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Fig. 15. Top view of the beamline setup. A lead collimator, sweep magnet, and vacuum chamber were located upstream from the target. A high-speed beam profile monitor (HSBPM)
and a lead–glass Cherenkov counter were placed downstream from the target.

scintillation counters, respectively. Scintillation light from each counter
was transported to the PMT by an optical fiber bundle.

TagF had the role to identify the energy of the recoil electron. The use
of TagB in coincidence with TagF was primarily to select recoil electrons
after photon emission at the radiator from other sources of background
such as Mø ller scattered electrons and secondary particles from the hit
of electrons on the beam duct. The timing information of TagF and TagB
was recorded by a TDCmodule (CAEN V775). The charge information of
TagB signal was recorded by a charge-to-digital converter (QDC) module
(CAEN V792) to enable time walk correction to obtain a better timing
selection. The tagger system was capable of tagged photon energies over
a range of 0.8–1.1 GeV with an accuracy of ±10 MeV on the produced
photon beam [27].

Calibration of the tagging detectors resulted in a correlation between
the tagger segment number and the energy of a photon incident on the
target; therefore, it provided information on the photon energy and
the number of photons. The photon energy is deduced from energy
conservation as follows:

E� = Ee * Ee® * Erecoil, (1)

where E� is the energy of the photon, Ee is the energy of the electron
in the STB ring, Ee® is the energy of the electron as measured in the
tagging system, and Erecoil is the recoil energy of the radiator nucleus
of bremsstrahlung. Because the recoil energy is negligibly small, we
assumed Erecoil = 0. In addition to that method, the kinematically
complete measurement of �+d ô p+p+⇡* was successfully established
as a method of calibrating the photon tagging system [28].

The lead–glass Cherenkov (LG) counter was used to measure the
number of photons that passed through the spectrometer, which is
equivalent to the approximate number that reached the target. The lead
glass was SF5, which was provided by OHARA Optical Glass Mfg. Ltd.
(now, OHARA INC.). The tagging efficiency for each TagF was evaluated
as the number of photons detected by the LG counter divided by the
number of photons detected by TagF. The photon beam intensity was
kept at a few hertz predominantly owing to the counting rate capability
of the LG counter and to reduce the probability of coincidences between
the LG counter and the tagger. In principle, this should have no effect
on the measured efficiency. The tagging efficiency was 75–80% over the
TagF counters. The LG counter was prepared for the FOREST detector,
and the performance study is described in Ref. [29].

4.2. Sweep magnet

A large number of e+e* pairs created upstream from the photon beam
was substantially reduced by the sweep magnet (B = 1.1 T at I = 300 A).
In front of the sweep magnet, there was a collimator comprised of five
lead blocks (250 mm thickness in total) to reduce the beam halo. The
collimator aperture was 10 mm ø. The sweep magnet, being located
before the main spectrometer, efficiently suppressed the background
contribution to the data and improved the DAQ rate.

However, electrons and positrons from upstream were not com-
pletely removed by the sweep magnet, and thus two sets of EV counters
were placed upstream of NKS2 at the same height of the photon beams
in order to reject them in the trigger (see Section 2.4).

4.3. Beam profile monitor

A high-speed beam profile monitor (HSBPM) was composed of two
layers of scintillating fiber bundles. Each layer had 16 scintillating fibers
(Saint-Gobain, BCF-10SC with black extra mural absorber coating) of
3-mm square cross-section and read out by a 16-ch multianode PMT
(HAMAMATSU Photonics, H6568-10). One bundle was horizontally
aligned, and the other was vertically aligned. They crossed over a
48 ù 48 mm square region to provide two-dimensional hit information
by the coincidence of the vertical and horizontal channels for charged
particles. Charged particles were provided from the photon beams by an
aluminum converter plate having a thickness of 0.1 mm (Ì1 ù 10*3X0).
It also consisted of a pair of trigger counters and a veto counter to
ensure that electrons and positrons converted from photons generated
the trigger. The beam profile was checked by HSBPM when the beam
course was tuned in the experimental period. The detailed information
can be found in Refs. [30,31].

4.4. Electron beam structure

A typical beam cycle consisted of times of waiting, beam injection,
ramping up, storage (flat top), and ramping down. During the storage
time, the radiator was inserted into an orbit of electrons, and the photon
beams were impinged on the target. The duty factor (DF) was defined
as the ratio of the flat-top time to the period of a single cycle.

The flat-top and waiting times could be changed upon user request
and were limited by power consumption. The time for ramping both up
and down was established at 1.4 s. Typically, the DF was approximately
75% at the period of 53 s and the flat top of 40 s.
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Fig. 15. Top view of the beamline setup. A lead collimator, sweep magnet, and vacuum chamber were located upstream from the target. A high-speed beam profile monitor (HSBPM)
and a lead–glass Cherenkov counter were placed downstream from the target.

scintillation counters, respectively. Scintillation light from each counter
was transported to the PMT by an optical fiber bundle.

TagF had the role to identify the energy of the recoil electron. The use
of TagB in coincidence with TagF was primarily to select recoil electrons
after photon emission at the radiator from other sources of background
such as Mø ller scattered electrons and secondary particles from the hit
of electrons on the beam duct. The timing information of TagF and TagB
was recorded by a TDCmodule (CAEN V775). The charge information of
TagB signal was recorded by a charge-to-digital converter (QDC) module
(CAEN V792) to enable time walk correction to obtain a better timing
selection. The tagger system was capable of tagged photon energies over
a range of 0.8–1.1 GeV with an accuracy of ±10 MeV on the produced
photon beam [27].

Calibration of the tagging detectors resulted in a correlation between
the tagger segment number and the energy of a photon incident on the
target; therefore, it provided information on the photon energy and
the number of photons. The photon energy is deduced from energy
conservation as follows:

E� = Ee * Ee® * Erecoil, (1)

where E� is the energy of the photon, Ee is the energy of the electron
in the STB ring, Ee® is the energy of the electron as measured in the
tagging system, and Erecoil is the recoil energy of the radiator nucleus
of bremsstrahlung. Because the recoil energy is negligibly small, we
assumed Erecoil = 0. In addition to that method, the kinematically
complete measurement of �+d ô p+p+⇡* was successfully established
as a method of calibrating the photon tagging system [28].

The lead–glass Cherenkov (LG) counter was used to measure the
number of photons that passed through the spectrometer, which is
equivalent to the approximate number that reached the target. The lead
glass was SF5, which was provided by OHARA Optical Glass Mfg. Ltd.
(now, OHARA INC.). The tagging efficiency for each TagF was evaluated
as the number of photons detected by the LG counter divided by the
number of photons detected by TagF. The photon beam intensity was
kept at a few hertz predominantly owing to the counting rate capability
of the LG counter and to reduce the probability of coincidences between
the LG counter and the tagger. In principle, this should have no effect
on the measured efficiency. The tagging efficiency was 75–80% over the
TagF counters. The LG counter was prepared for the FOREST detector,
and the performance study is described in Ref. [29].

