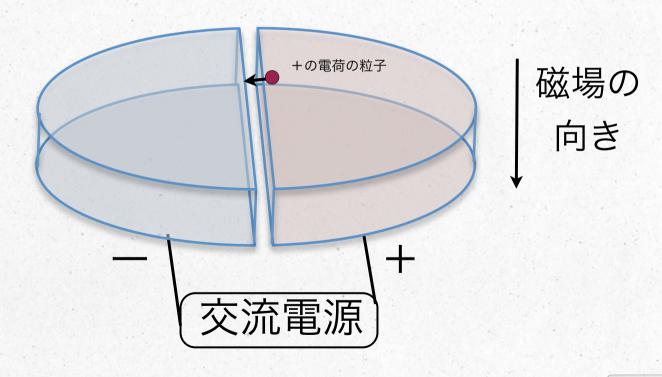


プラスの電極を通り過ぎた瞬間に 電極のプラスとマイナスを入れ替える

荷電粒子を加速する装置

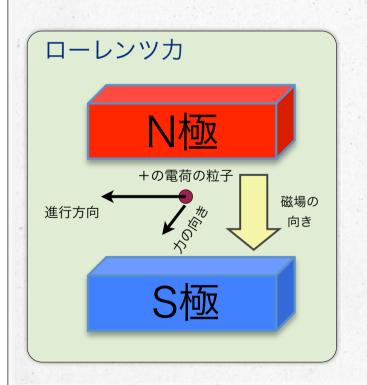
電磁気学の応用

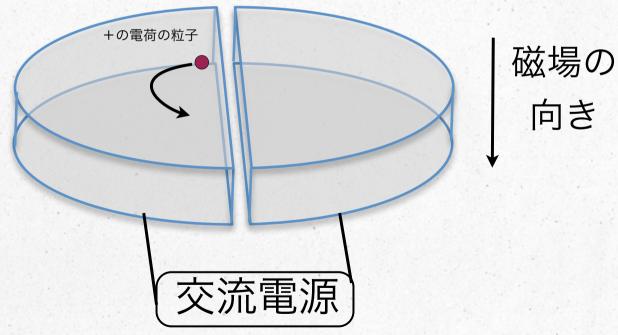
+と一の電荷は引き合い +同士、-同士は反発する


前方のプラス電極に引き寄せられ 後方のマイナス電極からは反発力を受ける

実際には+-の入れ替えは電磁波(電波)を使う

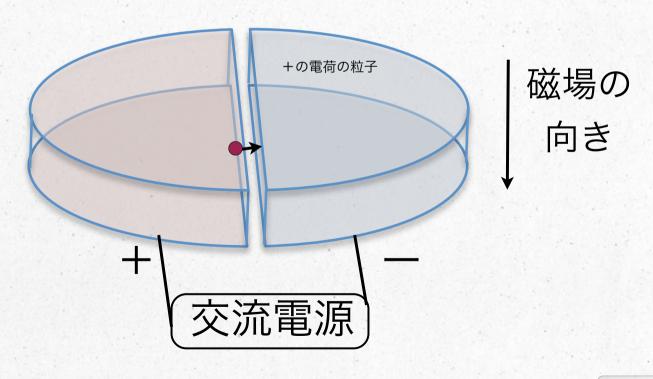
サイクロトロン


- •二つのD電極の間を通るときに加速される
 - プラスの電気を帯びた粒子
 - 電極のマイナス側に引かれ
 - プラスの電極からは押される



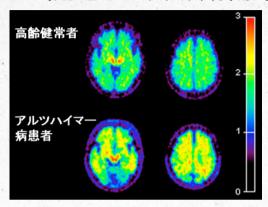
サイクロトロン

- D電極は電磁石中にある
 - ローレンツカにより円運動



サイクロトロン

•二つのD電極の間に来たとき再び加速される



加速器の応用

医療目的

電子線、ガンマ線、 陽子・原子核ビーム を用いた 診断およびガン治療

PET (陽電子放出断層撮影)

http://kakuigaku.cyric.tohoku.ac.jp/activities.html より

is.

