Search for the Θ^+
with a Low Momentum K^+ Beam

Norihito Muramatsu
RCNP, Osaka University

~~~ Contents ~~~
- Summary of current situation
- Objectives of $\Theta^+$ search at J-PARC
- Considerations on experimental setup
Photoproduction from deuteron

$\Theta^+$

LD$_2$ data (preliminary)
$1.50 < M(pK^-) < 1.54$ GeV/c$^2$

1.6 GeV bump

mass $\sim 1.53$ GeV/c$^2$, $s/\sqrt{s+b} = 4-5\sigma$,
Details are being shown at INPC.

No indications at CLAS, but acceptance coverage is different from LEPS.
(No sensitivity of $\Lambda^*$ detection in extremely forward region)
Isospin Asymmetry in quasi-free $\Theta^+$ Photoproduction


$\gamma N \rightarrow K^0 \Theta^+$: contact term (3/2) or no $K^*$ exchange (1/2)

neutron target $>$ proton target (CLAS-p)

$\gamma N \rightarrow K \Lambda^*$: neutron $<$ proton

Indication is seen in LEPS data.

$\theta_{CM}(K-p) < 60^\circ$

$\sigma_{\gamma p \rightarrow \Theta^+ K^0} < 1.25$ nb @ 1.54 GeV/c$^2$

$\gamma N \rightarrow K \Theta^+$

$\cos \theta_{CM}(K^0) > 0.5$

$\Lambda(1520)$

Counts

$M(K-p)$ GeV/c$^2$

Counts

$M(nK^0)$ (GeV)

$M(nK^0)$ (GeV)

Counts

Counts

$\Theta^+(1540)$ ?

$\cos \theta_{CM}(K^0) > 0.5$

proton target

M(K-p) GeV/c$^2$

deuteron target

M(K-p) GeV/c$^2$
Energy Dependence?

Null results in high energy experiments. (BES, BaBar, Belle, LEP, HERA-B, SPHINX, HyperCP, CDF, FOCUS, PHENIX)

⇒ \( \sigma(\Theta^+)/\sigma(\Lambda^+) < 2-3\% \) [Quark Fragmentation]

**Quark fragmentation**

**Baryon fragmentation**

Needs fewer quark pairs from the vacuum

Pentaquark strongly suppressed?

Pentaquark less suppressed?
Objectives of $\Theta^+$ search at J-PARC (and LEPS2)

- $\Theta^+$ is not established yet.
- Affected by reaction mechanism?
  - Isospin asymmetry in $\gamma N \rightarrow \overline{K}\Theta^+$
  - Angle dependence in $\gamma d \rightarrow \Lambda^*\Theta^+$
  - Energy dependence in $\sigma(\Theta^+)/\sigma(\Lambda^*)$
- Width/spin/parity is not determined.

$\Rightarrow$ Systematic studies of $\Theta^+$ photoproduction at LEPS2
  - Understand reaction mechanisms with high intensity photon beam ($\sim 10^7$/sec) and large volume detector
$\Rightarrow$ $\Theta^+$ formation experiment by $K^+n$ resonance at J-PARC
  - Direct confirmation of $\Theta^+$ existence
  - Independent from reaction mechanism
  - Width can be measured from cross section
**K⁺n Scattering Experiments**

**DIANA**
- Old bubble chamber experiment
- \( K^+ Xe \rightarrow K_S^0 pX \)

**Belle**
- \( K^+ \) is ‘reconstructed’ from the reaction \( D^{*-} \rightarrow D^0 \pi^- \rightarrow (K^+\pi^-)\pi^- \)

**Need a modern experiment with high intensity K⁺ beam**
Basic Concepts

Originally considered at BNL-E949
- sophisticated for K⁺ beam experiment
- large 4π volume with good resolutions

Similar but optimized experiment is possible at J-PARC.

- Resonance formation reaction:
  \[ K^+ n \rightarrow \Theta^+ \rightarrow K_S^0 p \rightarrow \pi^+ \pi^- p \]
  - \( P(K^+) = 417 \) (442) MeV/c for \( M=1.53 \) (1.54) GeV/c²
  - neutron in scintillation fiber target
- \( \pi^+ \pi^- \) detection at Drift Chamber and proton detection at Sci. Tgt.