4.2. Sweep magnet

A large number of e+e* pairs created upstream from the photon beam
was substantially reduced by the sweep magnet (B = 1.1 T at I = 300 A).
In front of the sweep magnet, there was a collimator comprised of five
lead blocks (250 mm thickness in total) to reduce the beam halo. The
collimator aperture was 10 mm ø. The sweep magnet, being located
before the main spectrometer, efficiently suppressed the background
contribution to the data and improved the DAQ rate.

However, electrons and positrons from upstream were not com-
pletely removed by the sweep magnet, and thus two sets of EV counters
were placed upstream of NKS2 at the same height of the photon beams
in order to reject them in the trigger (see Section 2.4).

4.3. Beam profile monitor

A high-speed beam profile monitor (HSBPM) was composed of two
layers of scintillating fiber bundles. Each layer had 16 scintillating fibers
(Saint-Gobain, BCF-10SC with black extra mural absorber coating) of
3-mm square cross-section and read out by a 16-ch multianode PMT
(HAMAMATSU Photonics, H6568-10). One bundle was horizontally
aligned, and the other was vertically aligned. They crossed over a
48 ù 48 mm square region to provide two-dimensional hit information
by the coincidence of the vertical and horizontal channels for charged
particles. Charged particles were provided from the photon beams by an
aluminum converter plate having a thickness of 0.1 mm (Ì1 ù 10*3X0).
It also consisted of a pair of trigger counters and a veto counter to
ensure that electrons and positrons converted from photons generated
the trigger. The beam profile was checked by HSBPM when the beam
course was tuned in the experimental period. The detailed information
can be found in Refs. [30,31].

4.4. Electron beam structure

A typical beam cycle consisted of times of waiting, beam injection,
ramping up, storage (flat top), and ramping down. During the storage
time, the radiator was inserted into an orbit of electrons, and the photon
beams were impinged on the target. The duty factor (DF) was defined
as the ratio of the flat-top time to the period of a single cycle.

The flat-top and waiting times could be changed upon user request
and were limited by power consumption. The time for ramping both up
and down was established at 1.4 s. Typically, the DF was approximately
75% at the period of 53 s and the flat top of 40 s.
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Fig. 15. Top view of the beamline setup. A lead collimator, sweep magnet, and vacuum chamber were located upstream from the target. A high-speed beam profile monitor (HSBPM)
and a lead–glass Cherenkov counter were placed downstream from the target.

scintillation counters, respectively. Scintillation light from each counter
was transported to the PMT by an optical fiber bundle.

TagF had the role to identify the energy of the recoil electron. The use
of TagB in coincidence with TagF was primarily to select recoil electrons
after photon emission at the radiator from other sources of background
such as Mø ller scattered electrons and secondary particles from the hit
of electrons on the beam duct. The timing information of TagF and TagB
was recorded by a TDCmodule (CAEN V775). The charge information of
TagB signal was recorded by a charge-to-digital converter (QDC) module
(CAEN V792) to enable time walk correction to obtain a better timing
selection. The tagger system was capable of tagged photon energies over
a range of 0.8–1.1 GeV with an accuracy of ±10 MeV on the produced
photon beam [27].

Calibration of the tagging detectors resulted in a correlation between
the tagger segment number and the energy of a photon incident on the
target; therefore, it provided information on the photon energy and
the number of photons. The photon energy is deduced from energy
conservation as follows:

E� = Ee * Ee® * Erecoil, (1)

where E� is the energy of the photon, Ee is the energy of the electron
in the STB ring, Ee® is the energy of the electron as measured in the
tagging system, and Erecoil is the recoil energy of the radiator nucleus
of bremsstrahlung. Because the recoil energy is negligibly small, we
assumed Erecoil = 0. In addition to that method, the kinematically
complete measurement of �+d ô p+p+⇡* was successfully established
as a method of calibrating the photon tagging system [28].

The lead–glass Cherenkov (LG) counter was used to measure the
number of photons that passed through the spectrometer, which is
equivalent to the approximate number that reached the target. The lead
glass was SF5, which was provided by OHARA Optical Glass Mfg. Ltd.
(now, OHARA INC.). The tagging efficiency for each TagF was evaluated
as the number of photons detected by the LG counter divided by the
number of photons detected by TagF. The photon beam intensity was
kept at a few hertz predominantly owing to the counting rate capability
of the LG counter and to reduce the probability of coincidences between
the LG counter and the tagger. In principle, this should have no effect
on the measured efficiency. The tagging efficiency was 75–80% over the
TagF counters. The LG counter was prepared for the FOREST detector,
and the performance study is described in Ref. [29].

4.2. Sweep magnet

A large number of e+e* pairs created upstream from the photon beam
was substantially reduced by the sweep magnet (B = 1.1 T at I = 300 A).
In front of the sweep magnet, there was a collimator comprised of five
lead blocks (250 mm thickness in total) to reduce the beam halo. The
collimator aperture was 10 mm ø. The sweep magnet, being located
before the main spectrometer, efficiently suppressed the background
contribution to the data and improved the DAQ rate.

However, electrons and positrons from upstream were not com-
pletely removed by the sweep magnet, and thus two sets of EV counters
were placed upstream of NKS2 at the same height of the photon beams
in order to reject them in the trigger (see Section 2.4).

4.3. Beam profile monitor

A high-speed beam profile monitor (HSBPM) was composed of two
layers of scintillating fiber bundles. Each layer had 16 scintillating fibers
(Saint-Gobain, BCF-10SC with black extra mural absorber coating) of
3-mm square cross-section and read out by a 16-ch multianode PMT
(HAMAMATSU Photonics, H6568-10). One bundle was horizontally
aligned, and the other was vertically aligned. They crossed over a
48 ù 48 mm square region to provide two-dimensional hit information
by the coincidence of the vertical and horizontal channels for charged
particles. Charged particles were provided from the photon beams by an
aluminum converter plate having a thickness of 0.1 mm (Ì1 ù 10*3X0).
It also consisted of a pair of trigger counters and a veto counter to
ensure that electrons and positrons converted from photons generated
the trigger. The beam profile was checked by HSBPM when the beam
course was tuned in the experimental period. The detailed information
can be found in Refs. [30,31].

4.4. Electron beam structure

A typical beam cycle consisted of times of waiting, beam injection,
ramping up, storage (flat top), and ramping down. During the storage
time, the radiator was inserted into an orbit of electrons, and the photon
beams were impinged on the target. The duty factor (DF) was defined
as the ratio of the flat-top time to the period of a single cycle.

