Monte Carlo ゼミ

2007/01/19

Practice1:

Interaction of photon with materials

- Detector
 - Plastic scintillator
 - Position (x, y, z)=(-10cm, 0, 0)
 - Volume 10.cm×10.cm ×10.cm
 - Density 1.032 g/cm³
 - Ge crystal
 - Position (x, y, z)=(10cm, 0, 0)
 - Volume R_{min}=0.4cm, R_{max}=3.25cm, Z/2=3.47cm
- Physics
 - Transportation
 - EMProcess
 - Decay process
- Primary Generation
 - Generate γ ray from (0, 0, 0) isotropically in 3D space
 - Eγ=1MeV
- Sensitive Detector
 - Plastic scintillator, Ge crystal
 - Measure energy deposit.
- Show energy deposit spectra of each detector.
- Compare the ratio of Compton scattering and photo electric effect (σ_{Compton}∞Z, σ_{photo}∞Z⁵)

Practice2:

ΔE , E counter (particle identification)

- When you measure ∆E and total kinetic energy, you can identify the particle
 - ΔE depends on β
 - $E_{Kin} = \frac{1}{2} \text{ mV}^2$
- Detector
 - Thin counter (Plastic scintillator)
 - Position (x, y, z)=(2.5cm, 0, 0)
 - Volume 10cm(W) × 10cm(H) × 1cm(T)
 - Thick counter (Plastic scintillator)
 - Position (x, y, z)=(25cm, 0, 0)
 - Volume $10cm(W) \times 10cm(H) \times 40cm(T)$
- Physics process (Do Not include decay)
 - Transportation
 - EMProcess
- Primary Generation
 - Generate π +,K+,p in order
 - Ekin 20MeV~400MeV
 - Beam direction (1,0,0)
- Sensitive Detector
 - Thin counter
 - Thick counter
- Make a scattering plot (2-dim histogram) between
 ΔE (thin counter) and total E (thick counter)