  \( M(\pi^+ \pi^-) = M(K_S^0) \Rightarrow M(K_S^0 p) = M(\Theta^+) \)
- \( \Lambda^* \) formation for calibrations and checks of data quality and analysis procedure with the same beamline and detectors: \( K^- p \rightarrow \Lambda(1520) \rightarrow \Lambda \pi^+ \pi^- \)
  (It is worth to do even if K⁻ intensity is a bit lower.)
K0.8 (Sharing w/ stopped K⁺ exp.)

Fitch-type Cherenkov
Beam Wire Cherenkov
Aerogel Cherenkov

K0.8

BeO degrader ~40 cm
(high dens. and low A)

K⁺: ~420 MeV/c (β~0.648→n₁₅₈~1.54)
π⁺: ~600 MeV/c (β~0.974→n₁₀₃~1.03)

E787 Year
95
96
97-98

K⁺ momentum (MeV/c)
790
730
710

Stopping Fraction
20%
25%
28%
- $K^+$ travels inside a target until momentum becomes appropriate to produce $\Theta^+$.
- Proton is emitted in forward directions, and tends to stop inside the target.
- Kinetic energy and polar angle measurements of proton.
- Mometum correction for pions.
⇒ Active target w/ fine segmentation
Spectrometer Considerations

- Pions are emitted in side directions.  
  \[ \Rightarrow \text{Cylindrical drift chamber inside a solenoid.} \]
- In case that a 1 m-long drift chamber is placed at -40 cm to 60 cm of the target, geometrical acceptance is an order of 40%.
- PID by TOF would be enough.
  (See right figure: green R=50 cm, red R=90 cm in case of charged particles are emitted at 90°. \( \Delta t=50 \) psec is assumed.)
Mass resolution studies were done assuming BNL-E949 detector resolutions. Invariant mass of $\pi\pi p : 7.6$ MeV/$c^2$ (assuming $\Delta P/P=1.4\%$ at $P=200-300$ MeV/$c$, $\Delta E/E=8.3\%$ at $E_{\text{kin}}=100$ MeV, proton angle mes. error = 6 degree)

Kinematic fit (using correlation with $K_S^0$ mass) : 6.2 MeV/$c^2$

(Note that initial neutron mass is also correlated with the reconstructed mass deviation, but it depends on $K^+$ momentum resolution.)
Although mass resolution with kinematic fit is not sensitive to momentum resolution, it is better to construct a spectrometer with \(~1\%\) resolution. Tracking chambers with such resolutions are under considerations at LEPS2.
Other possibilities of detector setup

- Inactive target + proton detection at spectrometer
  - Need studies of proton momentum resolution.

- Only $\pi^+\pi^-$ detection at Side Tracking Chamber
  - $M(\pi^+\pi^-) = M(K_S^0)$ & $MM(K^+, \pi^+\pi^-) = M(p)$
  - $\Rightarrow M(K^+n)$ with Fermi-correction

\[
\left[ M^C (K^+n) \right]^2 = \left[ M (K^+n) \right]^2 - \frac{\left| P_{K^+} \right|}{\left| P_{K^+} - P_{K_S^0} \right|} \times \left\{ MM (K^+, \pi^+\pi^-) \right\}^2 - \left[ M_p \right]^2
\]

- Mass res. $\sim 15.4$ MeV with $K^+$ beam mom. res. 8.4 MeV/c (LESB3)
- Select backward production of $K_S^0$: 6.7 MeV (135°-180° in CMS)
- Need to measure $K^+$ beam momentum with TOF. (L$\sim$4 m)
Expected Yield (BNL case) and Backgrounds

- LESB3: $10^{12}$ proton/pulse
  \[\Rightarrow 3 \cdot 10^5 \text{K}^+\text{pulse} @710 \text{ MeV/c}\]
  \[\Rightarrow 3 \cdot 10^4 \text{K}^+\text{pulse} @475 \text{ MeV/c} \text{ w/o degrader}\]
- \[Y = \rho \cdot l \cdot \sigma \cdot N_A \cdot F_K \cdot f_n = 1.032 \text{ g/cm}^3 \cdot 25 \text{ cm} \cdot 10^{-27} \text{ cm}^2 \cdot 6.022 \cdot 10^{23} \cdot 3 \cdot 10^4 /\text{pulse} \cdot (6/13) = 200 /\text{mb/pulse}\]
- \[\sigma_{BW}(E) = \pi/(4k^2) \cdot \Gamma^2/[(E-M)^2+\Gamma^2/4] \text{ for spin1/2}\]
  \[\Rightarrow 26.4 \cdot \Gamma \text{ mb/MeV}\]
- \[\Lambda^*: \Gamma = 15.6 \text{ MeV} \Rightarrow \text{order of 100 mb}\]
- CEX BG: 7 mb [PRD15(1977)1846] & forward peaked
- $\pi^+n \rightarrow \pi^+\pi^-\rho$: Pion contamination in beam can be removed by Cherenkov detectors, $K_S^0$ reconstruction, and 4-momentum conservation.