The flat-top and waiting times could be changed upon user request
and were limited by power consumption. The time for ramping both up
and down was established at 1.4 s. Typically, the DF was approximately
75% at the period of 53 s and the flat top of 40 s.
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2.4.2 光子の生成時間検出器 (TagB)

TagB は、散乱電子の通過時間を測定する検出器である。全 30 セグメント配置した。
W20 × D20 × H40 mm3 のプラスティックシンチレータ (Eljen EJ-204) とMPPCア
レイ (Hamamatsu K.K S13361-3050NE-04 [37]) から構成した。シンチレータとMPPC

の間はオプティカルグリスによって光学接続した。

(a) TagBのシンチレータ
(b) TagBの増幅回路

図 27: TagBのシンチレータとMPPC回路

2.4.3 増幅回路
TagB の増幅回路は、EASIROC に内蔵されているものを用いている。ロジックシグ
ナルを生成するラインにあるディスクリミネータの幅は、MPPCからの電荷量に関連す
る Time-over-threshold になっている。ロジックシグナルの始まりと終わりを記録でき
る TDCモジュールを用いることで、幅が電荷に関連する量として扱える。
TagBの増幅回路は、第二世代の TagBで用いた回路と同じ設計を用いた。TagBには
飛行時間検出器として高い時間分解能を要求されている。そのため、MPPCアレイから
の出力信号に対しオペアンプ（ANALOG DEVICES社 AD8000） を用いた増幅回路に
コンデンサー結合することで、信号の高周波成分を増幅し暗電流を抑える設計になって
いる。

40

< Tagged Photon Beam >
• Energy : 0.73 – 1.25 GeV
• Rate : ~MHz (untagged: >×10)

SiPM board

Plastic scintillator

<latexit sha1_base64="ur8JYtmv7liFHhjzRKyKemSDQh4=">AAACE3icbVDJSgNBEK2JW4xbVDx5GQyiF8OMuF2EoAgeI5gFkiH0dGqSJj0L3T1CGOYfvPgJ/oIXD4p49eLNv7GTzEGjryh4vFdFdz034kwqy/oycjOzc/ML+cXC0vLK6lpxfaMuw1hQrNGQh6LpEomcBVhTTHFsRgKJ73JsuIPLkd+4QyFZGNyqYYSOT3oB8xglSkthcQuuoAMJPEIPCPi6CKRwPlYRDjIXYQ/STrFkla0xzL/EzkgJMlQ7xc92N6Sxj4GinEjZsq1IOQkRilGOaaEdS4wIHZAetjQNiI/SScY3peauVrqmFwrdgTLH6s+NhPhSDn1XT/pE9eW0NxL/81qx8s6chAVRrDCgk4e8mJsqNEcBmV0mkCo+1IRQwfRfTdonglClYyzoEOzpk/+S+mHZPikf3xyVKhdZHHnYhh3YBxtOoQLXUIUaULiHJ3iBV+PBeDbejPfJaM7IdjbhF4yPbykaljM=</latexit>

E� = Ee � Ee0



February 1, 2023 修士論文発表会 ‒ 木野量子（原子核物理研究室） 9

M. Kaneta et al. Nuclear Inst. and Methods in Physics Research, A 886 (2018) 88–103

Fig. 15. Top view of the beamline setup. A lead collimator, sweep magnet, and vacuum chamber were located upstream from the target. A high-speed beam profile monitor (HSBPM)
and a lead–glass Cherenkov counter were placed downstream from the target.

scintillation counters, respectively. Scintillation light from each counter
was transported to the PMT by an optical fiber bundle.

TagF had the role to identify the energy of the recoil electron. The use
of TagB in coincidence with TagF was primarily to select recoil electrons
after photon emission at the radiator from other sources of background
such as Mø ller scattered electrons and secondary particles from the hit
of electrons on the beam duct. The timing information of TagF and TagB
was recorded by a TDCmodule (CAEN V775). The charge information of
TagB signal was recorded by a charge-to-digital converter (QDC) module
(CAEN V792) to enable time walk correction to obtain a better timing
selection. The tagger system was capable of tagged photon energies over
a range of 0.8–1.1 GeV with an accuracy of ±10 MeV on the produced
photon beam [27].

Calibration of the tagging detectors resulted in a correlation between
the tagger segment number and the energy of a photon incident on the
target; therefore, it provided information on the photon energy and
the number of photons. The photon energy is deduced from energy
conservation as follows:

E� = Ee * Ee® * Erecoil, (1)

where E� is the energy of the photon, Ee is the energy of the electron
in the STB ring, Ee® is the energy of the electron as measured in the
tagging system, and Erecoil is the recoil energy of the radiator nucleus
of bremsstrahlung. Because the recoil energy is negligibly small, we
assumed Erecoil = 0. In addition to that method, the kinematically
complete measurement of �+d ô p+p+⇡* was successfully established
as a method of calibrating the photon tagging system [28].

The lead–glass Cherenkov (LG) counter was used to measure the
number of photons that passed through the spectrometer, which is
equivalent to the approximate number that reached the target. The lead
glass was SF5, which was provided by OHARA Optical Glass Mfg. Ltd.
(now, OHARA INC.). The tagging efficiency for each TagF was evaluated
as the number of photons detected by the LG counter divided by the
number of photons detected by TagF. The photon beam intensity was
kept at a few hertz predominantly owing to the counting rate capability
of the LG counter and to reduce the probability of coincidences between
the LG counter and the tagger. In principle, this should have no effect
on the measured efficiency. The tagging efficiency was 75–80% over the
TagF counters. The LG counter was prepared for the FOREST detector,
and the performance study is described in Ref. [29].

4.2. Sweep magnet

A large number of e+e* pairs created upstream from the photon beam
was substantially reduced by the sweep magnet (B = 1.1 T at I = 300 A).
In front of the sweep magnet, there was a collimator comprised of five
lead blocks (250 mm thickness in total) to reduce the beam halo. The
collimator aperture was 10 mm ø. The sweep magnet, being located
before the main spectrometer, efficiently suppressed the background
contribution to the data and improved the DAQ rate.

However, electrons and positrons from upstream were not com-
pletely removed by the sweep magnet, and thus two sets of EV counters
were placed upstream of NKS2 at the same height of the photon beams
in order to reject them in the trigger (see Section 2.4).

4.3. Beam profile monitor

A high-speed beam profile monitor (HSBPM) was composed of two
layers of scintillating fiber bundles. Each layer had 16 scintillating fibers
(Saint-Gobain, BCF-10SC with black extra mural absorber coating) of
3-mm square cross-section and read out by a 16-ch multianode PMT
(HAMAMATSU Photonics, H6568-10). One bundle was horizontally
aligned, and the other was vertically aligned. They crossed over a
48 ù 48 mm square region to provide two-dimensional hit information
by the coincidence of the vertical and horizontal channels for charged
particles. Charged particles were provided from the photon beams by an
aluminum converter plate having a thickness of 0.1 mm (Ì1 ù 10*3X0).
It also consisted of a pair of trigger counters and a veto counter to
ensure that electrons and positrons converted from photons generated
the trigger. The beam profile was checked by HSBPM when the beam
course was tuned in the experimental period. The detailed information
can be found in Refs. [30,31].

