

東北大学大学院理学研究科物理学専攻 修士論文発表会

宇宙創成物理学

国際共同大学院

τοнοκυ

Development of high-energy photon and electron beam profile monitor and application to accelerator research

原子核物理研究室 修士2年

木野 量子

令和5年2月1日

Contents

Motivation

- Design of the new Beam Profile Monitor (BPM)
- > Measurement result
- > Application to accelerator research
- Summary

Contents

> Motivation

Design of the new Beam Profile Monitor (BPM)

Measurement result

> Application to accelerator research

> Summary

Booster STorage ring at ELPH, Tohoku Univ.

at Reserch Center for ELectron PHoton Science (ELPH)

February 1, 2023

February 1, 2023

$^{3}_{\Lambda}$ H lifetime measurement at ELPH BM4 beamline

Hypertriton d-Λ binding system

Lifetime: ~ 260 ps (~ τ_{Λ})?

 $(\Lambda$

- Still large experimental uncertainties
- Precise measurement by the independent method is crucial

${}^{3}_{\Lambda}$ H lifetime measurement at BM4 beamline

Beam profiling at ELPH BM4 beamline

Motivation

Beam profile monitoring for up~middle-stream of the beamline

> Quantitative and real time monitoring

> Accelerator parameter measurement at BM4 beamline

> Feedback to accelerator research

Contents

Motivation

> Design of the new Beam Profile Monitor (BPM)

Measurement result

> Application to accelerator research

> Summary

Requirements for the Beam Profile Monitor

- $\square Photon \rightarrow \bigcirc detect \quad charged particles \rightarrow \times remove$
- Less material thickness
- **D** Position resolution: $\sigma \le 0.3$ mm
- Stable operation in a magnetic field ($\sim 0.3 \text{ T}$)
- Measurement on high rate (several MHz)
- Data acquisition synchronized with beam cycle

Requirements for the Beam Profile Monitor

- **D** Photon $\rightarrow \bigcirc$ detect charged particles $\rightarrow \times$ remove
- Less material thickness
- **D** Position resolution: $\sigma \le 0.3$ mm
- Stable operation in a magnetic field ($\sim 0.3 \text{ T}$)
- Measurement on high rate (several MHz)
- Data acquisition synchronized with beam cycle

February 1, 2023

Charged VETO counter

- Detect BG events (charged particles)
- reduce thickness & high efficiency

(kuraray SCSF-78, $\phi 0.5$ mm)

Photon converter

- Production e^+/e^- pair
- Aluminum
- Thickness: 0.4 mm
- Convertion probability: ~ 0.3%

x layer & y layer

- Detect particle position
- Scintillation fibers ($\phi 0.5 \text{ mm}$) (Kuraray SCSF-78)
- 3 fibers / 1 ch = 1.5 mm / seg.
- 15 seg. / 22.5 mm
 - → achieve resolution 0.1 mm / 1,000 events (simulation)

Trigger counter

- Event identification
- Time window
- Plastic scintillator (Eljen EJ-212, 2 mm)
- Wave-length shifting fiber (kuraray Y-11, ϕ 1 mm)

Only photon events can be extracted!

Requirements for the Beam Profile Monitor

- ✓ Photon → \bigcirc detect charged particles → × remove
- ✓ Less material thickness
- ✓ Position resolution: $\sigma \le 0.3$ mm
- Stable operation in a magnetic field ($\sim 0.3 \text{ T}$)
- Measurement on high rate (severalMHz)
- Data acquisition synchronized with beam cycle

Requirements for the Beam Profile Monitor

- ✓ Photon → \bigcirc detect charged particles → × remove
- ✓ Less material thickness
- ✓ Position resolution: $\sigma \le 0.3$ mm
- **Stable operation in a magnetic field (~ 0.3 T)**
- □ Measurement on high rate (severalMHz)
- Data acquisition synchronized with beam cycle

SiPM and the readout circuit

Multi-Pixel Photon Counter S13360-1350PE / S13360-3050PE (Hamamatsu Photonics K.K.)

- Detect scintillation light
- Stable operation in magnetic field

Requirements for the Beam Profile Monitor

- ✓ Photon → \bigcirc detect charged particles → × remove
- ✓ Less material thickness
- ✓ Position resolution: $\sigma \le 0.3$ mm
- ✓ Stable operation in a magnetic field (~ 0.3 T)
- Measurement on high rate (several MHz)
- Data acquisition synchronized with beam cycle

Requirements for the Beam Profile Monitor

- ✓ Photon → \bigcirc detect charged particles → × remove
- ✓ Less material thickness
- ✓ Position resolution: $\sigma \le 0.3$ mm
- ✓ Stable operation in a magnetic field (~ 0.3 T)
- Measurement on high rate (several MHz)
- **Data acquisition synchronized with beam cycle**

Data acquisition system

Expected event rate: ~ MHz / detector → Not possible with traditional trigger type TDC

Hadron Universal Logic firmware: Streaming TDC^[1]

- \checkmark 0.97 ns / channel
- \checkmark measure elapsed time up to 33 s
- Trigger less data taking
- ✓ Offline event selection

[1] R. Honda et al., Prog. Theor. Exp. Phys., Issue 12 (2021) 123H01.