Letter of Intent for
Study of Exotic Hadrons with \( S = +1 \)
and Rare Decay \( K^+ \to \pi^+ \nu \bar{\nu} \)
with Low-momentum Kaon Beam
at J-PARC

Collaboration of
Research Center for Nuclear Physics(RCNP), Osaka University
High Energy Accelerator Research Organization(KEK)
Kyoto University
Osaka University
Fukuoka University
National Defense Academy(NDA)
Laboratory of Nuclear Science(LNS), Tohoku University
Yamagata University
Wakayama Medical University
National Chung Cheng University
Academia Sinica
Pusan National University
University of Connecticut
Joint Institute for Nuclear Research(JINR), Dubna
Institute for High Energy Physics(IHEP), Protvino
TRIUMF

April 28, 2006

K0.8 as K1.1BR at Day-1 ?
K0.8 w/ double separated beam at Day-2 ?

Tomoaki Hotta, Hideo Kohri, Yoshikazu Maeda, Norihito Muramatsu,
Takashi Nakano1, Masayuki Nishiyama, Takahiro Sawada2, Mizuki Sumihama,
Manabu Yosoi
Research Center for Nuclear Physics(RCNP), Osaka University, Japan
Shigeru Ishimoto, Takashi K. Komatsubara, Hironori Nosei, Shin-ya Sawada,
Shigehiro Sugimoto
High Energy Accelerator Research Organization(KEK), Japan
Seishi Dalirrku1, Hisako Fujimura, Ken’ichi Inoue, Kouji Miwa4,
Yoshihito Nakatsugawa3, Tadashi Nomura, Yoshikatsu Seki1, Toshinori Tsunemi
Department of Physics, Kyoto University, Japan
Shin'ei Ajiwara, Masaharu Noma, Suguru Shimizu, Yorihito Sugiyama
Department of Physics, Osaka University, Japan
Yoshihiko Tomagawa
Department of Applied Physics, Fukuoka University, Japan

Tori Matsuura, Takao Shinkawa
Department of Applied Physics, National Defense Academy(NDA), Japan
Takatsugu Ishikawa, Hajime Shimizu
Laboratory of Nuclear Science(LNS), Tohoku University, Japan

Takahiro Iwata
Department of Physics, Yamagata University, Japan

Seiji Makino
Wakayama Medical University, Japan

Jin-Luen Tang
Department of Physics, National Chung Cheng University, Taiwan, R.O.C.

Wen-Chien Chang
Institute of Physics, Academia Sinica, Taiwan, R.O.C.

Jung Kuen Ahn
Department of Physics, Pusan National University, Korea

Ken Hieks, Tatsuro Mihle
Department of Physics and Astronomy, Ohio University, USA

Kyungsoon Joo, Maurizio Ungaro
Department of Physics, University of Connecticut, USA

Eugene A. Strokovsky
Laboratory for Particle Physics, Joint Institute for Nuclear Research(JINR), Dubna, Russia

Alexander Artamonov, Vladimir Burtsov, Victor Kuznetsov,
Vladimir Medianskii, Dmitrii Petrunko, Sergey Popov,
Dmitrii Vavilov
Institute for High Energy Physics(IHEP), Protvino, Russia

Toshihiko Numao
TRIUMF, Canada

1Names of graduate students are presented with *.
2Contact person: Takashi Nakano, nakano@rcnp.osaka-u.ac.jp, (+81)6-6879-8838.
Summary

• Existence of $\Theta^+$ can be confirmed in $K^+n$ resonance reaction at J-PARC. $P(K^+) \sim 420$ MeV/c
• $\Theta^+$ is identified by invariant mass of two pions and proton.
  Mass resolution $\sim 8$ MeV w/ $\Delta P/P=1.4\%$
  (Better resolution is expected with kinematic fit and/or large volume tracking chamber.)
• $\Theta^+$ signal should be distinguishable from charge exchange background and contaminated pion reaction.
• Width can be measured from cross section. $(26x\Gamma \text{ mb/MeV})$
• $\Lambda(1520)$ formation with $K^-$ beam is useful as a reference reaction.
• Beamline and detector system can be shared with rare kaon decay experiments.