4.4. Electron beam structure

A typical beam cycle consisted of times of waiting, beam injection,
ramping up, storage (flat top), and ramping down. During the storage
time, the radiator was inserted into an orbit of electrons, and the photon
beams were impinged on the target. The duty factor (DF) was defined
as the ratio of the flat-top time to the period of a single cycle.

The flat-top and waiting times could be changed upon user request
and were limited by power consumption. The time for ramping both up
and down was established at 1.4 s. Typically, the DF was approximately
75% at the period of 53 s and the flat top of 40 s.
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Fig. 15. Top view of the beamline setup. A lead collimator, sweep magnet, and vacuum chamber were located upstream from the target. A high-speed beam profile monitor (HSBPM)
and a lead–glass Cherenkov counter were placed downstream from the target.

scintillation counters, respectively. Scintillation light from each counter
was transported to the PMT by an optical fiber bundle.

TagF had the role to identify the energy of the recoil electron. The use
of TagB in coincidence with TagF was primarily to select recoil electrons
after photon emission at the radiator from other sources of background
such as Mø ller scattered electrons and secondary particles from the hit
of electrons on the beam duct. The timing information of TagF and TagB
was recorded by a TDCmodule (CAEN V775). The charge information of
TagB signal was recorded by a charge-to-digital converter (QDC) module
(CAEN V792) to enable time walk correction to obtain a better timing
selection. The tagger system was capable of tagged photon energies over
a range of 0.8–1.1 GeV with an accuracy of ±10 MeV on the produced
photon beam [27].

Calibration of the tagging detectors resulted in a correlation between
the tagger segment number and the energy of a photon incident on the
target; therefore, it provided information on the photon energy and
the number of photons. The photon energy is deduced from energy
conservation as follows:

E� = Ee * Ee® * Erecoil, (1)

where E� is the energy of the photon, Ee is the energy of the electron
in the STB ring, Ee® is the energy of the electron as measured in the
tagging system, and Erecoil is the recoil energy of the radiator nucleus
of bremsstrahlung. Because the recoil energy is negligibly small, we
assumed Erecoil = 0. In addition to that method, the kinematically
complete measurement of �+d ô p+p+⇡* was successfully established
as a method of calibrating the photon tagging system [28].

The lead–glass Cherenkov (LG) counter was used to measure the
number of photons that passed through the spectrometer, which is
equivalent to the approximate number that reached the target. The lead
glass was SF5, which was provided by OHARA Optical Glass Mfg. Ltd.
(now, OHARA INC.). The tagging efficiency for each TagF was evaluated
as the number of photons detected by the LG counter divided by the
number of photons detected by TagF. The photon beam intensity was
kept at a few hertz predominantly owing to the counting rate capability
of the LG counter and to reduce the probability of coincidences between
the LG counter and the tagger. In principle, this should have no effect
on the measured efficiency. The tagging efficiency was 75–80% over the
TagF counters. The LG counter was prepared for the FOREST detector,
and the performance study is described in Ref. [29].

4.2. Sweep magnet

A large number of e+e* pairs created upstream from the photon beam
was substantially reduced by the sweep magnet (B = 1.1 T at I = 300 A).
In front of the sweep magnet, there was a collimator comprised of five
lead blocks (250 mm thickness in total) to reduce the beam halo. The
collimator aperture was 10 mm ø. The sweep magnet, being located
before the main spectrometer, efficiently suppressed the background
contribution to the data and improved the DAQ rate.

However, electrons and positrons from upstream were not com-
pletely removed by the sweep magnet, and thus two sets of EV counters
were placed upstream of NKS2 at the same height of the photon beams
in order to reject them in the trigger (see Section 2.4).

4.3. Beam profile monitor

A high-speed beam profile monitor (HSBPM) was composed of two
layers of scintillating fiber bundles. Each layer had 16 scintillating fibers
(Saint-Gobain, BCF-10SC with black extra mural absorber coating) of
3-mm square cross-section and read out by a 16-ch multianode PMT
(HAMAMATSU Photonics, H6568-10). One bundle was horizontally
aligned, and the other was vertically aligned. They crossed over a
48 ù 48 mm square region to provide two-dimensional hit information
by the coincidence of the vertical and horizontal channels for charged
particles. Charged particles were provided from the photon beams by an
aluminum converter plate having a thickness of 0.1 mm (Ì1 ù 10*3X0).
It also consisted of a pair of trigger counters and a veto counter to
ensure that electrons and positrons converted from photons generated
the trigger. The beam profile was checked by HSBPM when the beam
course was tuned in the experimental period. The detailed information
can be found in Refs. [30,31].

4.4. Electron beam structure

A typical beam cycle consisted of times of waiting, beam injection,
ramping up, storage (flat top), and ramping down. During the storage
time, the radiator was inserted into an orbit of electrons, and the photon
beams were impinged on the target. The duty factor (DF) was defined
as the ratio of the flat-top time to the period of a single cycle.

The flat-top and waiting times could be changed upon user request
and were limited by power consumption. The time for ramping both up
and down was established at 1.4 s. Typically, the DF was approximately
75% at the period of 53 s and the flat top of 40 s.
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Fig.15.Topviewofthebeamlinesetup.Aleadcollimator,sweepmagnet,andvacuumchamberwerelocatedupstreamfromthetarget.Ahigh-speedbeamprofilemonitor(HSBPM)
andalead–glassCherenkovcounterwereplaceddownstreamfromthetarget.

scintillationcounters,respectively.Scintillationlightfromeachcounter
wastransportedtothePMTbyanopticalfiberbundle.

TagFhadtheroletoidentifytheenergyoftherecoilelectron.Theuse
ofTagBincoincidencewithTagFwasprimarilytoselectrecoilelectrons
afterphotonemissionattheradiatorfromothersourcesofbackground
suchasMøllerscatteredelectronsandsecondaryparticlesfromthehit
ofelectronsonthebeamduct.ThetiminginformationofTagFandTagB
wasrecordedbyaTDCmodule(CAENV775).Thechargeinformationof
TagBsignalwasrecordedbyacharge-to-digitalconverter(QDC)module
(CAENV792)toenabletimewalkcorrectiontoobtainabettertiming
selection.Thetaggersystemwascapableoftaggedphotonenergiesover
arangeof0.8–1.1GeVwithanaccuracyof±10MeVontheproduced
photonbeam[27].

Calibrationofthetaggingdetectorsresultedinacorrelationbetween
thetaggersegmentnumberandtheenergyofaphotonincidentonthe
target;therefore,itprovidedinformationonthephotonenergyand
thenumberofphotons.Thephotonenergyisdeducedfromenergy
conservationasfollows:

E�=Ee*Ee®*Erecoil,(1)

whereE�istheenergyofthephoton,Eeistheenergyoftheelectron
intheSTBring,Ee®istheenergyoftheelectronasmeasuredinthe
taggingsystem,andErecoilistherecoilenergyoftheradiatornucleus
ofbremsstrahlung.Becausetherecoilenergyisnegligiblysmall,we
assumedErecoil=0.Inadditiontothatmethod,thekinematically
completemeasurementof�+dôp+p+⇡*wassuccessfullyestablished
asamethodofcalibratingthephotontaggingsystem[28].