February 1, 2023

Photon beam monitoring at ELPH BM4 beamline

Photon beam monitoring at ELPH BM4 beamline

automatic movable stage

Contents

Motivation

Design of the new Beam Profile Monitor (BPM)

> Measurement result

> Application to accelerator research

> Summary

Quantitative beam profiling

Fitting function: Gaussian + Gaussian

- Beam center position (μ)
- Beam size (σ)

Position precision: $\Delta \mu$, $\Delta \sigma < 10 \ \mu m$

Measurement Results

	Beam Position(µ)	Beam size(σ)
Beam energy dependence	No dependencies	No dependencies
Beam intensity dependence	No dependencies	Increasing with the beam intensity
Time dependence		
Radiator position dependence		

Measured photon beam profile

Measured photon beam profile

Measurement Results

✓ Profiling accuracy: $\leq 10 \ \mu m$ for only 1 second profile

✓ Real-time monitoring

✓ The first measuring of ELPH BM4 photon beam

	Beam Position(µ)	Beam size(σ)
Beam energy dependence	No	No
Beam intensity dependence	No	No
Time dependence	Yes	Yes
Radiator position dependence	Yes	Yes

Radiator position is a significant factor in determining beam profile

Contents

Motivation

Design of the new Beam Profile Monitor (BPM)

> Measurement result

> Application to accelerator research

- Beam direction and the Twiss parameter
- Estimation of the electron beam profile

Summary

Beam direction and Twiss parameter

Radiator movement direction BPM Photon Beam Beam outer circumference

Photon beam direction can be predicted from the Twiss parameter of the electron beam.

emittance

$$\gamma x^2 + 2\alpha x x' + \beta x'^2 = \varepsilon$$

$$\mu = x_{\rm rad} - \frac{\alpha}{\beta} z_{\rm BPM} x_{\rm rad} = \left(1 - \frac{\alpha}{\beta} z_{\rm BPM}\right) x_{\rm rad}$$

Evaluation the measured profile (Horizontal)

Contents

Motivation

Design of the new Beam Profile Monitor (BPM)

> Measurement result

> Application to accelerator research

- Beam direction and the Twiss parameter
- Estimation of the electron beam profile

> Summary

Estimation of the electron beam profile

Estimation of the electron beam profile

Result of the electron beam profile

Fitting function: Gaussian

$$F_x = \sqrt{\beta_x \varepsilon_x + \left(\eta_x \frac{\Delta p}{p}\right)^2}$$
$$\simeq \sqrt{2.30 \times 13.75 \times 10^{-8} + (0.82 \times 6.28 \times 10^{-4})^2}$$
$$\simeq 0.76 \text{ mm}$$

 Possibility that inserting the radiator affects the electron beam intensity distribution
Obtain information of electron beam by BPM

Summary

> Developed the new Beam Profile Monitor for BM4 beamline

> Beam Profile Monitor (BPM)

- Basic design: scintillation fibers and SiPMs
- DAQ: Streaming TDC (FPGA module (HUL))

Measured photon beam profile

- Position precision: 10 µm for 1 second profile
- Radiator position decides photon beam profile
- > Applicable to accelerator research
 - Twiss parameters information can be deduced by beam direction
 - Electron beam profile at BM4 was successfully measured

Gain of each channels

 \bigcirc Relative position < 10 μ m (movable stage: 3 μ m)

Evaluation the measured profile (Vertical)

Rate tolerance of the DAQ system

non-paralyzed correction function

$$mT = \frac{k/T}{1 - (k/T)\tau}$$

m: true count rate *k*: number that the detector count in a time *T* τ : dead time

Fit function:
$$y = \frac{p_0 x}{1 + p_0 p_1 x} \begin{pmatrix} p_0 x = m \\ p_1 = \tau \end{pmatrix}$$

Dead time: 43.3 +/- 2.0 ns

Previous measurement of electron beam size^[4]

Estimation of electron beam profile by tagger counts

The photon intensity as a function of the elapsed time: $I(t) = I_0 \exp(-\Gamma t)$

The decay rate Γ giving the beam size σ_x

Detector: Tagger (for BM5) Logic module: MPLM4X^[5] (contains FPGA, Xilinx Spartan-6)

- NIM-standard signals
- Scaling every 0.1 second

streaming TDC

New system required for high-rate beam center measurements

SiPM MPPC

February 1, 2023

NPE

July 2021 Beamtest@BM4 Prototype Fiber: ϕ 1.5 mm (Kuraray SCSF-78) MPPC: S1360-1350PE

February 1, 2023

$^{3}_{\Lambda}$ H lifetime measurement at BM4 beamline

lifetime:
$$t_d = (t_{\pi^-} - \text{TOF}_{\pi^-}) - (t_{K^+} - \text{TOF}_{K^+})$$

production positiondecay position

$^{3}\Lambda$ H lifetime measurement

F. Mazzaschi, the ALICE collaboration, APBPS 16 1-A149 (2023)

Beam profile: Photon event vs BG

[VETO] \otimes [*x* layer] \otimes [*y* layer] \otimes [trig.]

GEANT4 Simulation

February 1, 2023

GEANT4 Simulation

 e^+/e^- distribution (z ~3 m)

Beam profile: tagged vs untagged photon

Beam profile: ToT cut

Beam profile: ToT cut

Measured photon beam profile

Measured photon beam profile