加速器の応用

非破壊検査 物質の構造解析

> 放射光(赤外線からX線まで) 中性子を使用

茨城県つくば市 KEK フォトンファクトリ

http://pfwww.kek.jp/outline/pf/PF-Pamph2012_08.pdf

LINAC

全長300m

兵庫県佐用郡佐用町 Spring-8 大型放射光施設 茨城県東海村 大強度陽子加速器施設 (J-PARC)の 物質・生命科学実験施設

http://www.spring8.or.jp/ja/news_publications/ press_release/2009/090605_fig/fig4.png

http://j-parc.jp/Acc/ja/img/accelerator ja.jpg

3Gevシンクロトロン 25Hz

周長1600m

30Gevシンクロトロン

RCS

周長300m

まとめ

- 極小の世界を探る
 - 我々は何から出来ているのだろうか?
 - 自然界の法則はどうなっているのか?
 - →素粒子・原子核の研究
- 加速器
 - 基礎科学だけではなく応用にも使われている
 - ・工学、医学、薬学など

東北大学電子光理学研究センターについて

1966年 理学部付属 原子核理学研究施設発足

1967年 300 MeV 電子ライナックの完成

パルス電子線による原子核・放射化学の実験開始

1971年 パルス中性子源の完成 中性子回折実験開始

1982年 150 MeV パルス・ストレッチャー完成 連続電子ビームによる原子核実験開始

1997年 1.2 GeV ストレッチャー・ブースターリング完成

2009年 全国共同研究施設として電子光理学研究センターに

歴史

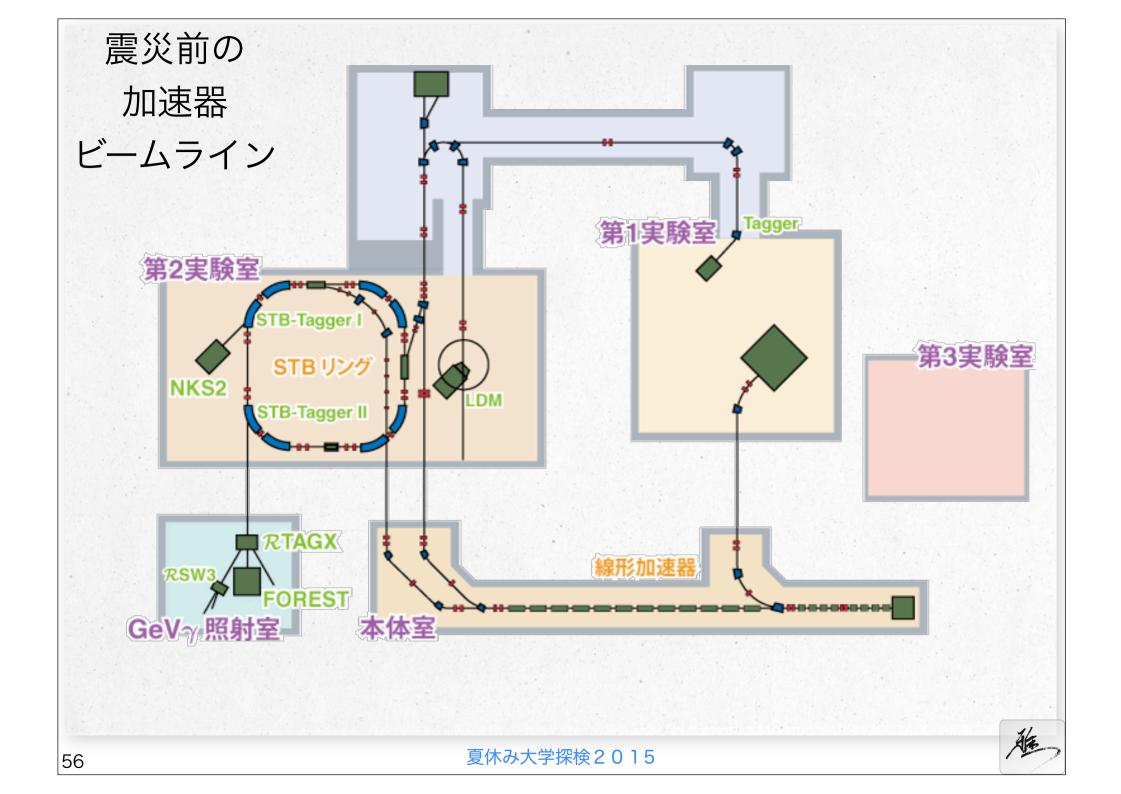
原子核の構造 物質の構造

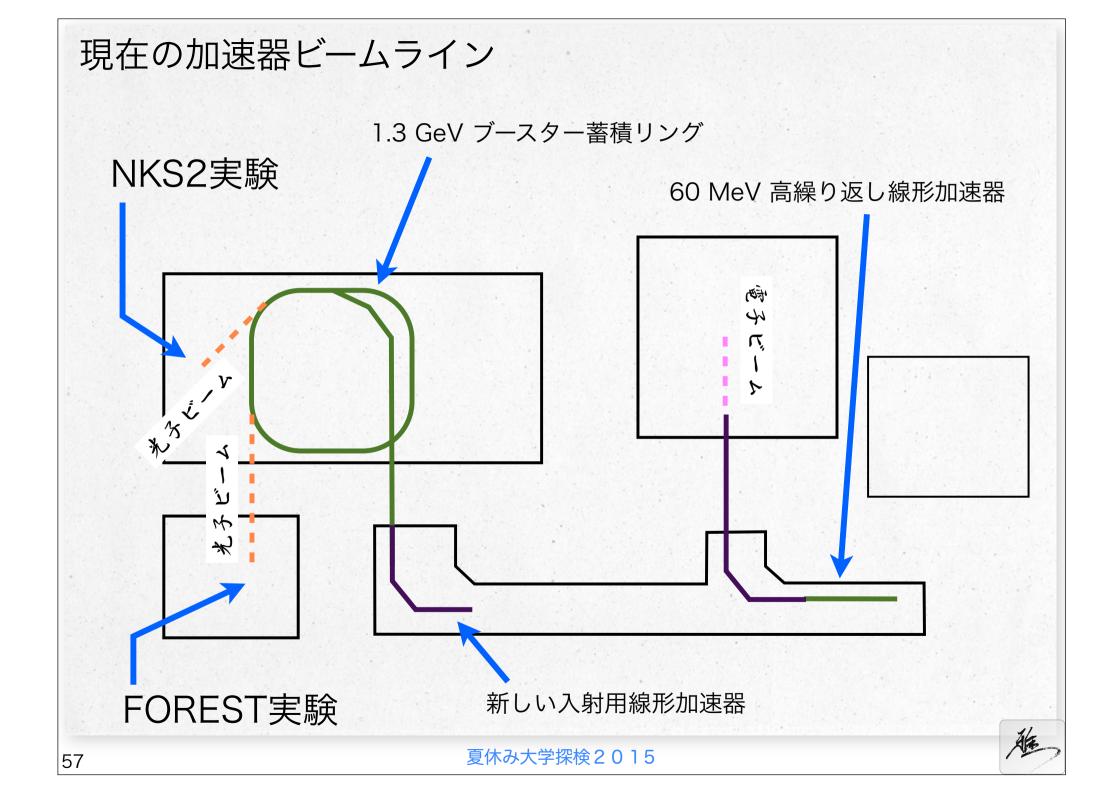
を調べたい

加速器を使い

電子ビーム 中性子ビーム

ビームと原子核・物質との反応・散乱から構造を探る


現在


加速器を使い電子ビーム光子ビームを作る

原子核 ハドロン (クォークから出来た粒子) についての研究

また、加速器そのものの研究も

加速器・検出器の見学会

60 MeV 高繰り返し線形加速器

新しい入射用線形加速器

1.3 GeV ブースター蓄積リング

NKS2実験

FOREST実験