Thelead–glassCherenkov(LG)counterwasusedtomeasurethe
numberofphotonsthatpassedthroughthespectrometer,whichis
equivalenttotheapproximatenumberthatreachedthetarget.Thelead
glasswasSF5,whichwasprovidedbyOHARAOpticalGlassMfg.Ltd.
(now,OHARAINC.).ThetaggingefficiencyforeachTagFwasevaluated
asthenumberofphotonsdetectedbytheLGcounterdividedbythe
numberofphotonsdetectedbyTagF.Thephotonbeamintensitywas
keptatafewhertzpredominantlyowingtothecountingratecapability
oftheLGcounterandtoreducetheprobabilityofcoincidencesbetween
theLGcounterandthetagger.Inprinciple,thisshouldhavenoeffect
onthemeasuredefficiency.Thetaggingefficiencywas75–80%overthe
TagFcounters.TheLGcounterwaspreparedfortheFORESTdetector,
andtheperformancestudyisdescribedinRef.[29].

4.2.Sweepmagnet

Alargenumberofe+e*pairscreatedupstreamfromthephotonbeam
wassubstantiallyreducedbythesweepmagnet(B=1.1TatI=300A).
Infrontofthesweepmagnet,therewasacollimatorcomprisedoffive
leadblocks(250mmthicknessintotal)toreducethebeamhalo.The
collimatoraperturewas10mmø.Thesweepmagnet,beinglocated
beforethemainspectrometer,efficientlysuppressedthebackground
contributiontothedataandimprovedtheDAQrate.

However,electronsandpositronsfromupstreamwerenotcom-
pletelyremovedbythesweepmagnet,andthustwosetsofEVcounters
wereplacedupstreamofNKS2atthesameheightofthephotonbeams
inordertorejecttheminthetrigger(seeSection2.4).

4.3.Beamprofilemonitor

Ahigh-speedbeamprofilemonitor(HSBPM)wascomposedoftwo
layersofscintillatingfiberbundles.Eachlayerhad16scintillatingfibers
(Saint-Gobain,BCF-10SCwithblackextramuralabsorbercoating)of
3-mmsquarecross-sectionandreadoutbya16-chmultianodePMT
(HAMAMATSUPhotonics,H6568-10).Onebundlewashorizontally
aligned,andtheotherwasverticallyaligned.Theycrossedovera
48ù48mmsquareregiontoprovidetwo-dimensionalhitinformation
bythecoincidenceoftheverticalandhorizontalchannelsforcharged
particles.Chargedparticleswereprovidedfromthephotonbeamsbyan
aluminumconverterplatehavingathicknessof0.1mm(Ì1ù10*3X0).
Italsoconsistedofapairoftriggercountersandavetocounterto
ensurethatelectronsandpositronsconvertedfromphotonsgenerated
thetrigger.ThebeamprofilewascheckedbyHSBPMwhenthebeam
coursewastunedintheexperimentalperiod.Thedetailedinformation
canbefoundinRefs.[30,31].

4.4.Electronbeamstructure

Atypicalbeamcycleconsistedoftimesofwaiting,beaminjection,
rampingup,storage(flattop),andrampingdown.Duringthestorage
time,theradiatorwasinsertedintoanorbitofelectrons,andthephoton
beamswereimpingedonthetarget.Thedutyfactor(DF)wasdefined
astheratiooftheflat-toptimetotheperiodofasinglecycle.

Theflat-topandwaitingtimescouldbechangeduponuserrequest
andwerelimitedbypowerconsumption.Thetimeforrampingbothup
anddownwasestablishedat1.4s.Typically,theDFwasapproximately
75%attheperiodof53sandtheflattopof40s.
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Fig. 15. Top view of the beamline setup. A lead collimator, sweep magnet, and vacuum chamber were located upstream from the target. A high-speed beam profile monitor (HSBPM)
and a lead–glass Cherenkov counter were placed downstream from the target.

scintillation counters, respectively. Scintillation light from each counter
was transported to the PMT by an optical fiber bundle.

TagF had the role to identify the energy of the recoil electron. The use
of TagB in coincidence with TagF was primarily to select recoil electrons
after photon emission at the radiator from other sources of background
such as Mø ller scattered electrons and secondary particles from the hit
of electrons on the beam duct. The timing information of TagF and TagB
was recorded by a TDCmodule (CAEN V775). The charge information of
TagB signal was recorded by a charge-to-digital converter (QDC) module
(CAEN V792) to enable time walk correction to obtain a better timing
selection. The tagger system was capable of tagged photon energies over
a range of 0.8–1.1 GeV with an accuracy of ±10 MeV on the produced
photon beam [27].

Calibration of the tagging detectors resulted in a correlation between
the tagger segment number and the energy of a photon incident on the
target; therefore, it provided information on the photon energy and
the number of photons. The photon energy is deduced from energy
conservation as follows:

E� = Ee * Ee® * Erecoil, (1)

where E� is the energy of the photon, Ee is the energy of the electron
in the STB ring, Ee® is the energy of the electron as measured in the
tagging system, and Erecoil is the recoil energy of the radiator nucleus
of bremsstrahlung. Because the recoil energy is negligibly small, we
assumed Erecoil = 0. In addition to that method, the kinematically
complete measurement of �+d ô p+p+⇡* was successfully established
as a method of calibrating the photon tagging system [28].

The lead–glass Cherenkov (LG) counter was used to measure the
number of photons that passed through the spectrometer, which is
equivalent to the approximate number that reached the target. The lead
glass was SF5, which was provided by OHARA Optical Glass Mfg. Ltd.
(now, OHARA INC.). The tagging efficiency for each TagF was evaluated
as the number of photons detected by the LG counter divided by the
number of photons detected by TagF. The photon beam intensity was
kept at a few hertz predominantly owing to the counting rate capability
of the LG counter and to reduce the probability of coincidences between
the LG counter and the tagger. In principle, this should have no effect
on the measured efficiency. The tagging efficiency was 75–80% over the
TagF counters. The LG counter was prepared for the FOREST detector,
and the performance study is described in Ref. [29].

4.2. Sweep magnet

A large number of e+e* pairs created upstream from the photon beam
was substantially reduced by the sweep magnet (B = 1.1 T at I = 300 A).
In front of the sweep magnet, there was a collimator comprised of five
lead blocks (250 mm thickness in total) to reduce the beam halo. The
collimator aperture was 10 mm ø. The sweep magnet, being located
before the main spectrometer, efficiently suppressed the background
contribution to the data and improved the DAQ rate.

However, electrons and positrons from upstream were not com-
pletely removed by the sweep magnet, and thus two sets of EV counters
were placed upstream of NKS2 at the same height of the photon beams
in order to reject them in the trigger (see Section 2.4).

4.3. Beam profile monitor

A high-speed beam profile monitor (HSBPM) was composed of two
layers of scintillating fiber bundles. Each layer had 16 scintillating fibers
(Saint-Gobain, BCF-10SC with black extra mural absorber coating) of
3-mm square cross-section and read out by a 16-ch multianode PMT
(HAMAMATSU Photonics, H6568-10). One bundle was horizontally
aligned, and the other was vertically aligned. They crossed over a
48 ù 48 mm square region to provide two-dimensional hit information
by the coincidence of the vertical and horizontal channels for charged
particles. Charged particles were provided from the photon beams by an
aluminum converter plate having a thickness of 0.1 mm (Ì1 ù 10*3X0).
It also consisted of a pair of trigger counters and a veto counter to
ensure that electrons and positrons converted from photons generated
the trigger. The beam profile was checked by HSBPM when the beam
course was tuned in the experimental period. The detailed information
can be found in Refs. [30,31].

4.4. Electron beam structure

A typical beam cycle consisted of times of waiting, beam injection,
ramping up, storage (flat top), and ramping down. During the storage
time, the radiator was inserted into an orbit of electrons, and the photon
beams were impinged on the target. The duty factor (DF) was defined
as the ratio of the flat-top time to the period of a single cycle.

The flat-top and waiting times could be changed upon user request
and were limited by power consumption. The time for ramping both up
and down was established at 1.4 s. Typically, the DF was approximately
75% at the period of 53 s and the flat top of 40 s.
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HSBPM
High-Speed Beam Position Monitor



Motivation
Ø Beam profile monitoring for up~middle-stream of the beamline

Ø Quantitative and real time monitoring
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Ø Accelerator parameter measurement at BM4 beamline

Ø Feedback to accelerator research
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Requirements for the Beam Profile Monitor
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q Photon →◎ detect     charged particles → × remove

q Less material thickness

q Position resolution: σ ≤ 0.3 mm

q Stable operation in a magnetic field (~ 0.3 T)

q Measurement on high rate (several MHz) 

q Data acquisition synchronized with beam cycle
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q Photon →◎ detect     charged particles → × remove

q Less material thickness

q Position resolution: σ ≤ 0.3 mm

q Stable operation in a magnetic field (~ 0.3 T)

q Measurement on high rate (several MHz) 

q Data acquisition synchronized with beam cycle



Scintillation Fibers + SiPM
Basic Structure:

120 mm

MPPC board Analog signal
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Basic design of the Beam Profile Monitor

Detection part
22.5H x 22.5W mm2

Beam
direction



Basic design of the Beam Profile Monitor
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Charged VETO

Aluminum Photon converter

x layer y layer Trigger counter

Wave-length shifting fiber

e+

e–

Photon beam



Basic design of the Beam Profile Monitor
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Charged VETO counter

• Detect BG events (charged particles)

• reduce thickness & high efficiency

0.5 mm

0.93 mm

γ beam

99 Scintillation fibers
(kuraray SCSF-78, φ0.5 mm)

e+
e+

e–



Basic design of the Beam Profile Monitor
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Photon converter

• Production e+/e– pair

• Aluminum

• Thickness: 0.4 mm

• Convertion probability: ~ 0.3%

e+

e–



Basic design of the Beam Profile Monitor
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e+

e–

x layer & y layer

• Detect particle position

• Scintillation fibers (φ0.5 mm)

• 3 fibers / 1 ch = 1.5 mm / seg.

• 15 seg. / 22.5 mm

(Kuraray SCSF-78)

achieve resolution 0.1 mm
/ 1,000 events (simulation)



Basic design of the Beam Profile Monitor
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e+

e–

Trigger counter

• Event identification

• Time window

• Plastic scintillator

• Wave-length shifting fiber
(kuraray Y-11, φ1 mm)

(Eljen EJ-212, 2 mm) 



Basic design of the Beam Profile Monitor
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e+

e–

Photon Event ID VETO ⊗ 𝑥 layer ⊗ 𝑦 layer ⊗ [ trig. ]

Only photon events can be extracted!

Photon beam



Requirements for the Beam Profile Monitor
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ü Photon →◎ detect     charged particles → × remove

ü Less material thickness

ü Position resolution: σ ≤ 0.3 mm

q Stable operation in a magnetic field (~ 0.3 T)

q Measurement on high rate (severalMHz) 

q Data acquisition synchronized with beam cycle
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ü Photon →◎ detect     charged particles → × remove

ü Less material thickness

ü Position resolution: σ ≤ 0.3 mm

q Stable operation in a magnetic field (~ 0.3 T)

q Measurement on high rate (severalMHz) 

q Data acquisition synchronized with beam cycle



SiPM and the readout circuit
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Multi-Pixel Photon Counter
S13360-1350PE / S13360-3050PE
(Hamamatsu Photonics K.K.)  

• Detect scintillation light
• Stable operation in magnetic field

3 mmMPPC
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AD8000 LTC6754
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Amplification
Digitalization
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Amp. & ToT circuit

threshold voltage

OpAmp output (90Sr β-ray)

Digital output
80 mmIN

OUT

200 mV
20 ns
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ü Photon →◎ detect     charged particles → × remove

ü Less material thickness

ü Position resolution: σ ≤ 0.3 mm

ü Stable operation in a magnetic field (~ 0.3 T)

q Measurement on high rate (several MHz) 

q Data acquisition synchronized with beam cycle
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ü Photon →◎ detect     charged particles → × remove

ü Less material thickness

ü Position resolution: σ ≤ 0.3 mm

ü Stable operation in a magnetic field (~ 0.3 T)

q Measurement on high rate (several MHz) 

q Data acquisition synchronized with beam cycle



Data acquisition system
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Hadron Universal Logic
firmware: Streaming TDC [1]

FPGA

NIM IN

Ethernet

[1] R. Honda et al., Prog. Theor. Exp. Phys., Issue 12 (2021) 123H01. 

Expected event rate: ~ MHz / detector
Not possible with traditional trigger type TDC 

LV
D

S,
 E

C
L 

et
c.

ü 0.97 ns / channel

ü measure elapsed time up to 33 s 

ü Trigger less data taking

ü Offline event selection



Data acquisition system
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FPGA

NIM IN

32 ch LVDS

Radiator
control

Gate signal

Amp. & ToT
circuit

32 ch
Analog

EthernetDAQ PC
SiTCP

Synchronized
with the beam cycle

RS-232c

BPM

[1] R. Honda et al., Prog. Theor. Exp. Phys., Issue 12 (2021) 123H01. 



Photon beam monitoring at ELPH BM4 beamline
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Fig. 15. Top view of the beamline setup. A lead collimator, sweep magnet, and vacuum chamber were located upstream from the target. A high-speed beam profile monitor (HSBPM)
and a lead–glass Cherenkov counter were placed downstream from the target.

scintillation counters, respectively. Scintillation light from each counter
was transported to the PMT by an optical fiber bundle.

TagF had the role to identify the energy of the recoil electron. The use
of TagB in coincidence with TagF was primarily to select recoil electrons
after photon emission at the radiator from other sources of background
such as Mø ller scattered electrons and secondary particles from the hit
of electrons on the beam duct. The timing information of TagF and TagB
was recorded by a TDCmodule (CAEN V775). The charge information of
TagB signal was recorded by a charge-to-digital converter (QDC) module
(CAEN V792) to enable time walk correction to obtain a better timing
selection. The tagger system was capable of tagged photon energies over
a range of 0.8–1.1 GeV with an accuracy of ±10 MeV on the produced
photon beam [27].

Calibration of the tagging detectors resulted in a correlation between
the tagger segment number and the energy of a photon incident on the
target; therefore, it provided information on the photon energy and
the number of photons. The photon energy is deduced from energy
conservation as follows:

E� = Ee * Ee® * Erecoil, (1)

where E� is the energy of the photon, Ee is the energy of the electron
in the STB ring, Ee® is the energy of the electron as measured in the
tagging system, and Erecoil is the recoil energy of the radiator nucleus
of bremsstrahlung. Because the recoil energy is negligibly small, we
assumed Erecoil = 0. In addition to that method, the kinematically
complete measurement of �+d ô p+p+⇡* was successfully established
as a method of calibrating the photon tagging system [28].

The lead–glass Cherenkov (LG) counter was used to measure the
number of photons that passed through the spectrometer, which is
equivalent to the approximate number that reached the target. The lead
glass was SF5, which was provided by OHARA Optical Glass Mfg. Ltd.
(now, OHARA INC.). The tagging efficiency for each TagF was evaluated
as the number of photons detected by the LG counter divided by the
number of photons detected by TagF. The photon beam intensity was
kept at a few hertz predominantly owing to the counting rate capability
of the LG counter and to reduce the probability of coincidences between
the LG counter and the tagger. In principle, this should have no effect
on the measured efficiency. The tagging efficiency was 75–80% over the
TagF counters. The LG counter was prepared for the FOREST detector,
and the performance study is described in Ref. [29].

4.2. Sweep magnet

A large number of e+e* pairs created upstream from the photon beam
was substantially reduced by the sweep magnet (B = 1.1 T at I = 300 A).
In front of the sweep magnet, there was a collimator comprised of five
lead blocks (250 mm thickness in total) to reduce the beam halo. The
collimator aperture was 10 mm ø. The sweep magnet, being located
before the main spectrometer, efficiently suppressed the background
contribution to the data and improved the DAQ rate.

However, electrons and positrons from upstream were not com-
pletely removed by the sweep magnet, and thus two sets of EV counters
were placed upstream of NKS2 at the same height of the photon beams
in order to reject them in the trigger (see Section 2.4).

4.3. Beam profile monitor

A high-speed beam profile monitor (HSBPM) was composed of two
layers of scintillating fiber bundles. Each layer had 16 scintillating fibers
(Saint-Gobain, BCF-10SC with black extra mural absorber coating) of
3-mm square cross-section and read out by a 16-ch multianode PMT
(HAMAMATSU Photonics, H6568-10). One bundle was horizontally
aligned, and the other was vertically aligned. They crossed over a
48 ù 48 mm square region to provide two-dimensional hit information
by the coincidence of the vertical and horizontal channels for charged
particles. Charged particles were provided from the photon beams by an
aluminum converter plate having a thickness of 0.1 mm (Ì1 ù 10*3X0).
It also consisted of a pair of trigger counters and a veto counter to
ensure that electrons and positrons converted from photons generated
the trigger. The beam profile was checked by HSBPM when the beam
course was tuned in the experimental period. The detailed information
can be found in Refs. [30,31].

4.4. Electron beam structure

A typical beam cycle consisted of times of waiting, beam injection,
ramping up, storage (flat top), and ramping down. During the storage
time, the radiator was inserted into an orbit of electrons, and the photon
beams were impinged on the target. The duty factor (DF) was defined
as the ratio of the flat-top time to the period of a single cycle.

The flat-top and waiting times could be changed upon user request
and were limited by power consumption. The time for ramping both up
and down was established at 1.4 s. Typically, the DF was approximately
75% at the period of 53 s and the flat top of 40 s.
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Fig. 15. Top view of the beamline setup. A lead collimator, sweep magnet, and vacuum chamber were located upstream from the target. A high-speed beam profile monitor (HSBPM)
and a lead–glass Cherenkov counter were placed downstream from the target.

scintillation counters, respectively. Scintillation light from each counter
was transported to the PMT by an optical fiber bundle.

TagF had the role to identify the energy of the recoil electron. The use
of TagB in coincidence with TagF was primarily to select recoil electrons
after photon emission at the radiator from other sources of background
such as Mø ller scattered electrons and secondary particles from the hit
of electrons on the beam duct. The timing information of TagF and TagB
was recorded by a TDCmodule (CAEN V775). The charge information of
TagB signal was recorded by a charge-to-digital converter (QDC) module
(CAEN V792) to enable time walk correction to obtain a better timing
selection. The tagger system was capable of tagged photon energies over
a range of 0.8–1.1 GeV with an accuracy of ±10 MeV on the produced
photon beam [27].

Calibration of the tagging detectors resulted in a correlation between
the tagger segment number and the energy of a photon incident on the
target; therefore, it provided information on the photon energy and
the number of photons. The photon energy is deduced from energy
conservation as follows:

E� = Ee * Ee® * Erecoil, (1)

where E� is the energy of the photon, Ee is the energy of the electron
in the STB ring, Ee® is the energy of the electron as measured in the
tagging system, and Erecoil is the recoil energy of the radiator nucleus
of bremsstrahlung. Because the recoil energy is negligibly small, we
assumed Erecoil = 0. In addition to that method, the kinematically
complete measurement of �+d ô p+p+⇡* was successfully established
as a method of calibrating the photon tagging system [28].

The lead–glass Cherenkov (LG) counter was used to measure the
number of photons that passed through the spectrometer, which is
equivalent to the approximate number that reached the target. The lead
glass was SF5, which was provided by OHARA Optical Glass Mfg. Ltd.
(now, OHARA INC.). The tagging efficiency for each TagF was evaluated
as the number of photons detected by the LG counter divided by the
number of photons detected by TagF. The photon beam intensity was
kept at a few hertz predominantly owing to the counting rate capability
of the LG counter and to reduce the probability of coincidences between
the LG counter and the tagger. In principle, this should have no effect
on the measured efficiency. The tagging efficiency was 75–80% over the
TagF counters. The LG counter was prepared for the FOREST detector,
and the performance study is described in Ref. [29].

4.2. Sweep magnet

A large number of e+e* pairs created upstream from the photon beam
was substantially reduced by the sweep magnet (B = 1.1 T at I = 300 A).
In front of the sweep magnet, there was a collimator comprised of five
lead blocks (250 mm thickness in total) to reduce the beam halo. The
collimator aperture was 10 mm ø. The sweep magnet, being located
before the main spectrometer, efficiently suppressed the background
contribution to the data and improved the DAQ rate.

However, electrons and positrons from upstream were not com-
pletely removed by the sweep magnet, and thus two sets of EV counters
were placed upstream of NKS2 at the same height of the photon beams
in order to reject them in the trigger (see Section 2.4).

4.3. Beam profile monitor

A high-speed beam profile monitor (HSBPM) was composed of two
layers of scintillating fiber bundles. Each layer had 16 scintillating fibers
(Saint-Gobain, BCF-10SC with black extra mural absorber coating) of
3-mm square cross-section and read out by a 16-ch multianode PMT
(HAMAMATSU Photonics, H6568-10). One bundle was horizontally
aligned, and the other was vertically aligned. They crossed over a
48 ù 48 mm square region to provide two-dimensional hit information
by the coincidence of the vertical and horizontal channels for charged
particles. Charged particles were provided from the photon beams by an
aluminum converter plate having a thickness of 0.1 mm (Ì1 ù 10*3X0).
It also consisted of a pair of trigger counters and a veto counter to
ensure that electrons and positrons converted from photons generated
the trigger. The beam profile was checked by HSBPM when the beam
course was tuned in the experimental period. The detailed information
can be found in Refs. [30,31].

4.4. Electron beam structure

A typical beam cycle consisted of times of waiting, beam injection,
ramping up, storage (flat top), and ramping down. During the storage
time, the radiator was inserted into an orbit of electrons, and the photon
beams were impinged on the target. The duty factor (DF) was defined
as the ratio of the flat-top time to the period of a single cycle.

The flat-top and waiting times could be changed upon user request
and were limited by power consumption. The time for ramping both up
and down was established at 1.4 s. Typically, the DF was approximately
75% at the period of 53 s and the flat top of 40 s.
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Quantitative beam profiling
Fitting function: Gaussian + Gaussian
• Beam center position (𝜇) 
• Beam size (𝜎)

Position precision: ∆𝜇, ∆𝜎 < 10 µm

Hit distribution /1.0 sec
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Measurement Results
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Beam Position(µ) Beam size(σ)

Beam energy dependence No dependencies No dependencies

Beam intensity dependence No dependencies Increasing with the 
beam intensity

Time dependence

Radiator position dependence
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Ø Time dependence
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Ø Radiator position dependence
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Measurement Results
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Beam Position(µ) Beam size(σ)

Beam energy dependence No No

Beam intensity dependence No No

Time dependence Yes Yes

Radiator position dependence Yes Yes

üProfiling accuracy: ≤ 10 µm for only 1 second profile
üReal-time monitoring
üThe first measuring of ELPH BM4 photon beam

Radiator position is a significant factor in determining beam profile
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• Beam direction and the Twiss parameter
• Estimation of the electron beam profile



Beam direction and Twiss parameter
x-x’ phase space
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• Beam direction and the Twiss parameter
• Estimation of the electron beam profile
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Estimation of the electron beam profile
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Radiator



Result of the electron beam profile

position µx – 0.066 +/– 0.001 mm
size σx 0.803 +/– 0.002 mm
Expected σx (@BM4) 0.76 mm
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Ø Possibility that inserting the radiator affects 
the electron beam intensity distribution

Ø Obtain information of electron beam by BPM



Summary
ØDeveloped the new Beam Profile Monitor for BM4 beamline

ØBeam Profile Monitor (BPM)

ØMeasured photon beam profile

ØApplicable to accelerator research

• Basic design: scintillation fibers and SiPMs

• DAQ: Streaming TDC (FPGA module (HUL))
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• Position precision: 10 µm for 1 second profile

• Radiator position decides photon beam profile

• Twiss parameters information can be deduced by beam direction

• Electron beam profile at BM4 was successfully measured



Back Up
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MPPC gain ≤ 10%

efficiency /ch ~1%

Absolute position accuracy < 10 µm

◎ Relative position < 10 µm   (movable stage: 3 µm)
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𝑚𝑇 =
$𝑘 𝑇

1 − ( $𝑘 𝑇)𝜏

𝑚: true count rate
𝑘: number that the detector count in a time 𝑇
𝜏: dead time

𝑝0𝑥 = 𝑚
𝑝1 = 𝜏Fit function: 𝑦 =

𝑝-𝑥
1 + 𝑝-𝑝.𝑥 (     )

Dead time:  43.3 +/– 2.0 ns



Previous measurement of electron beam size[4]
[4] Y. Obara et al., NIM A 922 (2019) 108–113
[5] T. Ishikawa et al., NIM A 811 (2016) 124;

Y. Matsumura, T. Ishikawa, NIMA 902 (2018) 103.  
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I(t) = I0 exp(��t)

(1)The photon intensity as a function of the elapsed 
time:

The decay rate 𝛤 giving the beam size 𝜎𝑥

Detector: Tagger (for BM5)
Logic module: MPLM4X[5] 

(contains FPGA, Xilinx Spartan-6) 
- NIM-standard signals
- Scaling every 0.1 second

Estimation of electron beam profile by tagger 
counts

New system required for high-rate beam center measurements streaming TDC
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SiPM MPPC
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46 mV

20 ns

1 photon

2 photon

3 photon

4 photon

5 photon



NPE
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40 ns 1 photon

33.6 mV

40 ns
500 mV10 p.e.

30 p.e.

50 p.e.

July 2021 Beamtest@BM4
Prototype
Fiber: φ1.5 mm (Kuraray SCSF-78)
MPPC: S1360-1350PE

160 mm

In Beam
(current: ~1 mA)



February 1, 2023 修士論文発表会 ‒ 木野量子（原子核物理研究室） 55

3
ΛH lifetime measurement at BM4 beamline

lifetime:
<latexit sha1_base64="rem4LY6FA3FaIlAumUI67vuVvyQ="></latexit>

td = (t⇡� � TOF⇡�)� (tK+ � TOFK+)

π–

K+
Target cell

Timing Counter
Drift Chamber
Range Counter

3ΛH

momentum by Drift Chanber 
in the NKS2 spectrometer

tracking

production position
decay position

missing
momentum

averaged position
by BPM
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3
ΛH lifetime measurement

F. Mazzaschi,  the ALICE collaboration, APBPS 16 1-A149 (2023) 



Beam profile: Photon event vs BG
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GEANT4 Simulation
Gamma rays distribution(z ~3 m)
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GEANT4 Simulation
e+/e– distribution (z ~3 m)



Beam profile: tagged vs untagged photon
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Photon event

February 1, 2023 修士論文発表会 ‒ 木野量子（原子核物理研究室） 60



Beam profile: ToT cut
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Beam profile: ToT cut
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Measured photon beam profile
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Ø Beam energy dependence (events coincidenced with Tagger)

small energy dependence



Measured photon beam profile
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Ø Beam intensity dependence
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